Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jun 15;88(12):5335–5339. doi: 10.1073/pnas.88.12.5335

The secretin gene: evolutionary history, alternative splicing, and developmental regulation.

A S Kopin 1, M B Wheeler 1, J Nishitani 1, E W McBride 1, T M Chang 1, W Y Chey 1, A B Leiter 1
PMCID: PMC51867  PMID: 1711228

Abstract

The gene encoding the hormone secretin has been isolated and structurally characterized. The transcriptional unit is divided into four exons spanning 813 nucleotides. Comparison of the rat secretin gene to the other members of the glucagon-secretin gene family reveals that similarities are restricted to the exons encoding the biologically active peptides. Analysis of RNA from porcine intestine indicates that at least two transcripts are generated from the porcine secretin gene as a result of differential splicing. The longer and more abundant transcript appears to be identical to a previously isolated cDNA, which encodes a precursor that includes a 72-amino acid C-terminal extension peptide. The shorter transcript does not contain the third exon and, as a result, encodes only 44 residues beyond the C terminus of secretin. The amino acid sequence deduced from the shorter transcript is identical to a precursor form of secretin recently isolated from porcine duodenum [Gafvelin, G., Jornvall, H. & Mutt, V. (1990) Proc. Natl. Acad. Sci. USA 87, 6781-6785]. Developmental studies reveal that both secretin mRNA and peptide levels in the intestine are highest just before birth, prior to the onset of gastric acid secretion and feeding. This observation implies that secretin biosynthesis in developing animals is controlled independently of the principal factors known to regulate secretin release in adult animals.

Full text

PDF
5335

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell G. I. The glucagon superfamily: precursor structure and gene organization. Peptides. 1986;7 (Suppl 1):27–36. doi: 10.1016/0196-9781(86)90160-9. [DOI] [PubMed] [Google Scholar]
  2. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  3. Brand S. J., Fuller P. J. Differential gastrin gene expression in rat gastrointestinal tract and pancreas during neonatal development. J Biol Chem. 1988 Apr 15;263(11):5341–5347. [PubMed] [Google Scholar]
  4. Chey W. Y., Chang T. M., Park H. J., Lee K. Y., Escoffery R. Secretin-like immunoreactivity and biological activity in the antral mucosa. Endocrinology. 1983 Aug;113(2):651–656. doi: 10.1210/endo-113-2-651. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Dembinski A. B., Johnson L. R. Stimulation of pancreatic growth by secretin, caerulein, and pentagastrin. Endocrinology. 1980 Jan;106(1):323–328. doi: 10.1210/endo-106-1-323. [DOI] [PubMed] [Google Scholar]
  7. Deschenes R. J., Haun R. S., Funckes C. L., Dixon J. E. A gene encoding rat cholecystokinin. Isolation, nucleotide sequence, and promoter activity. J Biol Chem. 1985 Jan 25;260(2):1280–1286. [PubMed] [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dynan W. S., Tjian R. Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. 1985 Aug 29-Sep 4Nature. 316(6031):774–778. doi: 10.1038/316774a0. [DOI] [PubMed] [Google Scholar]
  10. Gafvelin G., Jörnvall H., Mutt V. Processing of prosecretin: isolation of a secretin precursor from porcine intestine. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6781–6785. doi: 10.1073/pnas.87.17.6781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Han J. H., Rall L., Rutter W. J. Selective expression of rat pancreatic genes during embryonic development. Proc Natl Acad Sci U S A. 1986 Jan;83(1):110–114. doi: 10.1073/pnas.83.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heinrich G., Gros P., Habener J. F. Glucagon gene sequence. Four of six exons encode separate functional domains of rat pre-proglucagon. J Biol Chem. 1984 Nov 25;259(22):14082–14087. [PubMed] [Google Scholar]
  13. Ichihara K., Eng J., Yalow R. S. Ontogeny of immunoreactive CCK, VIP and secretin in rat brain and gut. Biochem Biophys Res Commun. 1983 May 16;112(3):891–898. doi: 10.1016/0006-291x(83)91701-1. [DOI] [PubMed] [Google Scholar]
  14. Imagawa M., Chiu R., Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987 Oct 23;51(2):251–260. doi: 10.1016/0092-8674(87)90152-8. [DOI] [PubMed] [Google Scholar]
  15. Inagaki N., Seino Y., Takeda J., Yano H., Yamada Y., Bell G. I., Eddy R. L., Fukushima Y., Byers M. G., Shows T. B. Gastric inhibitory polypeptide: structure and chromosomal localization of the human gene. Mol Endocrinol. 1989 Jun;3(6):1014–1021. doi: 10.1210/mend-3-6-1014. [DOI] [PubMed] [Google Scholar]
  16. Kopin A. S., Wheeler M. B., Leiter A. B. Secretin: structure of the precursor and tissue distribution of the mRNA. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2299–2303. doi: 10.1073/pnas.87.6.2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Larsson L. I., Sundler F., Alumets J., Håkanson R., Schaffalitzky de Muckadell O. B., Fahrenkrug J. Distribution, ontogeny and ultrastructure of the mammalian secretin cell. Cell Tissue Res. 1977 Jul 15;181(3):361–368. doi: 10.1007/BF00223111. [DOI] [PubMed] [Google Scholar]
  18. Linder S., Barkhem T., Norberg A., Persson H., Schalling M., Hökfelt T., Magnusson G. Structure and expression of the gene encoding the vasoactive intestinal peptide precursor. Proc Natl Acad Sci U S A. 1987 Jan;84(2):605–609. doi: 10.1073/pnas.84.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mayo K. E., Cerelli G. M., Rosenfeld M. G., Evans R. M. Characterization of cDNA and genomic clones encoding the precursor to rat hypothalamic growth hormone-releasing factor. Nature. 1985 Apr 4;314(6010):464–467. doi: 10.1038/314464a0. [DOI] [PubMed] [Google Scholar]
  20. Meyer J. H., Way L. W., Grossman M. I. Pancreatic bicarbonate response to various acids in duodenum of the dog. Am J Physiol. 1970 Oct;219(4):964–970. doi: 10.1152/ajplegacy.1970.219.4.964. [DOI] [PubMed] [Google Scholar]
  21. Meyer J. H., Way L. W., Grossman M. I. Pancreatic response to acidification of various lengths of proximal intestine in the dog. Am J Physiol. 1970 Oct;219(4):971–977. doi: 10.1152/ajplegacy.1970.219.4.971. [DOI] [PubMed] [Google Scholar]
  22. Mitchell P. J., Wang C., Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987 Sep 11;50(6):847–861. doi: 10.1016/0092-8674(87)90512-5. [DOI] [PubMed] [Google Scholar]
  23. Paquette T. L., Shulman D. F., Alpers D. H., Jaffe B. M. Postnatal development of intestinal secretin in rats and guinea pigs. Am J Physiol. 1982 Dec;243(6):G511–G517. doi: 10.1152/ajpgi.1982.243.6.G511. [DOI] [PubMed] [Google Scholar]
  24. Sargent T. D., Wu J. R., Sala-Trepat J. M., Wallace R. B., Reyes A. A., Bonner J. The rat serum albumin gene: analysis of cloned sequences. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3256–3260. doi: 10.1073/pnas.76.7.3256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Solomon T. E., Morisset J., Wood J. G., Bussjaeger L. J. Additive interaction of pentagastrin and secretin on pancreatic growth in rats. Gastroenterology. 1987 Feb;92(2):429–435. doi: 10.1016/0016-5085(87)90138-7. [DOI] [PubMed] [Google Scholar]
  26. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takeuchi K., Peitsch W., Johnson L. R. Mucosal gastrin receptor. V. Development in newborn rats. Am J Physiol. 1981 Feb;240(2):G163–G169. doi: 10.1152/ajpgi.1981.240.2.G163. [DOI] [PubMed] [Google Scholar]
  28. Tsukada T., Horovitch S. J., Montminy M. R., Mandel G., Goodman R. H. Structure of the human vasoactive intestinal polypeptide gene. DNA. 1985 Aug;4(4):293–300. doi: 10.1089/dna.1985.4.293. [DOI] [PubMed] [Google Scholar]
  29. Watanabe S., Chey W. Y., Lee K. Y., Chang T. M. Secretin is released by digestive products of fat in dogs. Gastroenterology. 1986 Apr;90(4):1008–1017. doi: 10.1016/0016-5085(86)90880-2. [DOI] [PubMed] [Google Scholar]
  30. Zinn K., DiMaio D., Maniatis T. Identification of two distinct regulatory regions adjacent to the human beta-interferon gene. Cell. 1983 Oct;34(3):865–879. doi: 10.1016/0092-8674(83)90544-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES