Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jun 1;88(11):4926–4930. doi: 10.1073/pnas.88.11.4926

Cytosolic Ca2+ deregulation and blebbing after HgCl2 injury to cultured rabbit proximal tubule cells as determined by digital imaging microscopy.

M W Smith 1, P C Phelps 1, B F Trump 1
PMCID: PMC51780  PMID: 2052574

Abstract

Acute injury to renal proximal tubule cells has previously been shown to result in elevated cytosolic Ca2+ ([Ca2+]i), blebbing, and eventual cell death. In this study, digital imaging fluorescence microscopy was used to evaluate these changes in response to HgCl2 treatment of cultured rabbit proximal tubular cells. Monolayer cells loaded with fura-2 were treated with 10, 50, or 100 microM HgCl2 in both 1.37 mM CaCl2-containing and nominally Ca(2+)-free (less than 5 microM) Hanks' balanced salt solution. [Ca2+]i was estimated by measuring the ratio of fluorescent image pairs (collected at 340- and 380-nm excitation), morphological changes were observed by phase-contrast microscopy, and viability was assessed by trypan blue exclusion. After exposure of cells to 10 microM HgCl2, [Ca2+]i initially increased about 2-fold by 5 min; after 50 or 100 microM HgCl2, [Ca2+]i rapidly rose 2- to 3-fold, peaked at 1-3 min, and then generally decreased slightly. In nominally Ca(2+)-free (less than 5 microM) medium, [Ca2+]i stabilized, but in 1.37 mM Ca(2+)-containing medium, [Ca2+]i continued to slowly rise, often reaching levels of fura-2 saturation. The rate and extent of blebbing and the rate of cell death were increased in the presence of 1.37 mM Ca2+. These results show that sustained elevations of [Ca2+]i precede both cell blebbing and cell death and that when these elevations are limited by removing extracellular Ca2+ the amount of blebbing is reduced and cell viability is prolonged.

Full text

PDF
4926

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson J. J., Trimm J. L., Weden L., Salama G. Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1526–1530. doi: 10.1073/pnas.80.6.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adunyah S. E., Dean W. L. Effects of sulfhydryl reagents and other inhibitors on Ca2+ transport and inositol trisphosphate-induced Ca2+ release from human platelet membranes. J Biol Chem. 1986 Oct 5;261(28):13071–13075. [PubMed] [Google Scholar]
  3. Al-Mohanna F. A., Hallett M. B. The use of fura-2 to determine the relationship between cytoplasmic free Ca2+ and oxidase activation in rat neutrophils. Cell Calcium. 1988 Feb;9(1):17–26. doi: 10.1016/0143-4160(88)90034-6. [DOI] [PubMed] [Google Scholar]
  4. Becker P. L., Fay F. S. Photobleaching of fura-2 and its effect on determination of calcium concentrations. Am J Physiol. 1987 Oct;253(4 Pt 1):C613–C618. doi: 10.1152/ajpcell.1987.253.4.C613. [DOI] [PubMed] [Google Scholar]
  5. Bennett J., Weeds A. Calcium and the cytoskeleton. Br Med Bull. 1986 Oct;42(4):385–390. doi: 10.1093/oxfordjournals.bmb.a072156. [DOI] [PubMed] [Google Scholar]
  6. Burgess G. M., McKinney J. S., Fabiato A., Leslie B. A., Putney J. W., Jr Calcium pools in saponin-permeabilized guinea pig hepatocytes. J Biol Chem. 1983 Dec 25;258(24):15336–15345. [PubMed] [Google Scholar]
  7. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  8. Chávez E., Holguín J. A. Mitochondrial calcium release as induced by Hg2+. J Biol Chem. 1988 Mar 15;263(8):3582–3587. [PubMed] [Google Scholar]
  9. Cobbold P. H., Rink T. J. Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J. 1987 Dec 1;248(2):313–328. doi: 10.1042/bj2480313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gritzka T. L., Trump B. F. Renal tubular lesions caused by mercuric chloride. Electron microscopic observations: degeneration of the pars recta. Am J Pathol. 1968 Jun;52(6):1225–1277. [PMC free article] [PubMed] [Google Scholar]
  11. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  12. Hennings H., Kruszewski F. H., Yuspa S. H., Tucker R. W. Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes. Carcinogenesis. 1989 Apr;10(4):777–780. doi: 10.1093/carcin/10.4.777. [DOI] [PubMed] [Google Scholar]
  13. Lemasters J. J., DiGuiseppi J., Nieminen A. L., Herman B. Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature. 1987 Jan 1;325(6099):78–81. doi: 10.1038/325078a0. [DOI] [PubMed] [Google Scholar]
  14. McDonough P. M., Button D. C. Measurement of cytoplasmic calcium concentration in cell suspensions: correction for extracellular Fura-2 through use of Mn2+ and probenecid. Cell Calcium. 1989 Apr;10(3):171–180. doi: 10.1016/0143-4160(89)90071-7. [DOI] [PubMed] [Google Scholar]
  15. Mills J. S., Johnson J. D. Metal ions as allosteric regulators of calmodulin. J Biol Chem. 1985 Dec 5;260(28):15100–15105. [PubMed] [Google Scholar]
  16. Nemeth E. F., Scarpa A. Rapid mobilization of cellular Ca2+ in bovine parathyroid cells evoked by extracellular divalent cations. Evidence for a cell surface calcium receptor. J Biol Chem. 1987 Apr 15;262(11):5188–5196. [PubMed] [Google Scholar]
  17. Nieminen A. L., Gores G. J., Dawson T. L., Herman B., Lemasters J. J. Toxic injury from mercuric chloride in rat hepatocytes. J Biol Chem. 1990 Feb 5;265(4):2399–2408. [PubMed] [Google Scholar]
  18. Phelps P. C., Smith M. W., Trump B. F. Cytosolic ionized calcium and bleb formation after acute cell injury of cultured rabbit renal tubule cells. Lab Invest. 1989 May;60(5):630–642. [PubMed] [Google Scholar]
  19. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  20. Pounds J. G. The role of cell calcium in current approaches to toxicology. Environ Health Perspect. 1990 Mar;84:7–15. doi: 10.1289/ehp.90847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith M. W., Ambudkar I. S., Phelps P. C., Regec A. L., Trump B. F. HgCl2-induced changes in cytosolic Ca2+ of cultured rabbit renal tubular cells. Biochim Biophys Acta. 1987 Nov 12;931(2):130–142. doi: 10.1016/0167-4889(87)90199-6. [DOI] [PubMed] [Google Scholar]
  22. Thomas C. E., Reed D. J. Current status of calcium in hepatocellular injury. Hepatology. 1989 Sep;10(3):375–384. doi: 10.1002/hep.1840100322. [DOI] [PubMed] [Google Scholar]
  23. Troyer D. A., Kreisberg J. I., Venkatachalam M. A. Lipid alterations in LLC-PK1 cells exposed to mercuric chloride. Kidney Int. 1986 Feb;29(2):530–538. doi: 10.1038/ki.1986.31. [DOI] [PubMed] [Google Scholar]
  24. Trump B. F., Berezesky I. K., Smith M. W., Phelps P. C., Elliget K. A. The relationship between cellular ion deregulation and acute and chronic toxicity. Toxicol Appl Pharmacol. 1989 Jan;97(1):6–22. doi: 10.1016/0041-008x(89)90051-3. [DOI] [PubMed] [Google Scholar]
  25. Verkleij A. J., Post J. A. Physico-chemical properties and organization of lipids in membranes: their possible role in myocardial injury. Basic Res Cardiol. 1987;82 (Suppl 1):85–91. doi: 10.1007/978-3-662-08390-1_10. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES