Abstract
Respiration rates of muscle mitochondria in flying hummingbirds range from 7 to 10 ml of O2 per cm3 of mitochondria per min, which is about 2 times higher than the range obtained in the locomotory muscles of mammals running at their maximum aerobic capacities (VO2max). Capillary volume density is higher in hummingbird flight muscles than in mammalian skeletal muscles. Mitochondria occupy approximately 35% of fiber volume in hummingbird flight muscles and cluster beneath the sarcolemmal membrane adjacent to capillaries to a greater extent than in mammalian muscles. Measurements of protein content, citrate synthase activity, and respiratory rates in vitro per unit mitochondrial volume reveal no significant differences between hummingbird and mammalian skeletal muscle mitochondria. However, inner membrane surface areas per unit mitochondrial volume [Sv(im,m)] are higher than those in mammalian muscle. We propose that both mitochondrial volume densities and Sv(im,m) are near their maximum theoretical limits in hummingbirds and that higher rates of mitochondrial respiration than those observed in mammals are achieved in vivo as a result of higher capacities for O2 delivery and substrate catabolism.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen P., Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985 Sep;366:233–249. doi: 10.1113/jphysiol.1985.sp015794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubach M. Quantitative analysis of the respiratory system of the house sparrow, budgerigar and violet-eared hummingbird. Respir Physiol. 1981 Oct;46(1):43–60. doi: 10.1016/0034-5687(81)90067-0. [DOI] [PubMed] [Google Scholar]
- Grinyer I., George J. C. Some observations on the ultrastructure of the hummingbird pectoral muscles. Can J Zool. 1969 Sep;47(5):771–773. doi: 10.1139/z69-133. [DOI] [PubMed] [Google Scholar]
- Hoppeler H., Lindstedt S. L., Claassen H., Taylor C. R., Mathieu O., Weibel E. R. Scaling mitochondrial volume in heart to body mass. Respir Physiol. 1984 Feb;55(2):131–137. doi: 10.1016/0034-5687(84)90018-5. [DOI] [PubMed] [Google Scholar]
- Hoppeler H., Lindstedt S. L. Malleability of skeletal muscle in overcoming limitations: structural elements. J Exp Biol. 1985 Mar;115:355–364. doi: 10.1242/jeb.115.1.355. [DOI] [PubMed] [Google Scholar]
- Hoppeler H., Mathieu O., Krauer R., Claassen H., Armstrong R. B., Weibel E. R. Design of the mammalian respiratory system. VI Distribution of mitochondria and capillaries in various muscles. Respir Physiol. 1981 Apr;44(1):87–111. doi: 10.1016/0034-5687(81)90078-5. [DOI] [PubMed] [Google Scholar]
- Lasiewski R. C., Galey F. R., Vasquez C. Morphology and physiology of the pectoral muscles of humming-birds. Nature. 1965 Apr 24;206(982):404–405. doi: 10.1038/206404a0. [DOI] [PubMed] [Google Scholar]
- Mainwood G. W., Rakusan K. A model for intracellular energy transport. Can J Physiol Pharmacol. 1982 Jan;60(1):98–102. doi: 10.1139/y82-016. [DOI] [PubMed] [Google Scholar]
- Mathieu-Costello O. Capillary tortuosity and degree of contraction or extension of skeletal muscles. Microvasc Res. 1987 Jan;33(1):98–117. doi: 10.1016/0026-2862(87)90010-0. [DOI] [PubMed] [Google Scholar]
- Mathieu O., Krauer R., Hoppeler H., Gehr P., Lindstedt S. L., Alexander R. M., Taylor C. R., Weibel E. R. Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass. Respir Physiol. 1981 Apr;44(1):113–128. doi: 10.1016/0034-5687(81)90079-7. [DOI] [PubMed] [Google Scholar]
- Matlib M. A., Srere P. A. Oxidative properties of swollen rat liver mitochondria. Arch Biochem Biophys. 1976 Jun;174(2):705–712. doi: 10.1016/0003-9861(76)90401-x. [DOI] [PubMed] [Google Scholar]
- Olivetti G., Anversa P., Loud A. V. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. II. Tissue composition, capillary growth, and sarcoplasmic alterations. Circ Res. 1980 Apr;46(4):503–512. doi: 10.1161/01.res.46.4.503. [DOI] [PubMed] [Google Scholar]
- Palmer J. W., Tandler B., Hoppel C. L. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977 Dec 10;252(23):8731–8739. [PubMed] [Google Scholar]
- Schwerzmann K., Hoppeler H., Kayar S. R., Weibel E. R. Oxidative capacity of muscle and mitochondria: correlation of physiological, biochemical, and morphometric characteristics. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1583–1587. doi: 10.1073/pnas.86.5.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suarez R. K., Brown G. S., Hochachka P. W. Metabolic sources of energy for hummingbird flight. Am J Physiol. 1986 Sep;251(3 Pt 2):R537–R542. doi: 10.1152/ajpregu.1986.251.3.R537. [DOI] [PubMed] [Google Scholar]
- Suarez R. K., Lighton J. R., Moyes C. D., Brown G. S., Gass C. L., Hochachka P. W. Fuel selection in rufous hummingbirds: ecological implications of metabolic biochemistry. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9207–9210. doi: 10.1073/pnas.87.23.9207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor C. R., Maloiy G. M., Weibel E. R., Langman V. A., Kamau J. M., Seeherman H. J., Heglund N. C. Design of the mammalian respiratory system. III Scaling maximum aerobic capacity to body mass: wild and domestic mammals. Respir Physiol. 1981 Apr;44(1):25–37. doi: 10.1016/0034-5687(81)90075-x. [DOI] [PubMed] [Google Scholar]
- Taylor C. R. Structural and functional limits to oxidative metabolism: insights from scaling. Annu Rev Physiol. 1987;49:135–146. doi: 10.1146/annurev.ph.49.030187.001031. [DOI] [PubMed] [Google Scholar]
- Weibel E. R. Design and performance of muscular systems: an overview. J Exp Biol. 1985 Mar;115:405–412. doi: 10.1242/jeb.115.1.405. [DOI] [PubMed] [Google Scholar]
- di Prampero P. E. Metabolic and circulatory limitations to VO2 max at the whole animal level. J Exp Biol. 1985 Mar;115:319–331. doi: 10.1242/jeb.115.1.319. [DOI] [PubMed] [Google Scholar]