Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jul 1;88(13):5832–5836. doi: 10.1073/pnas.88.13.5832

Signal convergence on protein kinase A as a molecular correlate of learning.

A Aszódi 1, U Müller 1, P Friedrich 1, H C Spatz 1
PMCID: PMC51972  PMID: 1648232

Abstract

The response of a reaction network composed of protein kinase A, calpain, and protein phosphatase to transient cAMP and Ca2+ signals was studied. An essential feature of signal convergence is that the regulatory subunit of cAMP-dissociated protein kinase A undergoes limited proteolysis by the Ca(2+)-activated proteinase calpain. A dynamic model of this system based on kinetic differential equations was built and simulated by computer. The system shows analogies to typical features of associative learning such as acquisition, contiguity detection, extinction, and memory decay, suggesting that these biochemical reactions may be part of the molecular mechanism of learning in Drosophila.

Full text

PDF
5832

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams T. W., Kandel E. R. Is contiguity detection in classical conditioning a system or a cellular property? Learning in Aplysia suggests a possible molecular site. Trends Neurosci. 1988 Apr;11(4):128–135. doi: 10.1016/0166-2236(88)90137-3. [DOI] [PubMed] [Google Scholar]
  2. Aceves-Piña E. O., Booker R., Duerr J. S., Livingstone M. S., Quinn W. G., Smith R. F., Sziber P. P., Tempel B. L., Tully T. P. Learning and memory in Drosophila, studied with mutants. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):831–840. doi: 10.1101/sqb.1983.048.01.086. [DOI] [PubMed] [Google Scholar]
  3. Aszódi A., Friedrich P. Molecular kinetic modelling of associative learning. Neuroscience. 1987 Jul;22(1):37–48. doi: 10.1016/0306-4522(87)90196-5. [DOI] [PubMed] [Google Scholar]
  4. Bank B., DeWeer A., Kuzirian A. M., Rasmussen H., Alkon D. L. Classical conditioning induces long-term translocation of protein kinase C in rabbit hippocampal CA1 cells. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1988–1992. doi: 10.1073/pnas.85.6.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buxbaum J. D., Dudai Y. A quantitative model for the kinetics of cAMP-dependent protein kinase (type II) activity. Long-term activation of the kinase and its possible relevance to learning and memory. J Biol Chem. 1989 Jun 5;264(16):9344–9351. [PubMed] [Google Scholar]
  6. Byers D., Davis R. L., Kiger J. A., Jr Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature. 1981 Jan 1;289(5793):79–81. doi: 10.1038/289079a0. [DOI] [PubMed] [Google Scholar]
  7. Crow T. Cellular and molecular analysis of associative learning and memory in Hermissenda. Trends Neurosci. 1988 Apr;11(4):136–147. doi: 10.1016/0166-2236(88)90138-5. [DOI] [PubMed] [Google Scholar]
  8. Dudai Y., Sher B., Segal D., Yovell Y. Defective responsiveness of adenylate cyclase to forskolin in the Drosophila memory mutant rutabaga. J Neurogenet. 1985 Dec;2(6):365–380. doi: 10.3109/01677068509101423. [DOI] [PubMed] [Google Scholar]
  9. Dudai Y., Zvi S. Multiple defects in the activity of adenylate cyclase from the Drosophila memory mutant rutabaga. J Neurochem. 1985 Aug;45(2):355–364. doi: 10.1111/j.1471-4159.1985.tb03996.x. [DOI] [PubMed] [Google Scholar]
  10. Dudaí Y., Uzzan A., Zvi S. Abnormal activity of adenylate cyclase in the Drosophila memory mutant rutabaga. Neurosci Lett. 1983 Dec 2;42(2):207–212. doi: 10.1016/0304-3940(83)90408-1. [DOI] [PubMed] [Google Scholar]
  11. Erlichman J., Rosenfeld R., Rosen O. M. Phosphorylation of a cyclic adenosine 3':5'-monophosphate-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1974 Aug 10;249(15):5000–5003. [PubMed] [Google Scholar]
  12. Flockhart D. A., Corbin J. D. Regulatory mechanisms in the control of protein kinases. CRC Crit Rev Biochem. 1982 Feb;12(2):133–186. doi: 10.3109/10409238209108705. [DOI] [PubMed] [Google Scholar]
  13. Friedrich P. Protein structure: the primary substrate for memory. Neuroscience. 1990;35(1):1–7. doi: 10.1016/0306-4522(90)90115-k. [DOI] [PubMed] [Google Scholar]
  14. Friedrich P., Solti M., Gyurkovics H. Microcompartmentation of cAMP in wild-type and memory-mutant dunce strains of Drosophila melanogaster. J Cell Biochem. 1984;26(3):197–203. doi: 10.1002/jcb.240260307. [DOI] [PubMed] [Google Scholar]
  15. Greenberg S. M., Castellucci V. F., Bayley H., Schwartz J. H. A molecular mechanism for long-term sensitization in Aplysia. Nature. 1987 Sep 3;329(6134):62–65. doi: 10.1038/329062a0. [DOI] [PubMed] [Google Scholar]
  16. Kandel E. R., Schwartz J. H. Molecular biology of learning: modulation of transmitter release. Science. 1982 Oct 29;218(4571):433–443. doi: 10.1126/science.6289442. [DOI] [PubMed] [Google Scholar]
  17. Kennedy M. B. Neurobiology: molecules underlying memory. Nature. 1987 Sep 3;329(6134):15–16. doi: 10.1038/329015a0. [DOI] [PubMed] [Google Scholar]
  18. Lisman J. E. A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci U S A. 1985 May;82(9):3055–3057. doi: 10.1073/pnas.82.9.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lisman J. E., Goldring M. A. Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5320–5324. doi: 10.1073/pnas.85.14.5320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Livingstone M. S. Genetic dissection of Drosophila adenylate cyclase. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5992–5996. doi: 10.1073/pnas.82.17.5992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Livingstone M. S., Sziber P. P., Quinn W. G. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell. 1984 May;37(1):205–215. doi: 10.1016/0092-8674(84)90316-7. [DOI] [PubMed] [Google Scholar]
  22. Menzel R. Neurobiology of learning and memory: the honeybee as a model system. Naturwissenschaften. 1983 Oct;70(10):504–511. doi: 10.1007/BF00394056. [DOI] [PubMed] [Google Scholar]
  23. Müller U., Spatz H. C. Ca2(+)-dependent proteolytic modification of the cAMP-dependent protein kinase in Drosophila wild-type and dunce memory mutants. J Neurogenet. 1989 Nov;6(2):95–114. doi: 10.3109/01677068909107104. [DOI] [PubMed] [Google Scholar]
  24. Pintér M., Friedrich P. The calcium-dependent proteolytic system calpain-calpastatin in Drosophila melanogaster. Biochem J. 1988 Jul 15;253(2):467–473. doi: 10.1042/bj2530467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rangel-Aldao R., Rosen O. M. Dissociation and reassociation of the phosphorylated and nonphosphorylated forms of adenosine 3':5' -monophosphate-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1976 Jun 10;251(11):3375–3380. [PubMed] [Google Scholar]
  26. Rangel-Aldao R., Rosen O. M. Effect of cAMP and ATP on the reassociation of phosphorylated and nonphosphorylated subunits of the cAMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1977 Oct 25;252(20):7140–7145. [PubMed] [Google Scholar]
  27. Schwartz J. H., Greenberg S. M. Molecular mechanisms for memory: second-messenger induced modifications of protein kinases in nerve cells. Annu Rev Neurosci. 1987;10:459–476. doi: 10.1146/annurev.ne.10.030187.002331. [DOI] [PubMed] [Google Scholar]
  28. Shacter E., Chock P. B., Stadtman E. R. Energy consumption in a cyclic phosphorylation/dephosphorylation cascade. J Biol Chem. 1984 Oct 10;259(19):12260–12264. [PubMed] [Google Scholar]
  29. Shacter E., Chock P. B., Stadtman E. R. Regulation through phosphorylation/dephosphorylation cascade systems. J Biol Chem. 1984 Oct 10;259(19):12252–12259. [PubMed] [Google Scholar]
  30. Tsuzuki J., Kiger J. A., Jr A kinetic study of cyclic adenosine 3':5'-monophosphate binding and mode of activation of protein kinase from Drosophila melanogaster embryos. Biochemistry. 1978 Jul 25;17(15):2961–2970. doi: 10.1021/bi00608a004. [DOI] [PubMed] [Google Scholar]
  31. Tully T., Quinn W. G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A. 1985 Sep;157(2):263–277. doi: 10.1007/BF01350033. [DOI] [PubMed] [Google Scholar]
  32. Weber W., Hilz H. cAMP-dependent protein kinases I and II: divergent turnover of subunits. Biochemistry. 1986 Sep 23;25(19):5661–5667. doi: 10.1021/bi00367a047. [DOI] [PubMed] [Google Scholar]
  33. Yovell Y., Kandel E. R., Dudai Y., Abrams T. W. Biochemical correlates of short-term sensitization in Aplysia: temporal analysis of adenylate cyclase stimulation in a perfused-membrane preparation. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9285–9289. doi: 10.1073/pnas.84.24.9285. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES