Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Jul 15;88(14):6318–6322. doi: 10.1073/pnas.88.14.6318

Post-translational modification of microtubules is a component of synergic alterations of cytoskeleton leading to formation of cytoplasmic processes in fibroblasts.

I S Tint 1, A D Bershadsky 1, I M Gelfand 1, J M Vasiliev 1
PMCID: PMC52074  PMID: 2068111

Abstract

The protein kinase C activator phorbol 12-myristate 13-acetate (PMA) induces rapid and reversible shape changes in cultured fibroblasts: extension of motile lamellas is followed by transformation of these lamellas into nonmotile stalklike processes. This "lamella-to-stalk" transformation was found to be associated with the formation of microtubules enriched in detyrosinated alpha-tubulin. This change was local: microtubules in motile lamellas at the distal ends of the processes and in the cell bodies were not enriched in detyrosinated alpha-tubulin. Detyrosinated microtubules in the processes were more resistant to Colcemid treatment than other microtubules of PMA-treated and control cells. The effects of PMA were reversible and could be abolished by sphingosine, a specific inhibitor of protein kinase C. Besides modification of microtubules, lamella-to-stalk transformation is associated with the ingrowth of intermediate filaments into the extensions. Earlier it was found that this transformation is also associated with the profound reorganization of the system of actin microfilaments. Thus, all three cytoskeletal systems are altered simultaneously during PMA-induced formation of processes. Similar "cytoskeletal synergies" may play essential roles in many morphogenetic processes--e.g., in the growth of neurites.

Full text

PDF
6318

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baas P. W., Black M. M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J Cell Biol. 1990 Aug;111(2):495–509. doi: 10.1083/jcb.111.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barra H. S., Arce C. A., Argaraña C. E. Posttranslational tyrosination/detyrosination of tubulin. Mol Neurobiol. 1988 Summer;2(2):133–153. doi: 10.1007/BF02935343. [DOI] [PubMed] [Google Scholar]
  3. Bershadsky A. D., Ivanova O. Y., Lyass L. A., Pletyushkina O. Y., Vasiliev J. M., Gelfand I. M. Cytoskeletal reorganizations responsible for the phorbol ester-induced formation of cytoplasmic processes: possible involvement of intermediate filaments. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1884–1888. doi: 10.1073/pnas.87.5.1884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bershadsky A. D., Tint I. S., Svitkina T. M. Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts. Cell Motil Cytoskeleton. 1987;8(3):274–283. doi: 10.1002/cm.970080308. [DOI] [PubMed] [Google Scholar]
  5. Bray D., Bunge M. B. Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol. 1981 Aug;10(4):589–605. doi: 10.1007/BF01262592. [DOI] [PubMed] [Google Scholar]
  6. Bray D., Chapman K. Analysis of microspike movements on the neuronal growth cone. J Neurosci. 1985 Dec;5(12):3204–3213. doi: 10.1523/JNEUROSCI.05-12-03204.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cambray-Deakin M. A., Burgoyne R. D. Acetylated and detyrosinated alpha-tubulins are co-localized in stable microtubules in rat meningeal fibroblasts. Cell Motil Cytoskeleton. 1987;8(3):284–291. doi: 10.1002/cm.970080309. [DOI] [PubMed] [Google Scholar]
  8. Danowski B. A., Harris A. K. Changes in fibroblast contractility, morphology, and adhesion in response to a phorbol ester tumor promoter. Exp Cell Res. 1988 Jul;177(1):47–59. doi: 10.1016/0014-4827(88)90024-9. [DOI] [PubMed] [Google Scholar]
  9. Dugina V. B., Svitkina T. M., Vasiliev J. M., Gelfand I. M. Special type of morphological reorganization induced by phorbol ester: reversible partition of cell into motile and stable domains. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4122–4125. doi: 10.1073/pnas.84.12.4122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farber R. A., Liskay R. M. Karyotypic analysis of a near-diploid established mouse cell line. Cytogenet Cell Genet. 1974;13(4):384–396. doi: 10.1159/000130288. [DOI] [PubMed] [Google Scholar]
  11. Fuller G. M., Brinkley B. R., Boughter J. M. Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin. Science. 1975 Mar 14;187(4180):948–950. doi: 10.1126/science.1096300. [DOI] [PubMed] [Google Scholar]
  12. Gundersen G. G., Kalnoski M. H., Bulinski J. C. Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo. Cell. 1984 Oct;38(3):779–789. doi: 10.1016/0092-8674(84)90273-3. [DOI] [PubMed] [Google Scholar]
  13. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  14. Hoshi M., Nishida E., Miyata Y., Sakai H., Miyoshi T., Ogawara H., Akiyama T. Protein kinase C phosphorylates tau and induces its functional alterations. FEBS Lett. 1987 Jun 15;217(2):237–241. doi: 10.1016/0014-5793(87)80670-1. [DOI] [PubMed] [Google Scholar]
  15. Huang C. K., Devanney J. F., Kennedy S. P. Vimentin, a cytoskeletal substrate of protein kinase C. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1006–1011. doi: 10.1016/0006-291x(88)90728-0. [DOI] [PubMed] [Google Scholar]
  16. Khawaja S., Gundersen G. G., Bulinski J. C. Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J Cell Biol. 1988 Jan;106(1):141–149. doi: 10.1083/jcb.106.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kilmartin J. V., Wright B., Milstein C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol. 1982 Jun;93(3):576–582. doi: 10.1083/jcb.93.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kreis T. E. Microtubules containing detyrosinated tubulin are less dynamic. EMBO J. 1987 Sep;6(9):2597–2606. doi: 10.1002/j.1460-2075.1987.tb02550.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lyass L. A., Bershadsky A. D., Vasiliev J. M., Gelfand I. M. Microtubule-dependent effect of phorbol ester on the contractility of cytoskeleton of cultured fibroblasts. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9538–9541. doi: 10.1073/pnas.85.24.9538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Merrill A. H., Jr, Stevens V. L. Modulation of protein kinase C and diverse cell functions by sphingosine--a pharmacologically interesting compound linking sphingolipids and signal transduction. Biochim Biophys Acta. 1989 Feb 9;1010(2):131–139. doi: 10.1016/0167-4889(89)90152-3. [DOI] [PubMed] [Google Scholar]
  21. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  22. Prescott A. R., Vestberg M., Warn R. M. Microtubules rich in modified alpha-tubulin characterize the tail processes of motile fibroblasts. J Cell Sci. 1989 Oct;94(Pt 2):227–236. doi: 10.1242/jcs.94.2.227. [DOI] [PubMed] [Google Scholar]
  23. Robson S. J., Burgoyne R. D. Differential localisation of tyrosinated, detyrosinated, and acetylated alpha-tubulins in neurites and growth cones of dorsal root ganglion neurons. Cell Motil Cytoskeleton. 1989;12(4):273–282. doi: 10.1002/cm.970120408. [DOI] [PubMed] [Google Scholar]
  24. Schulze E., Asai D. J., Bulinski J. C., Kirschner M. Posttranslational modification and microtubule stability. J Cell Biol. 1987 Nov;105(5):2167–2177. doi: 10.1083/jcb.105.5.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsuyama S., Bramblett G. T., Huang K. P., Flavin M. Calcium/phospholipid-dependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases. J Biol Chem. 1986 Mar 25;261(9):4110–4116. [PubMed] [Google Scholar]
  26. Vasiliev J. M., Gelfand I. M. Membrane-induced segregation of motile and stable domains in cytoplasm: possible role in morphological differentiation of tissue cells. Cell Differ. 1988 Jul;24(2):75–81. doi: 10.1016/0045-6039(88)90059-0. [DOI] [PubMed] [Google Scholar]
  27. Viklický V., Dráber P., Hasek J., Bártek J. Production and characterization of a monoclonal antitubulin antibody. Cell Biol Int Rep. 1982 Aug;6(8):725–731. doi: 10.1016/0309-1651(82)90164-3. [DOI] [PubMed] [Google Scholar]
  28. Webster D. R., Gundersen G. G., Bulinski J. C., Borisy G. G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9040–9044. doi: 10.1073/pnas.84.24.9040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Webster D. R., Wehland J., Weber K., Borisy G. G. Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J Cell Biol. 1990 Jul;111(1):113–122. doi: 10.1083/jcb.111.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES