Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 1;73(Pt 1):1–3. doi: 10.1107/S2056989016019034

Crystal structure of N-(7-di­bromo­methyl-5-methyl-1,8-naphthyridin-2-yl)benzamide–pyrrolidine-2,5-dione (1/1)

Bang Zhong Wang a, Jun Ping Zhou a, Yong Zhou a, Jian Song Luo a, Jun Jie Yang a, Shao Ming Chi a,*
PMCID: PMC5209757  PMID: 28083121

The title crystal is a co-crystal with the 1,8-naphthyridine derivative crystallizing with one mol­ecule of succinimide per formula unit. In the crystal, the two mol­ecules are mutually linked by N—H⋯O and N—H⋯N hydrogen bonds. The packing is consolidated by C—H⋯(O,N) hydrogen bonds and π–π stacking inter­actions.

Keywords: crystal structure; 1,8-naphthyridine; hydrogen bonding; π–π inter­action

Abstract

The title compound, C17H13Br2N3O·C4H5NO2, is a co-crystal of N-(7-di­bromo­methyl-5-methyl-1,8-naphthyridin-2-yl)benzamide and pyrrolidine-2,5-dione (succinimide). The benzamide mol­ecule exhibits pseudo-mirror symmetry, with an r.m.s. deviation of the non-H atoms of 0.09 Å (except for the two Br atoms). The angle between the least-squares planes of the two mol­ecules is 26.2 (2)°. In the crystal, the two mol­ecules are mutually linked by N—H⋯O and N—H⋯N hydrogen bonds. The packing is consolidated by C—H⋯(O,N) hydrogen bonds and π–π stacking inter­actions.

Chemical context  

1,8-Naphthyridine derivatives are important heterocyclic compounds that exhibit excellent biochemical and pharmacological properties. Moreover, these compounds benefit from conjugate π-electronic structures and are widely used as ligands in the synthesis of metal complexes (Tang et al., 2015; Matveeva et al., 2012, 2013), functional materials (Kuo et al., 2011; Katz et al., 2007; Hu & Chen, 2010) or as catalysts (Fuentes et al., 2011; Yamazaki et al., 2011). In a number of studies, the fluorescent properties of naphthyridines have been investigated (Yu et al., 2013; Li et al., 2012), in particular as selective fluorescent chemosensors for small biological mol­ecules through hydrogen bonding (Nakatani et al., 2013; Liang et al., 2012). 1,8-Naphthyridin–BF2 complexes are known to be fluorescent dyes with high chemical stability (Li et al., 2014), high fluorescence quantum yields (Quan et al., 2012), high extinction coefficients (Wu et al., 2013) and sharp fluorescence peaks (Du et al., 2014). Some anti­viral medications are also based on 1,8-naphthyridines (Elansary et al., 2014). In this context we aimed to synthesize the title 1,8-naphthyridine derivative and report here on the crystal structure of the obtained co-crystal with pyrrolidine-2,5-dione (succinimide).graphic file with name e-73-00001-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title 1,8-naphthyridine deriv­ative is shown in Fig. 1. The N-(7-(di­bromo­meth­yl)-5-methyl-1,8-naphthyridin-2-yl)benzamide moiety (except the two Br atoms) is essentially planar (r.m.s deviation = 0.09 Å), with the maximum deviation from the mean plane being 0.315 (5) Å for atom O1. The naphthyridine ring system makes a dihedral angle of 2.2 (2)° with the benzene ring and is oriented at an angle of 26.2 (2)° relative to the succinimide. The conformation of the C=O and the N—H bonds of the amide segment are anti to one another, similar to that reported for benzamide moiety in N-{4-[(6-chloro­pyridin-3-yl)-meth­oxy]phen­yl}-2,6-di­fluoro­benzamide (Liang et al., 2016).

Figure 1.

Figure 1

The mol­ecular components in the title co-crystal, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

The two mol­ecules are mutually linked into pairs by N—H⋯O and N—H⋯N hydrogen bonds with the (imide)N—H⋯N bond bifurcated (Table 1, Fig. 2). In the 1,8-naphthyridine derivative, an intra­molecular C—H⋯O hydrogen bond between a phenyl H atom and the carbonyl function is also present. Apart from the classical hydrogen-bonding inter­actions, the two mol­ecules are additionally linked by weaker C—H⋯O and C—H⋯N hydrogen bonds. These pairs are linked by weak C—Br⋯O inter­actions [3.094 (5) Å]. The supra­molecular aggregation is completed by π–π stacking inter­actions between two neighbouring succinimide mol­ecules with a centroid-to-centroid distance of CgCg i = 3.854 (4) Å [inter­planar distance = 3.172 (3) Å; symmetry code: −x + 1, −y + 1, −z + 1], forming a three-dimensional supra­molecular network (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.22 3.060 (7) 164
N4—H4A⋯N2 0.86 2.48 3.195 (7) 141
N4—H4A⋯N3 0.86 2.27 3.098 (7) 162
C1—H1B⋯O2 0.93 2.43 3.299 (8) 156
C9—H9A⋯O1 0.93 2.30 2.870 (8) 119
C17—H17A⋯O3 0.98 2.60 3.504 (8) 154
C19—H19B⋯N3i 0.97 2.58 3.538 (8) 170

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

The different types of hydrogen bonds between the two mol­ecules and pairs of mol­ecules; intra­molecular hydrogen bonds are shown as blue dashed lines and inter­molecular hydrogen bonds are shown as turquoise dashed lines.

