Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jul 1;88(13):5892–5896. doi: 10.1073/pnas.88.13.5892

Isolation of aminoacyl-tRNA and its labeling with stable-isotope tracers: Use in studies of human tissue protein synthesis.

P W Watt 1, Y Lindsay 1, C M Scrimgeour 1, P A Chien 1, J N Gibson 1, D J Taylor 1, M J Rennie 1
PMCID: PMC51984  PMID: 2062866

Abstract

We isolated aminoacyl-tRNA (60-70% yield) from human and rat tissues and measured, by GC/MS, its labeling in vivo by [15N]- and [13C]leucine. Tracer dilution artifacts seemed unlikely since, after infusion of L-[1-13C,15N]leucine into rats, (i) muscle leucyl-tRNA labeling exceeded tissue free leucine labeling, (ii) values were largely unaffected by storing over 5 min at 22 degrees C, and (iii) L-[2,4,5-methyl-13C]leucine was not incorporated into leucyl-tRNA during homogenization. Leucyl-tRNA labeling in liver and muscle suggested charging from extra- and intracellular pools: e.g., after infusing L-[1-13C,15N]leucine, rat muscle tissue free leucine 13C labeling (8.97 +/- 0.30 atom % excess) exceeded that by 15N (3.37 +/- 0.33 atom % excess), and both were significantly lower (P less than 0.02) than venous plasma (13C, 12.1 +/- 1.8; 15N, 5.54 +/- 0.6 atom % excess) indicating tracer dilution by transamination and by proteolysis; however, leucyl-tRNA labeling by either isotope (13C, 10.26 +/- 0.50; 15N, 4.72 +/- 0.72 atom % excess) was significantly above mixed tissue free leucine (P less than 0.05). Labeling of leucyl-tRNA in human erector spinae muscle (obtained after preoperative L-[1-13C]leucine infusion) was, at 4.98 +/- 0.43 atom % excess, lower (27%) than venous plasma leucine (P less than 0.05) and intermediate between muscle free leucine (9% lower; P less than 0.01) and venous alpha-ketoisocaproate (11% higher; P less than 0.02). Human placental leucyl-tRNA labeling (after predelivery tracer infusion) was 37% lower (P less than 0.05) than maternal uterine vein labeling but not significantly different from placental free leucine or umbilical arterial leucine.

Full text

PDF
5892

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson L. F., Herington A. C., Bornstein J. Evidence for the selection by the membrane transport system of intracellular or extracellular amino acids for protein synthesis. Biochim Biophys Acta. 1972 Sep 1;282(1):352–365. doi: 10.1016/0005-2736(72)90340-9. [DOI] [PubMed] [Google Scholar]
  2. Airhart J., Arnold J. A., Stirewalt W. S., Low R. B. Insulin stimulation of protein synthesis in cultured skeletal and cardiac muscle cells. Am J Physiol. 1982 Jul;243(1):C81–C86. doi: 10.1152/ajpcell.1982.243.1.C81. [DOI] [PubMed] [Google Scholar]
  3. Allen R. E., Raines P. L., Regen D. M. Regulatory significance of transfer RNA charging levels. I. Measurements of charging levels in livers of chow-fed rats, fasting rats, and rats fed balanced or imbalanced mixtures of amino acids. Biochim Biophys Acta. 1969 Oct 22;190(2):323–336. doi: 10.1016/0005-2787(69)90083-5. [DOI] [PubMed] [Google Scholar]
  4. Bennet W. M., Connacher A. A., Scrimgeour C. M., Smith K., Rennie M. J. Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1-13C]leucine. Clin Sci (Lond) 1989 Apr;76(4):447–454. doi: 10.1042/cs0760447. [DOI] [PubMed] [Google Scholar]
  5. Bier D. M. The use of stable isotopes in metabolic investigation. Baillieres Clin Endocrinol Metab. 1987 Nov;1(4):817–836. doi: 10.1016/s0950-351x(87)80007-1. [DOI] [PubMed] [Google Scholar]
  6. Blackburn P. Ribonuclease inhibitor from human placenta: rapid purification and assay. J Biol Chem. 1979 Dec 25;254(24):12484–12487. [PubMed] [Google Scholar]
  7. Carraro F., Stuart C. A., Hartl W. H., Rosenblatt J., Wolfe R. R. Effect of exercise and recovery on muscle protein synthesis in human subjects. Am J Physiol. 1990 Oct;259(4 Pt 1):E470–E476. doi: 10.1152/ajpendo.1990.259.4.E470. [DOI] [PubMed] [Google Scholar]
  8. Chikenji T., Elwyn D. H., Kinney J. M. Protein synthesis rates in rat muscle and skin based on Lysyl-tRNA radioactivity. J Surg Res. 1983 Jan;34(1):68–82. doi: 10.1016/0022-4804(83)90023-9. [DOI] [PubMed] [Google Scholar]
  9. Clemens M. J. Does protein phosphorylation play a role in translational control by eukaryotic aminoacyl-tRNA synthetases? Trends Biochem Sci. 1990 May;15(5):172–175. doi: 10.1016/0968-0004(90)90153-3. [DOI] [PubMed] [Google Scholar]
  10. Fern E. B., Hider R. C., London D. R. Studies in vitro on free amino acid pools and protein synthesis in rat jejunum. Eur J Clin Invest. 1971 Jan;1(4):211–215. [PubMed] [Google Scholar]
  11. Garlick P. J., Grant I. Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem J. 1988 Sep 1;254(2):579–584. doi: 10.1042/bj2540579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garlick P. J., McNurlan M. A., McHardy K. C. Factors controlling the disposition of primary nutrients. Proc Nutr Soc. 1988 Jul;47(2):169–176. doi: 10.1079/pns19880027. [DOI] [PubMed] [Google Scholar]
  13. Garlick P. J., Wernerman J., McNurlan M. A., Essen P., Lobley G. E., Milne E., Calder G. A., Vinnars E. Measurement of the rate of protein synthesis in muscle of postabsorptive young men by injection of a 'flooding dose' of [1-13C]leucine. Clin Sci (Lond) 1989 Sep;77(3):329–336. doi: 10.1042/cs0770329. [DOI] [PubMed] [Google Scholar]
  14. Gibson J. N., Halliday D., Morrison W. L., Stoward P. J., Hornsby G. A., Watt P. W., Murdoch G., Rennie M. J. Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. Clin Sci (Lond) 1987 Apr;72(4):503–509. doi: 10.1042/cs0720503. [DOI] [PubMed] [Google Scholar]
  15. Gibson J. N., McMaster M. J., Scrimgeour C. M., Stoward P. J., Rennie M. J. Rates of muscle protein synthesis in paraspinal muscles: lateral disparity in children with idiopathic scoliosis. Clin Sci (Lond) 1988 Jul;75(1):79–83. doi: 10.1042/cs0750079. [DOI] [PubMed] [Google Scholar]
  16. Griggs R. C., Kingston W., Jozefowicz R. F., Herr B. E., Forbes G., Halliday D. Effect of testosterone on muscle mass and muscle protein synthesis. J Appl Physiol (1985) 1989 Jan;66(1):498–503. doi: 10.1152/jappl.1989.66.1.498. [DOI] [PubMed] [Google Scholar]
  17. Griggs R. C., Rennie M. J. Muscle wasting in muscular dystrophy: decreased protein synthesis or increased degradation? Ann Neurol. 1983 Feb;13(2):125–132. doi: 10.1002/ana.410130204. [DOI] [PubMed] [Google Scholar]
