Abstract
A comparison of the monoclinic and orthorhombic crystal structures of the uncomplexed double-stranded, antiparallel, left-handed beta-helix (5.6 amino acid residues per turn) (increases decreases beta 5.6) conformers of gramicidin A reveals marked differences in the tryptophan side-chain orientations and the degree of helical uniformity of the dimer and in the manner in which these helical dimers associate with one another in the crystal. The helix of the orthorhombic dimer exhibits a regular pattern of bulges and constrictions that appears to be induced by crystal packing forces affecting tryptophan side chains that are aligned parallel to the helix axis. The monoclinic dimer is more uniform than the orthorhombic dimer as a consequence of pi stacking interactions between dimers in which orientation of tryptophan side chains is normal to the helix axis to relieve the lateral crystal packing forces that may locally twist and deform the helix. It may be inferred from these observations that lipid interactions may be expected to destabilize the increases decreases beta 5.6 helix when it is inserted into a membrane bilayer.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benedetti E., Di Blasio B., Pedone C., Lorenzi G. P., Tomasic L., Gramlich V. A double-stranded beta-helix with antiparallel chains in a crystalline oligo-L-D-peptide. Nature. 1979 Dec 6;282(5739):630–630. doi: 10.1038/282630a0. [DOI] [PubMed] [Google Scholar]
- Byrn S. R. The cation-binding properties of gramicidin. Biochemistry. 1974 Dec 3;13(25):5186–5193. doi: 10.1021/bi00722a021. [DOI] [PubMed] [Google Scholar]
- Di Blasio B., Benedetti E., Pavone V., Pedone C., Gerber C., Lorenzi G. P. Regularly alternating L,D-peptides. II. The double-stranded right-handed antiparallel beta-helix in the structure of t-Boc-(L-Phe-D-Phe)4-OMe. Biopolymers. 1989 Jan;28(1):203–214. doi: 10.1002/bip.360280122. [DOI] [PubMed] [Google Scholar]
- Harold F. M., Baarda J. R. Gramicidin, valinomycin, and cation permeability of Streptococcus faecalis. J Bacteriol. 1967 Jul;94(1):53–60. doi: 10.1128/jb.94.1.53-60.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendrickson W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985;115:252–270. doi: 10.1016/0076-6879(85)15021-4. [DOI] [PubMed] [Google Scholar]
- Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
- Killian J. A., de Kruijff B. Proposed Mechanism for H(II) Phase Induction by Gramicidin in Model Membranes and Its Relation to Channel Formation. Biophys J. 1988 Jan;53(1):111–117. doi: 10.1016/s0006-3495(88)83072-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koeppe R. E., 2nd, Hodgson K. O., Stryer L. Helical channels in crystals of gramicidin A and of a cesium--gramicidin A complex: an x-ray diffraction study. J Mol Biol. 1978 May 5;121(1):41–54. doi: 10.1016/0022-2836(78)90261-9. [DOI] [PubMed] [Google Scholar]
- Langs D. A. Three-dimensional structure at 0.86 A of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. Science. 1988 Jul 8;241(4862):188–191. doi: 10.1126/science.2455345. [DOI] [PubMed] [Google Scholar]
- Liberman E. A., Topaly V. P. Selective transport of ions through bimolecular phospholipid membranes. Biochim Biophys Acta. 1968 Sep 17;163(2):125–136. doi: 10.1016/0005-2736(68)90089-8. [DOI] [PubMed] [Google Scholar]
- Mueller P., Rudin D. O. Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun. 1967 Feb 21;26(4):398–404. doi: 10.1016/0006-291x(67)90559-1. [DOI] [PubMed] [Google Scholar]
- Myers V. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim Biophys Acta. 1972 Aug 9;274(2):313–322. doi: 10.1016/0005-2736(72)90179-4. [DOI] [PubMed] [Google Scholar]
- Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
- Pressman B. C. Induced active transport of ions in mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1076–1083. doi: 10.1073/pnas.53.5.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reusch R. N., Sadoff H. L. Putative structure and functions of a poly-beta-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4176–4180. doi: 10.1073/pnas.85.12.4176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SARGES R., WITKOP B. GRAMICIDIN. VII. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN B. J Am Chem Soc. 1965 May 5;87:2027–2030. doi: 10.1021/ja01087a029. [DOI] [PubMed] [Google Scholar]
- Takeuchi H., Nemoto Y., Harada I. Environments and conformations of tryptophan side chains of gramicidin A in phospholipid bilayers studied by Raman spectroscopy. Biochemistry. 1990 Feb 13;29(6):1572–1579. doi: 10.1021/bi00458a031. [DOI] [PubMed] [Google Scholar]
- Urry D. W., Long M. M., Jacobs M., Harris R. D. Conformation and molecular mechanisms of carriers and channels. Ann N Y Acad Sci. 1975 Dec 30;264:203–220. doi: 10.1111/j.1749-6632.1975.tb31484.x. [DOI] [PubMed] [Google Scholar]
- Veatch W. R., Fossel E. T., Blout E. R. The conformation of gramicidin A. Biochemistry. 1974 Dec 17;13(26):5249–5256. doi: 10.1021/bi00723a001. [DOI] [PubMed] [Google Scholar]
- Wallace B. A., Ravikumar K. The gramicidin pore: crystal structure of a cesium complex. Science. 1988 Jul 8;241(4862):182–187. doi: 10.1126/science.2455344. [DOI] [PubMed] [Google Scholar]