Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jun 1;88(11):4860–4864. doi: 10.1073/pnas.88.11.4860

Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells.

M H Shirvan 1, H B Pollard 1, E Heldman 1
PMCID: PMC51766  PMID: 2052567

Abstract

Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, we found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca2+ dependent, and both agonists induced 45Ca2+ uptake. Equilibrium binding studies showed that [3H]Oxo-M bound to chromaffin cell membranes with a Kd value of 3.08 x 10(-8) M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. We propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features.

Full text

PDF
4860

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTON A. H., SAYRE D. F. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther. 1962 Dec;138:360–375. [PubMed] [Google Scholar]
  2. Atack J. R., Wenk G. L., Wagster M. V., Kellar K. J., Whitehouse P. J., Rapoport S. I. Bilateral changes in neocortical [3H]pirenzepine and [3H]oxotremorine-M binding following unilateral lesions of the rat nucleus basalis magnocellularis: an autoradiographic study. Brain Res. 1989 Apr 3;483(2):367–372. doi: 10.1016/0006-8993(89)90182-0. [DOI] [PubMed] [Google Scholar]
  3. Boksa P., Livett B. G. Desensitization to nicotinic cholinergic agonists and K+, agents that stimulate catecholamine secretion, in isolated adrenal chromaffin cells. J Neurochem. 1984 Mar;42(3):607–617. doi: 10.1111/j.1471-4159.1984.tb02726.x. [DOI] [PubMed] [Google Scholar]
  4. Forsberg E. J., Rojas E., Pollard H. B. Muscarinic receptor enhancement of nicotine-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J Biol Chem. 1986 Apr 15;261(11):4915–4920. [PubMed] [Google Scholar]
  5. Freedman S. B., Harley E. A., Iversen L. L. Relative affinities of drugs acting at cholinoceptors in displacing agonist and antagonist radioligands: the NMS/Oxo-M ratio as an index of efficacy at cortical muscarinic receptors. Br J Pharmacol. 1988 Feb;93(2):437–445. doi: 10.1111/j.1476-5381.1988.tb11451.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frye R. A., Holz R. W. The relationship between arachidonic acid release and catecholamine secretion from cultured bovine adrenal chromaffin cells. J Neurochem. 1984 Jul;43(1):146–150. doi: 10.1111/j.1471-4159.1984.tb06690.x. [DOI] [PubMed] [Google Scholar]
  7. Hammer R., Giachetti A. Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci. 1982 Dec 27;31(26):2991–2998. doi: 10.1016/0024-3205(82)90066-2. [DOI] [PubMed] [Google Scholar]
  8. Heldman E., Levine M., Raveh L., Pollard H. B. Barium ions enter chromaffin cells via voltage-dependent calcium channels and induce secretion by a mechanism independent of calcium. J Biol Chem. 1989 May 15;264(14):7914–7920. [PubMed] [Google Scholar]
  9. Holz R. W., Senter R. A., Frye R. A. Relationship between Ca2+ uptake and catecholamine secretion in primary dissociated cultures of adrenal medulla. J Neurochem. 1982 Sep;39(3):635–646. doi: 10.1111/j.1471-4159.1982.tb07940.x. [DOI] [PubMed] [Google Scholar]
  10. Kilpatrick D. L., Slepetis R. J., Corcoran J. J., Kirshner N. Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J Neurochem. 1982 Feb;38(2):427–435. doi: 10.1111/j.1471-4159.1982.tb08647.x. [DOI] [PubMed] [Google Scholar]
  11. Knight D. E., Kesteven N. T. Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cells. Proc R Soc Lond B Biol Sci. 1983 May 23;218(1211):177–199. doi: 10.1098/rspb.1983.0033. [DOI] [PubMed] [Google Scholar]
  12. Lapied B., Le Corronc H., Hue B. Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells. Brain Res. 1990 Nov 12;533(1):132–136. doi: 10.1016/0006-8993(90)91805-q. [DOI] [PubMed] [Google Scholar]
  13. Pollard H. B., Burns A. L., Rojas E., Schlaepfer D. D., Haigler H., Brocklehurst K. Purification and biochemical assay of synexin and of the homologous calcium-dependent membrane-binding proteins, endonexin II and lipocortin I. Methods Cell Biol. 1989;31:207–227. doi: 10.1016/s0091-679x(08)61611-8. [DOI] [PubMed] [Google Scholar]
  14. Pollard H. B., Ornberg R., Levine M., Kelner K., Morita K., Levine R., Forsberg E., Brocklehurst K. W., Duong L., Lelkes P. I. Hormone secretion by exocytosis with emphasis on information from the chromaffin cell system. Vitam Horm. 1985;42:109–196. doi: 10.1016/s0083-6729(08)60062-x. [DOI] [PubMed] [Google Scholar]
  15. Pollard H. B., Weingrad D. A new, rapid method for measuring multiple samples of cyclic AMP using TEAE-cellulose column chromatography and a specific binding protein. Anal Biochem. 1976 Nov;76(50):382–384. doi: 10.1016/0003-2697(76)90301-8. [DOI] [PubMed] [Google Scholar]
  16. Raiteri M., Marchi M., Paudice P., Pittaluga A. Muscarinic receptors mediating inhibition of gamma-aminobutyric acid release in rat corpus striatum and their pharmacological characterization. J Pharmacol Exp Ther. 1990 Aug;254(2):496–501. [PubMed] [Google Scholar]
  17. Spivak C. E., Waters J. A., Aronstam R. S. Binding of semirigid nicotinic agonists to nicotinic and muscarinic receptors. Mol Pharmacol. 1989 Jul;36(1):177–184. [PubMed] [Google Scholar]
  18. Waters J. A., Spivak C. E., Hermsmeier M., Yadav J. S., Liang R. F., Gund T. M. Synthesis, pharmacology, and molecular modeling studies of semirigid, nicotinic agonists. J Med Chem. 1988 Mar;31(3):545–554. doi: 10.1021/jm00398a010. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES