Abstract
We have investigated the pharmacologic and neurotoxic properties of 2,4,5-trihydroxyphenylalanine [topa; the 6-hydroxylated derivative of 3,4-dihydroxyphenylalanine (dopa)] in central neurons. Application of solutions of topa to the chicken eyecup preparation results in glutamatergic responses mediated predominantly by non-N-methyl-D-aspartate receptors. Pharmacological activity depends upon oxidation in solution to a new compound. This compound is tentatively identified as topa quinone. Solutions of topa are toxic to cortical neurons in culture, and this toxicity is blocked by the non-N-methyl-D-aspartate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. These results suggest that production or accumulation of topa or its oxidation products might be involved in excitotoxicity, especially in dopaminergic neurons and their projection targets.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aizenman E., Lipton S. A., Loring R. H. Selective modulation of NMDA responses by reduction and oxidation. Neuron. 1989 Mar;2(3):1257–1263. doi: 10.1016/0896-6273(89)90310-3. [DOI] [PubMed] [Google Scholar]
- Aizenman E., White W. F., Loring R. H., Rosenberg P. A. A 3,4-dihydroxyphenylalanine oxidation product is a non-N-methyl-D-aspartate glutamatergic agonist in rat cortical neurons. Neurosci Lett. 1990 Aug 14;116(1-2):168–171. doi: 10.1016/0304-3940(90)90404-w. [DOI] [PubMed] [Google Scholar]
- Barber J. I., Townsend D., Olds D. P., King R. A. Dopachrome oxidoreductase: a new enzyme in the pigment pathway. J Invest Dermatol. 1984 Aug;83(2):145–149. doi: 10.1111/1523-1747.ep12263381. [DOI] [PubMed] [Google Scholar]
- Birch P. J., Grossman C. J., Hayes A. G. 6,7-Dinitro-quinoxaline-2,3-dion and 6-nitro,7-cyano-quinoxaline-2,3-dion antagonise responses to NMDA in the rat spinal cord via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol. 1988 Oct 26;156(1):177–180. doi: 10.1016/0014-2999(88)90163-x. [DOI] [PubMed] [Google Scholar]
- Biscoe T. J., Evans R. H., Headley P. M., Martin M. R., Watkins J. C. Structure-activity relations of excitatory amino acids on frog and rat spinal neurones. Br J Pharmacol. 1976 Nov;58(3):373–382. doi: 10.1111/j.1476-5381.1976.tb07714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bridges R. J., Stevens D. R., Kahle J. S., Nunn P. B., Kadri M., Cotman C. W. Structure-function studies on N-oxalyl-diamino-dicarboxylic acids and excitatory amino acid receptors: evidence that beta-L-ODAP is a selective non-NMDA agonist. J Neurosci. 1989 Jun;9(6):2073–2079. doi: 10.1523/JNEUROSCI.09-06-02073.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen G. Oxy-radical toxicity in catecholamine neurons. Neurotoxicology. 1984 Spring;5(1):77–82. [PubMed] [Google Scholar]
- Cozzi B., Pellegrini M., Droghi A. Neuromelanin in the substantia nigra of adult horses. Anat Anz. 1988;166(1-5):53–61. [PubMed] [Google Scholar]
- Davies J., Francis A. A., Jones A. W., Watkins J. C. 2-Amino-5-phosphonovalerate (2APV), a potent and selective antagonist of amino acid-induced and synaptic excitation. Neurosci Lett. 1981 Jan 1;21(1):77–81. doi: 10.1016/0304-3940(81)90061-6. [DOI] [PubMed] [Google Scholar]
- Frandsen A., Drejer J., Schousboe A. Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors. J Neurochem. 1989 Jul;53(1):297–299. doi: 10.1111/j.1471-4159.1989.tb07327.x. [DOI] [PubMed] [Google Scholar]
- Ginsberg M. D., Graham D. I., Busto R. Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology. Ann Neurol. 1985 Oct;18(4):470–481. doi: 10.1002/ana.410180410. [DOI] [PubMed] [Google Scholar]
