Abstract
Nanovid microscopy, which uses 30- to 40-nm colloidal gold probes combined with video-enhanced contrast, can be used to examine random and directed movements of individual molecules in the plasma membrane of living cells. To validate the technique in a model system, the movements of lipid molecules were followed in a supported, planar bilayer containing fluorescein-conjugated phosphatidylethanolamine (Fl-PtdEtn) labeled with 30-nm gold anti-fluorescein (anti-Fl). Multivalent gold probes were prepared by conjugating only anti-Fl to the gold. Paucivalent probes were prepared by mixing an irrelevant antibody with the anti-Fl prior to conjugation. The membrane-bound gold particles moved in random patterns that were indistinguishable from those produced by computer simulations of two-dimensional random motion. The multivalent gold probes had an average lateral diffusion coefficient (D) of 0.26 x 10(-8) cm2/sec, and paucivalent probes had an average D of 0.73 x 10(-8) cm2/sec. Sixteen percent of the multivalent and 50% of the paucivalent probes had values for D in excess of 0.6 x 10(-8) cm2/sec, which, after allowance for stochastic variation, are consistent with the D of 1.3 x 10(-8) cm2/sec measured by fluorescence recovery after photobleaching of Fl-PtdEtn in the planar bilayer. The effect of valency on diffusion suggests that the multivalent gold binds several lipids forming a disk up to 30-40 nm in diameter, resulting in reduced diffusion with respect to the paucivalent gold, which binds one or a very few lipids. Provided the valency of the gold probe is considered in the interpretation of the results. Nanovid microscopy is a valid method for analyzing the movements of single or small groups of molecules within membranes.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Billings-Gagliardi S., Pockwinse S. M., Schneider G. B. Surface coats on human lymphocytes: freeze-drying and staining with cations. Am J Anat. 1979 Feb;154(2):267–276. doi: 10.1002/aja.1001540210. [DOI] [PubMed] [Google Scholar]
- De Brabander M., Nuydens R., Geerts H., Hopkins C. R. Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil Cytoskeleton. 1988;9(1):30–47. doi: 10.1002/cm.970090105. [DOI] [PubMed] [Google Scholar]
- De Roe C., Courtoy P. J., Baudhuin P. A model of protein-colloidal gold interactions. J Histochem Cytochem. 1987 Nov;35(11):1191–1198. doi: 10.1177/35.11.3655323. [DOI] [PubMed] [Google Scholar]
- Ishihara A., Holifield B., Jacobson K. Analysis of lateral redistribution of a plasma membrane glycoprotein-monoclonal antibody complex [corrected]. J Cell Biol. 1988 Feb;106(2):329–343. doi: 10.1083/jcb.106.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishihara A., Hou Y., Jacobson K. The Thy-1 antigen exhibits rapid lateral diffusion in the plasma membrane of rodent lymphoid cells and fibroblasts. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1290–1293. doi: 10.1073/pnas.84.5.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson K., Derzko Z., Wu E. S., Hou Y., Poste G. Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. J Supramol Struct. 1976;5(4):565(417)–576(428). doi: 10.1002/jss.400050411. [DOI] [PubMed] [Google Scholar]
- Kucik D. F., Elson E. L., Sheetz M. P. Cell migration does not produce membrane flow. J Cell Biol. 1990 Oct;111(4):1617–1622. doi: 10.1083/jcb.111.4.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kucik D. F., Elson E. L., Sheetz M. P. Forward transport of glycoproteins on leading lamellipodia in locomoting cells. Nature. 1989 Jul 27;340(6231):315–317. doi: 10.1038/340315a0. [DOI] [PubMed] [Google Scholar]
- Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheetz M. P., Baumrind N. L., Wayne D. B., Pearlman A. L. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones. Cell. 1990 Apr 20;61(2):231–241. doi: 10.1016/0092-8674(90)90804-n. [DOI] [PubMed] [Google Scholar]
- Subramaniam S., Seul M., McConnell H. M. Lateral diffusion of specific antibodies bound to lipid monolayers on alkylated substrates. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1169–1173. doi: 10.1073/pnas.83.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright L. L., Palmer A. G., 3rd, Thompson N. L. Inhomogeneous translational diffusion of monoclonal antibodies on phospholipid Langmuir-Blodgett films. Biophys J. 1988 Sep;54(3):463–470. doi: 10.1016/S0006-3495(88)82979-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu E. S., Jacobson K., Szoka F., Portis A., Jr Lateral diffusion of a hydrophobic peptide, N-4-nitrobenz-2-oxa-1,3-diazole gramicidin S, in phospholipid multibilayers. Biochemistry. 1978 Dec 12;17(25):5543–5550. doi: 10.1021/bi00618a033. [DOI] [PubMed] [Google Scholar]
- de Brabander M., Nuydens R., Ishihara A., Holifield B., Jacobson K., Geerts H. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy. J Cell Biol. 1991 Jan;112(1):111–124. doi: 10.1083/jcb.112.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]