Abstract
We have used volume-localized 1H NMR spectroscopy to detect and measure changes in medullary trimethylamines (TMAs) in the human kidney in vivo. Localized water-suppressed 1H spectra were collected from a volume of interest located within the renal medulla by using a stimulated echo-based localization scheme. The principal resonances in the medullary 1H spectrum were residual water (4.7 ppm), lipid (0.9-1.4 ppm), and TMAs (3.25 ppm). The TMA line width was 7-15 Hz before filtering, and the signal-to-noise ratio was 40:1. In four normal volunteers, 15 hr of dehydration led to a significant increase in urine osmolality and decrease in body weight and an increase in medullary TMAs. A subsequent water load [20 ml.(kg of body weight)-1] caused a transient water diuresis, a return to euvolemic body weight, and a significant reduction in medullary TMAs within 4 hr. These results suggest that TMAs may play an osmoregulatory role in the medulla of the normal human kidney.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagnasco S., Balaban R., Fales H. M., Yang Y. M., Burg M. Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem. 1986 May 5;261(13):5872–5877. [PubMed] [Google Scholar]
- Beck F., Dörge A., Rick R., Thurau K. Intra- and extracellular element concentrations of rat renal papilla in antidiuresis. Kidney Int. 1984 Feb;25(2):397–403. doi: 10.1038/ki.1984.30. [DOI] [PubMed] [Google Scholar]
- Blumenfeld J. D., Hebert S. C., Heilig C. W., Balschi J. A., Stromski M. E., Gullans S. R. Organic osmolytes in inner medulla of Brattleboro rat: effects of ADH and dehydration. Am J Physiol. 1989 May;256(5 Pt 2):F916–F922. doi: 10.1152/ajprenal.1989.256.5.F916. [DOI] [PubMed] [Google Scholar]
- Boska M. D., Meyerhoff D. J., Twieg D. B., Karczmar G. S., Matson G. B., Weiner M. W. Image-guided 31P magnetic resonance spectroscopy of normal and transplanted human kidneys. Kidney Int. 1990 Aug;38(2):294–300. doi: 10.1038/ki.1990.199. [DOI] [PubMed] [Google Scholar]
- Bulger R. E. Composition of renal medullary tissue. Kidney Int. 1987 Feb;31(2):556–561. doi: 10.1038/ki.1987.35. [DOI] [PubMed] [Google Scholar]
- Chambers S. T., Kunin C. M. Osmoprotective activity for Escherichia coli in mammalian renal inner medulla and urine. Correlation of glycine and proline betaines and sorbitol with response to osmotic loads. J Clin Invest. 1987 Nov;80(5):1255–1260. doi: 10.1172/JCI113200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gullans S. R., Blumenfeld J. D., Balschi J. A., Kaleta M., Brenner R. M., Heilig C. W., Hebert S. C. Accumulation of major organic osmolytes in rat renal inner medulla in dehydration. Am J Physiol. 1988 Oct;255(4 Pt 2):F626–F634. doi: 10.1152/ajprenal.1988.255.4.F626. [DOI] [PubMed] [Google Scholar]
- Heilig C. W., Stromski M. E., Gullans S. R. Methylamine and polyol responses to salt loading in renal inner medulla. Am J Physiol. 1989 Dec;257(6 Pt 2):F1117–F1123. doi: 10.1152/ajprenal.1989.257.6.F1117. [DOI] [PubMed] [Google Scholar]
- Jue T., Rothman D. L., Lohman J. A., Hughes E. W., Hanstock C. C., Shulman R. G. Surface coil localization of 31P NMR signals from orthotopic human kidney and liver. Proc Natl Acad Sci U S A. 1988 Feb;85(4):971–974. doi: 10.1073/pnas.85.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PHILIPPSON C. DER GEHALT AN GLYCERYLPHOSPHORYLCHOLIN UND GLYCERYLPHOSPHORYLAETHANOLAMIN VON NIERENMARK UND NIERENRINDE HOCHREINER WISTARRATTEN WAEHREND FORCIERTER WASSERDIURESE UND EXTREM LANGER DURST-ANTIDIURESE. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Jun 9;280:30–37. [PubMed] [Google Scholar]
- Silver M. S., Joseph R. I., Chen C. N., Sank V. J., Hoult D. I. Selective population inversion in NMR. Nature. 1984 Aug 23;310(5979):681–683. doi: 10.1038/310681a0. [DOI] [PubMed] [Google Scholar]
- Wirthensohn G., Beck F. X., Guder W. G. Role and regulation of glycerophosphorylcholine in rat renal papilla. Pflugers Arch. 1987 Aug;409(4-5):411–415. doi: 10.1007/BF00583795. [DOI] [PubMed] [Google Scholar]
- Wirthensohn G., Lefrank S., Schmolke M., Guder W. G. Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla. Am J Physiol. 1989 Jan;256(1 Pt 2):F128–F135. doi: 10.1152/ajprenal.1989.256.1.F128. [DOI] [PubMed] [Google Scholar]
- Wolff S. D., Stanton T. S., James S. L., Balaban R. S. Acute regulation of the predominant organic solutes of the rabbit renal inner medulla. Am J Physiol. 1989 Oct;257(4 Pt 2):F676–F681. doi: 10.1152/ajprenal.1989.257.4.F676. [DOI] [PubMed] [Google Scholar]
- Yancey P. H., Burg M. B. Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis. Am J Physiol. 1989 Oct;257(4 Pt 2):F602–F607. doi: 10.1152/ajprenal.1989.257.4.F602. [DOI] [PubMed] [Google Scholar]