- Globus M. Y., Busto R., Dietrich W. D., Martinez E., Valdes I., Ginsberg M. D. Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem. 1988 Nov;51(5):1455–1464. doi: 10.1111/j.1471-4159.1988.tb01111.x. [DOI] [PubMed] [Google Scholar]
- Globus M. Y., Ginsberg M. D., Dietrich W. D., Busto R., Scheinberg P. Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci Lett. 1987 Oct 5;80(3):251–256. doi: 10.1016/0304-3940(87)90463-0. [DOI] [PubMed] [Google Scholar]
- Globus M. Y., Ginsberg M. D., Harik S. I., Busto R., Dietrich W. D. Role of dopamine in ischemic striatal injury: metabolic evidence. Neurology. 1987 Nov;37(11):1712–1719. doi: 10.1212/wnl.37.11.1712. [DOI] [PubMed] [Google Scholar]
- Graham D. G. Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson's disease. Neurotoxicology. 1984 Spring;5(1):83–95. [PubMed] [Google Scholar]
- Graham D. G. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978 Jul;14(4):633–643. [PubMed] [Google Scholar]
- Hansson C., Rorsman H., Rosengren E., Wittbjer A. Production of 6-hydroxydopa by human tyrosinase. Acta Derm Venereol. 1985;65(2):154–157. [PubMed] [Google Scholar]
- Hirata K., Yim C. Y., Mogenson G. J. Excitatory input from sensory motor cortex to neostriatum and its modification by conditioning stimulation of the substantia nigra. Brain Res. 1984 Oct 29;321(1):1–8. doi: 10.1016/0006-8993(84)90675-9. [DOI] [PubMed] [Google Scholar]
- Honoré T., Davies S. N., Drejer J., Fletcher E. J., Jacobsen P., Lodge D., Nielsen F. E. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science. 1988 Aug 5;241(4866):701–703. doi: 10.1126/science.2899909. [DOI] [PubMed] [Google Scholar]
- Janes S. M., Mu D., Wemmer D., Smith A. J., Kaur S., Maltby D., Burlingame A. L., Klinman J. P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science. 1990 May 25;248(4958):981–987. doi: 10.1126/science.2111581. [DOI] [PubMed] [Google Scholar]
- Koh J. Y., Goldberg M. P., Hartley D. M., Choi D. W. Non-NMDA receptor-mediated neurotoxicity in cortical culture. J Neurosci. 1990 Feb;10(2):693–705. doi: 10.1523/JNEUROSCI.10-02-00693.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsden C. D. Neuromelanin and Parkinson's disease. J Neural Transm Suppl. 1983;19:121–141. [PubMed] [Google Scholar]
- Meldrum B., Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990 Sep;11(9):379–387. doi: 10.1016/0165-6147(90)90184-a. [DOI] [PubMed] [Google Scholar]
- Miranda M., Botti D., Bonfigli A., Ventura T., Arcadi A. Tyrosinase-like activity in normal human substantia nigra. Gen Pharmacol. 1984;15(6):541–544. doi: 10.1016/0306-3623(84)90212-x. [DOI] [PubMed] [Google Scholar]
- Misu Y., Goshima Y., Nakamura S., Kubo T. Nicotine releases stereoselectively and Ca2(+)-dependently endogenous 3,4-dihydroxyphenylalanine from rat striatal slices. Brain Res. 1990 Jun 18;520(1-2):334–337. doi: 10.1016/0006-8993(90)91725-v. [DOI] [PubMed] [Google Scholar]
- Nieoullon A., Kerkerian L., Dusticier N. Presynaptic dopaminergic control of high affinity glutamate uptake in the striatum. Neurosci Lett. 1983 Dec 30;43(2-3):191–196. doi: 10.1016/0304-3940(83)90186-6. [DOI] [PubMed] [Google Scholar]
- Olney J. W., Zorumski C. F., Stewart G. R., Price M. T., Wang G. J., Labruyere J. Excitotoxicity of L-dopa and 6-OH-dopa: implications for Parkinson's and Huntington's diseases. Exp Neurol. 1990 Jun;108(3):269–272. doi: 10.1016/0014-4886(90)90134-e. [DOI] [PubMed] [Google Scholar]
- Palumbo A., d'Ischia M., Misuraca G., Prota G. Effect of metal ions on the rearrangement of dopachrome. Biochim Biophys Acta. 1987 Aug 13;925(2):203–209. doi: 10.1016/0304-4165(87)90110-3. [DOI] [PubMed] [Google Scholar]
- Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
- Riederer P., Sofic E., Rausch W. D., Schmidt B., Reynolds G. P., Jellinger K., Youdim M. B. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem. 1989 Feb;52(2):515–520. doi: 10.1111/j.1471-4159.1989.tb09150.x. [DOI] [PubMed] [Google Scholar]
- Rollema H., De Vries J. B., Westerink B. H., Van Putten F. M., Horn A. S. Failure to detect 6-hydroxydopamine in rat striatum after the dopamine releasing drugs dexamphetamine, methylamphetamine and MPTP. Eur J Pharmacol. 1986 Dec 2;132(1):65–69. doi: 10.1016/0014-2999(86)90011-7. [DOI] [PubMed] [Google Scholar]
- Rosenberg P. A., Aizenman E. Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci Lett. 1989 Aug 28;103(2):162–168. doi: 10.1016/0304-3940(89)90569-7. [DOI] [PubMed] [Google Scholar]
- Rosenberg P. A. Catecholamine toxicity in cerebral cortex in dissociated cell culture. J Neurosci. 1988 Aug;8(8):2887–2894. doi: 10.1523/JNEUROSCI.08-08-02887.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross S. M., Seelig M., Spencer P. S. Specific antagonism of excitotoxic action of 'uncommon' amino acids assayed in organotypic mouse cortical cultures. Brain Res. 1987 Nov 3;425(1):120–127. doi: 10.1016/0006-8993(87)90490-2. [DOI] [PubMed] [Google Scholar]
- Schwarcz R., Whetsell W. O., Jr, Mangano R. M. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science. 1983 Jan 21;219(4582):316–318. doi: 10.1126/science.6849138. [DOI] [PubMed] [Google Scholar]
- Seiden L. S., Vosmer G. Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after a single large dose of methylamphetamine. Pharmacol Biochem Behav. 1984 Jul;21(1):29–31. doi: 10.1016/0091-3057(84)90125-4. [DOI] [PubMed] [Google Scholar]
- Slivka A., Brannan T. S., Weinberger J., Knott P. J., Cohen G. Increase in extracellular dopamine in the striatum during cerebral ischemia: a study utilizing cerebral microdialysis. J Neurochem. 1988 Jun;50(6):1714–1718. doi: 10.1111/j.1471-4159.1988.tb02468.x. [DOI] [PubMed] [Google Scholar]
- Slivka A., Cohen G. Hydroxyl radical attack on dopamine. J Biol Chem. 1985 Dec 15;260(29):15466–15472. [PubMed] [Google Scholar]
- Sonsalla P. K., Nicklas W. J., Heikkila R. E. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science. 1989 Jan 20;243(4889):398–400. doi: 10.1126/science.2563176. [DOI] [PubMed] [Google Scholar]
- Stone T. W., Perkins M. N. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol. 1981 Jul 10;72(4):411–412. doi: 10.1016/0014-2999(81)90587-2. [DOI] [PubMed] [Google Scholar]
- Turski L., Bressler K., Rettig K. J., Löschmann P. A., Wachtel H. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature. 1991 Jan 31;349(6308):414–418. doi: 10.1038/349414a0. [DOI] [PubMed] [Google Scholar]
- Verdoorn T. A., Kleckner N. W., Dingledine R. Rat brain N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Science. 1987 Nov 20;238(4830):1114–1116. doi: 10.1126/science.2825347. [DOI] [PubMed] [Google Scholar]
- Wolfensberger M., Amsler U., Cuénod M., Foster A. C., Whetsell W. O., Jr, Schwarcz R. Identification of quinolinic acid in rat and human brain tissue. Neurosci Lett. 1983 Nov 11;41(3):247–252. doi: 10.1016/0304-3940(83)90458-5. [DOI] [PubMed] [Google Scholar]
- Yamada K. A., Dubinsky J. M., Rothman S. M. Quantitative physiological characterization of a quinoxalinedione non-NMDA receptor antagonist. J Neurosci. 1989 Sep;9(9):3230–3236. doi: 10.1523/JNEUROSCI.09-09-03230.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