  18. Gulve E. A., Dice J. F. Regulation of protein synthesis and degradation in L8 myotubes. Effects of serum, insulin and insulin-like growth factors. Biochem J. 1989 Jun 1;260(2):377–387. doi: 10.1042/bj2600377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Halliday D., McKeran R. O. Measurement of muscle protein synthetic rate from serial muscle biopsies and total body protein turnover in man by continuous intravenous infusion of L-(alpha-15N)lysine. Clin Sci Mol Med. 1975 Dec;49(6):581–590. doi: 10.1042/cs0490581. [DOI] [PubMed] [Google Scholar]
  20. Halliday D., Pacy P. J., Cheng K. N., Dworzak F., Gibson J. N., Rennie M. J. Rate of protein synthesis in skeletal muscle of normal man and patients with muscular dystrophy: a reassessment. Clin Sci (Lond) 1988 Mar;74(3):237–240. doi: 10.1042/cs0740237. [DOI] [PubMed] [Google Scholar]
  21. Halliday D., Rennie M. J. The use of stable isotopes for diagnosis and clinical research. Clin Sci (Lond) 1982 Dec;63(6):485–496. doi: 10.1042/cs0630485. [DOI] [PubMed] [Google Scholar]
  22. Hammer J. A., 3rd, Rannels D. E. Protein turnover in pulmonary macrophages. Utilization of amino acids derived from protein degradation. Biochem J. 1981 Jul 15;198(1):53–65. doi: 10.1042/bj1980053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hider R. C., Fern E. B., London D. R. Identification in skeletal muscle of a distinct extracellular pool of amino acids, and its role in protein synthesis. Biochem J. 1971 Mar;121(5):817–827. doi: 10.1042/bj1210817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hildebran J. N., Airhart J., Stirewalt W. S., Low R. B. Prolyl-tRNA-based rates of protein and collagen synthesis in human lung fibroblasts. Biochem J. 1981 Aug 15;198(2):249–258. doi: 10.1042/bj1980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ilan J., Singer M. Sampling of the leucine pool from the growing peptide chain: difference in leucine specific activity of peptidyl-transfer RNA from free and membrane-bound polysomes. J Mol Biol. 1975 Jan 5;91(1):39–51. doi: 10.1016/0022-2836(75)90370-8. [DOI] [PubMed] [Google Scholar]
  26. KIPNIS D. M., REISS E., HELMREICH E. Functional heterogeneity of the intracellular amino acid pool in mammalian cells. Biochim Biophys Acta. 1961 Aug 19;51:519–524. doi: 10.1016/0006-3002(61)90608-4. [DOI] [PubMed] [Google Scholar]
  27. Kelley J., Stirewalt W. S., Chrin L. Protein synthesis in rat lung. Measurements in vivo based on leucyl-tRNA and rapidly turning-over procollagen I. Biochem J. 1984 Aug 15;222(1):77–83. doi: 10.1042/bj2220077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Khairallah E. A., Mortimore G. E. Assessment of protein turnover in perfused rat liver. Evidence for amino acid compartmentation from differential labeling of free and tRNA-gound valine. J Biol Chem. 1976 Mar 10;251(5):1375–1384. [PubMed] [Google Scholar]
  29. Langenbeck U., Luthe H., Schaper G. Keto acids in tissues and biological fluids: O-t-butyldimethylsilyl quinoxalinols as derivatives for sensitive gas chromatographic/mass spectrometric determination. Biomed Mass Spectrom. 1985 Sep;12(9):507–509. doi: 10.1002/bms.1200120912. [DOI] [PubMed] [Google Scholar]
  30. Maltin C. A., Harris C. I. Morphological observations and rates of protein synthesis in rat muscles incubated in vitro. Biochem J. 1985 Dec 15;232(3):927–930. doi: 10.1042/bj2320927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Martin A. F., Rabinowitz M., Blough R., Prior G., Zak R. Measurements of half-life of rat cardiac myosin heavy chain with leucyl-tRNA used as precursor pool. J Biol Chem. 1977 May 25;252(10):3422–3429. [PubMed] [Google Scholar]
  32. Martin A. F. Turnover of cardiac troponin subunits. Kinetic evidence for a precursor pool of troponin-I. J Biol Chem. 1981 Jan 25;256(2):964–968. [PubMed] [Google Scholar]
  33. Matthews D. E., Schwarz H. P., Yang R. D., Motil K. J., Young V. R., Bier D. M. Relationship of plasma leucine and alpha-ketoisocaproate during a L-[1-13C]leucine infusion in man: a method for measuring human intracellular leucine tracer enrichment. Metabolism. 1982 Nov;31(11):1105–1112. doi: 10.1016/0026-0495(82)90160-3. [DOI] [PubMed] [Google Scholar]
  34. Mawhinney T. P., Robinett R. S., Atalay A., Madson M. A. Analysis of amino acids as their tert.-butyldimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry. J Chromatogr. 1986 May 16;358(1):231–242. doi: 10.1016/s0021-9673(01)90333-4. [DOI] [PubMed] [Google Scholar]
  35. Nair K. S., Halliday D., Griggs R. C. Leucine incorporation into mixed skeletal muscle protein in humans. Am J Physiol. 1988 Feb;254(2 Pt 1):E208–E213. doi: 10.1152/ajpendo.1988.254.2.E208. [DOI] [PubMed] [Google Scholar]
  36. Obled C., Barre F., Millward D. J., Arnal M. Whole body protein synthesis: studies with different amino acids in the rat. Am J Physiol. 1989 Nov;257(5 Pt 1):E639–E646. doi: 10.1152/ajpendo.1989.257.5.E639. [DOI] [PubMed] [Google Scholar]
  37. ROSENBERG L. E., BERMAN M., SEGAL S. Studies of the kinetics of amino acid transport, incorporation into portein and oxidation in kidney-cortex slices. Biochim Biophys Acta. 1963 Jun 4;71:664–675. doi: 10.1016/0006-3002(63)91140-5. [DOI] [PubMed] [Google Scholar]
  38. Rannels D. E., Wartell S. A., Watkins C. A. The measurement of protein synthesis in biological systems. Life Sci. 1982 May 17;30(20):1679–1690. doi: 10.1016/0024-3205(82)90300-9. [DOI] [PubMed] [Google Scholar]
  39. Rennie M. J., Edwards R. H., Millward D. J., Wolman S. L., Halliday D., Matthews D. E. Effects of Duchenne muscular dystrophy on muscle protein synthesis. Nature. 1982 Mar 11;296(5853):165–167. doi: 10.1038/296165a0. [DOI] [PubMed] [Google Scholar]
  40. Schneible P. A., Airhart J., Low R. B. Differential compartmentation of leucine for oxidation and for protein synthesis in cultured skeletal muscle. J Biol Chem. 1981 May 25;256(10):4888–4894. [PubMed] [Google Scholar]
  41. Schwenk W. F., Beaufrere B., Haymond M. W. Use of reciprocal pool specific activities to model leucine metabolism in humans. Am J Physiol. 1985 Dec;249(6 Pt 1):E646–E650. doi: 10.1152/ajpendo.1985.249.6.E646. [DOI] [PubMed] [Google Scholar]
  42. Smith C. B., Deibler G. E., Eng N., Schmidt K., Sokoloff L. Measurement of local cerebral protein synthesis in vivo: influence of recycling of amino acids derived from protein degradation. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9341–9345. doi: 10.1073/pnas.85.23.9341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stirewalt W. S., Low R. B. Effects of insulin in vitro on protein turnover in rat epitrochlearis muscle. Biochem J. 1983 Feb 15;210(2):323–330. doi: 10.1042/bj2100323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Thompson G. N., Pacy P. J., Merritt H., Ford G. C., Read M. A., Cheng K. N., Halliday D. Rapid measurement of whole body and forearm protein turnover using a [2H5]phenylalanine model. Am J Physiol. 1989 May;256(5 Pt 1):E631–E639. doi: 10.1152/ajpendo.1989.256.5.E631. [DOI] [PubMed] [Google Scholar]
  45. Van Venrooij W. J., Moonen H., Van Loon-Klaassen L. Source of amino acids used for protein synthesis in HeLa cells. Eur J Biochem. 1974 Dec 16;50(1):297–304. doi: 10.1111/j.1432-1033.1974.tb03898.x. [DOI] [PubMed] [Google Scholar]
  46. Vidrich A., Airhart J., Bruno M. K., Khairallah E. A. Compartmentation of free amino acids for protein biosynthesis. Influence of diurnal changes in hepatic amino acid concentrations of the composition of the precursor pool charging aminoacyl-transfer ribonucleic acid. Biochem J. 1977 Feb 15;162(2):257–266. doi: 10.1042/bj1620257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wallyn C. S., Vidrich A., Airhart J., Khairallah E. A. Analysis of the specific radioactivity of valine isolated from aminoacyl-transfer ribonucleic acid of rat liver. Biochem J. 1974 Jun;140(3):545–548. doi: 10.1042/bj1400545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Watkins C. A., Burkhart L. R., Rannels D. E. Protein synthesis in perfused rat lungs: determinations based on incorporation of radioactive proline. Exp Lung Res. 1986;10(1):87–99. doi: 10.3109/01902148609057505. [DOI] [PubMed] [Google Scholar]
  49. Wolfe R. R., Goodenough R. D., Wolfe M. H., Royle G. T., Nadel E. R. Isotopic analysis of leucine and urea metabolism in exercising humans. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):458–466. doi: 10.1152/jappl.1982.52.2.458. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES