Abstract
A cDNA clone encoding a 333-amino acid hemoglobin was isolated from the nematode Pseudoterranova decipiens. The protein contains an 18-amino acid hydrophobic signal sequence and has a calculated mass of 37.6 kDa in the mature form. The predicted protein reveals an internal duplication of a 154-amino acid domain (51% identity). Both domains have significant sequence homology to other primitive hemoglobins, in agreement with a duplication event. Hydrophobicity plots reveal identical strongly hydrophobic regions in each domain, which are potential heme binding sites. This confirms previous suggestions that nematode hemoglobins can have two heme groups per molecule. In addition, each domain contains several conserved histidine motifs that may serve as potential copper binding sites. This result provides further evidence that hemoglobins may have evolved from a primitive cytochrome-like molecule.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonner A. G., Laursen R. A. The amino acid sequence of a dimeric myoglobin from the gastropod mollusc, Busycon canaliculatum L. FEBS Lett. 1977 Feb 1;73(2):201–203. doi: 10.1016/0014-5793(77)80980-0. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Darawshe S., Tsafadyah Y., Daniel E. Quaternary structure of erythrocruorin from the nematode Ascaris suum. Evidence for unsaturated haem-binding sites. Biochem J. 1987 Mar 15;242(3):689–694. doi: 10.1042/bj2420689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Garlick R. L., Riggs A. F. The amino acid sequence of a major polypeptide chain of earthworm hemoglobin. J Biol Chem. 1982 Aug 10;257(15):9005–9015. [PubMed] [Google Scholar]
- Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
- Goodman M., Pedwaydon J., Czelusniak J., Suzuki T., Gotoh T., Moens L., Shishikura F., Walz D., Vinogradov S. An evolutionary tree for invertebrate globin sequences. J Mol Evol. 1988;27(3):236–249. doi: 10.1007/BF02100080. [DOI] [PubMed] [Google Scholar]
- Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
- Haniu M., McManus M. E., Birkett D. J., Lee T. D., Shively J. E. Structural and functional analysis of NADPH-cytochrome P-450 reductase from human liver: complete sequence of human enzyme and NADPH-binding sites. Biochemistry. 1989 Oct 17;28(21):8639–8645. doi: 10.1021/bi00447a054. [DOI] [PubMed] [Google Scholar]
- Imamura T., Baldwin T. O., Riggs A. The amino acid sequence of the monomeric hemoglobin component from the bloodworm, Glyat liver. J Biol Chem. 1972 May 10;247(9):2785–2797. [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lerch K. Amino acid sequence of tyrosinase from Neurospora crassa. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3635–3639. doi: 10.1073/pnas.75.8.3635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li S. L., Riggs A. The amino acid sequence of hemoglobin V from the lamprey, Petromyzon marinus. J Biol Chem. 1970 Nov 25;245(22):6149–6169. [PubMed] [Google Scholar]
- Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
- Mangum C. P. Oxygen transport in invertebrates. Am J Physiol. 1985 May;248(5 Pt 2):R505–R514. doi: 10.1152/ajpregu.1985.248.5.R505. [DOI] [PubMed] [Google Scholar]
- Manning A. M., Trotman C. N., Tate W. P. Evolution of a polymeric globin in the brine shrimp Artemia. Nature. 1990 Dec 13;348(6302):653–656. doi: 10.1038/348653a0. [DOI] [PubMed] [Google Scholar]
- Nash A. R., Fisher W. K., Thompson E. O. Haemoglobins of the shark, Heterodontus portusjacksoni II. Amino acid sequence of the alpha-chain. Aust J Biol Sci. 1976 Mar;29(1-2):73–97. [PubMed] [Google Scholar]
- Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perlman D., Halvorson H. O. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol. 1983 Jun 25;167(2):391–409. doi: 10.1016/s0022-2836(83)80341-6. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. Trends Biochem Sci. 1989 Feb;14(2):42–44. doi: 10.1016/0968-0004(89)90039-x. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki T., Gotoh T. The complete amino acid sequence of giant multisubunit hemoglobin from the polychaete Tylorrhynchus heterochaetus. J Biol Chem. 1986 Jul 15;261(20):9257–9267. [PubMed] [Google Scholar]
- Takagi T., Tobita M., Shikama K. Amino acid sequence of dimeric myoglobin from Cerithidea rhizophorarum. Biochim Biophys Acta. 1983 May 30;745(1):32–36. doi: 10.1016/0167-4838(83)90166-8. [DOI] [PubMed] [Google Scholar]
- Tentori L., Vivaldi G., Carta S., Marinucci M., Massa A., Antonini E., Brunori M. The amino acid sequence of myoglobin from the mollusc Aplysia limacina. Int J Pept Protein Res. 1973;5(4):187–200. doi: 10.1111/j.1399-3011.1973.tb03452.x. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vinogradov S. N. The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). Comp Biochem Physiol B. 1985;82(1):1–15. doi: 10.1016/0305-0491(85)90120-8. [DOI] [PubMed] [Google Scholar]
- Voit R., Schneider H. J. Tarantula hemocyanin mRNA. In vitro translation, cDNA cloning and nucleotide sequence corresponding to subunit e. Eur J Biochem. 1986 Aug 15;159(1):23–29. doi: 10.1111/j.1432-1033.1986.tb09828.x. [DOI] [PubMed] [Google Scholar]
- Volbeda A., Hol W. G. Pseudo 2-fold symmetry in the copper-binding domain of arthropodan haemocyanins. Possible implications for the evolution of oxygen transport proteins. J Mol Biol. 1989 Apr 5;206(3):531–546. doi: 10.1016/0022-2836(89)90499-3. [DOI] [PubMed] [Google Scholar]
- Wittenberg B. A., Okazaki T., Wittenberg J. B. The hemoglobin of Ascaris perienteric fluid. I. Purification and spectra. Biochim Biophys Acta. 1965 Dec 16;111(2):485–495. doi: 10.1016/0304-4165(65)90058-9. [DOI] [PubMed] [Google Scholar]
- Wood E. J. The oxygen transport and storage proteins of invertebrates. Essays Biochem. 1980;16:1–47. [PubMed] [Google Scholar]
- Yabusaki Y., Murakami H., Ohkawa H. Primary structure of Saccharomyces cerevisiae NADPH-cytochrome P450 reductase deduced from nucleotide sequence of its cloned gene. J Biochem. 1988 Jun;103(6):1004–1010. doi: 10.1093/oxfordjournals.jbchem.a122370. [DOI] [PubMed] [Google Scholar]
- Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Holde K. E., Miller K. I. Haemocyanins. Q Rev Biophys. 1982 Feb;15(1):1–129. doi: 10.1017/s0033583500002705. [DOI] [PubMed] [Google Scholar]