Figure 3.

Figure 3

A view along the c axis, showing the crystal packing of the title compound.

Database survey  

In the Cambridge Structural Database (Version 5.37; Groom et al., 2016), the structural data for a very similar 1,8-naphthyridine deriv­ative have been deposited (CSD refcode LESBOC; Gou et al., 2013). Instead of a benzamide, the latter is an acetamide where the dihedral angle between the naphthyridine moiety and the succinimide co-mol­ecule is 14.1°.

Synthesis and crystallization  

N-(5,7-dimethyl-1,8-naphthyridin-2-yl)benzamide (Wu et al., 2012) (0.277 g,1 mmol) and N-bromo­succinimide (0.356 g, 2 mmol) were added to an dry aceto­nitrile (30 ml) solution under nitro­gen atmosphere. The mixture was refluxed at room temperature in the presence of light with a 250 W infrared lamp for 4 h. Excess solvent was removed and the crude product was purified by column chromatography using di­chloro­methane/methanol (120:1) as the mobile phase to give a light-yellow powder (yield: 0.1 g; 19%). Crystals suitable for X-ray analysis were obtained by slow diffusion of a di­chloro­methane solution at ambient temperature. Several cycles of purification by chromatography were used to reduce the amount of succinimide.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were constrained to an ideal geometry with C—H distances in the range 0.93–0.96 Å, U iso(H) = 1.5U eq(C) for methyl H atoms and U iso(H) = 1.2U eq(C) for all other H atoms, and with N—H = 0.86 Å, U iso(H) = 1.2U eq(N).

Table 2. Experimental details.

Crystal data
Chemical formula C17H13Br2N3O·C4H5NO2
M r 534.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.6931 (19), 15.699 (3), 14.614 (3)
β (°) 108.99 (3)
V3) 2103.0 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.89
Crystal size (mm) 0.30 × 0.28 × 0.26
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR ; Higashi, 1995)
T min, T max 0.389, 0.432
No. of measured, independent and observed [I > 2σ(I)] reflections 16558, 4129, 2010
R int 0.125
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.062, 0.148, 0.98
No. of reflections 4129
No. of parameters 271
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.35, −0.43

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2006), SHELXS97 and SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019034/wm5334sup1.cif

e-73-00001-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019034/wm5334Isup2.hkl

e-73-00001-Isup2.hkl (202.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016019034/wm5334Isup3.cml

CCDC reference: 1519551

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support from the ‘Spring Sunshine’ Plan of the Ministry of Education of China (grant No. Z2011125) and the National Natural Science Foundation of China (grant No. 21262049) is acknowledged.

supplementary crystallographic information

Crystal data

C17H13Br2N3O·C4H5NO2 F(000) = 1064
Mr = 534.21 Dx = 1.687 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.6931 (19) Å Cell parameters from 4129 reflections
b = 15.699 (3) Å θ = 3.1–26.0°
c = 14.614 (3) Å µ = 3.89 mm1
β = 108.99 (3)° T = 293 K
V = 2103.0 (7) Å3 Block, white
Z = 4 0.30 × 0.28 × 0.26 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 4129 independent reflections
Radiation source: fine-focus sealed tube 2010 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.125
ω scans θmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR ; Higashi, 1995) h = −11→11
Tmin = 0.389, Tmax = 0.432 k = −19→19
16558 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0633P)2] where P = (Fo2 + 2Fc2)/3
4129 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 1.35 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.58390 (8) 0.09771 (5) 0.60551 (6) 0.0662 (3)
Br2 0.59853 (8) 0.16358 (6) 0.40343 (6) 0.0707 (3)
O2 0.2878 (5) 0.5578 (3) 0.5158 (3) 0.0569 (13)
N2 0.1482 (5) 0.3823 (3) 0.4170 (4) 0.0384 (13)
N3 0.3233 (5) 0.2797 (3) 0.4629 (4) 0.0412 (13)
C10 −0.0753 (6) 0.2634 (4) 0.3453 (5) 0.0472 (17)
H10A −0.1506 0.2244 0.3211 0.057*
C16 0.1779 (6) 0.2982 (4) 0.4218 (4) 0.0372 (15)
O3 0.6209 (5) 0.3572 (3) 0.6728 (4) 0.0670 (14)
C11 0.0696 (6) 0.2340 (4) 0.3875 (4) 0.0386 (15)
O1 −0.2418 (5) 0.5110 (3) 0.2818 (4) 0.0572 (13)
C8 0.0100 (6) 0.4067 (4) 0.3782 (5) 0.0408 (15)
N1 −0.0060 (5) 0.4946 (3) 0.3799 (4) 0.0431 (14)
H1A 0.0691 0.5224 0.4148 0.052*
C18 0.3969 (7) 0.5289 (4) 0.5745 (5) 0.0466 (17)
C6 −0.1117 (7) 0.6382 (4) 0.3444 (4) 0.0403 (16)
N4 0.4396 (5) 0.4441 (3) 0.5798 (4) 0.0440 (13)
H4A 0.3908 0.4057 0.5406 0.053*
C5 −0.2391 (7) 0.6855 (4) 0.3129 (5) 0.0472 (17)
H5A −0.3286 0.6584 0.2872 0.057*
C12 0.1146 (6) 0.1482 (4) 0.3980 (5) 0.0438 (17)
C3 −0.1020 (9) 0.8141 (5) 0.3572 (6) 0.065 (2)
H3B −0.1000 0.8733 0.3614 0.078*
C7 −0.1274 (7) 0.5432 (4) 0.3325 (5) 0.0443 (17)
C21 0.5664 (7) 0.4271 (5) 0.6533 (5) 0.0477 (17)
C15 0.3601 (6) 0.1989 (4) 0.4687 (4) 0.0397 (15)
C1 0.0213 (7) 0.6805 (4) 0.3830 (5) 0.0543 (19)
H1B 0.1075 0.6494 0.4053 0.065*
C4 −0.2326 (8) 0.7719 (5) 0.3199 (5) 0.063 (2)
H4B −0.3187 0.8031 0.2989 0.075*
C19 0.5070 (6) 0.5760 (4) 0.6530 (5) 0.0468 (17)
H19A 0.4625 0.6011 0.6971 0.056*
H19B 0.5513 0.6209 0.6264 0.056*
C14 0.2609 (7) 0.1317 (4) 0.4380 (5) 0.0463 (17)
H14A 0.2943 0.0758 0.4447 0.056*
C2 0.0253 (8) 0.7682 (5) 0.3881 (6) 0.071 (2)
H2B 0.1143 0.7963 0.4125 0.085*
C17 0.5246 (6) 0.1862 (4) 0.5102 (5) 0.0476 (18)
H17A 0.5680 0.2398 0.5408 0.057*
C9 −0.1054 (7) 0.3486 (4) 0.3399 (5) 0.0470 (17)
H9A −0.2005 0.3680 0.3116 0.056*
C20 0.6209 (7) 0.5095 (4) 0.7050 (5) 0.0555 (19)
H20A 0.7159 0.5240 0.7006 0.067*
H20B 0.6286 0.5056 0.7727 0.067*
C13 0.0061 (7) 0.0758 (5) 0.3690 (6) 0.070 (2)
H13A 0.0573 0.0224 0.3811 0.105*
H13B −0.0487 0.0803 0.3014 0.105*
H13C −0.0592 0.0786 0.4062 0.105*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0729 (5) 0.0613 (5) 0.0558 (5) 0.0189 (4) 0.0090 (4) 0.0111 (4)
Br2 0.0474 (4) 0.1006 (7) 0.0659 (6) 0.0050 (4) 0.0208 (4) 0.0021 (5)
O2 0.051 (3) 0.054 (3) 0.055 (3) 0.000 (2) 0.002 (3) −0.002 (2)
N2 0.037 (3) 0.030 (3) 0.046 (3) 0.000 (2) 0.010 (3) −0.001 (2)
N3 0.035 (3) 0.036 (3) 0.048 (4) 0.000 (3) 0.008 (3) −0.001 (3)
C10 0.039 (4) 0.046 (4) 0.053 (5) −0.010 (3) 0.009 (3) −0.004 (3)
C16 0.035 (3) 0.038 (4) 0.040 (4) 0.001 (3) 0.014 (3) −0.002 (3)
O3 0.068 (3) 0.054 (3) 0.069 (4) 0.009 (3) 0.009 (3) 0.006 (3)
C11 0.037 (3) 0.034 (4) 0.041 (4) −0.001 (3) 0.008 (3) −0.005 (3)
O1 0.042 (3) 0.053 (3) 0.063 (3) 0.009 (2) −0.001 (3) 0.003 (3)
C8 0.039 (4) 0.039 (4) 0.043 (4) 0.006 (3) 0.011 (3) 0.004 (3)
N1 0.032 (3) 0.038 (3) 0.052 (4) 0.003 (2) 0.004 (3) 0.000 (3)
C18 0.041 (4) 0.050 (5) 0.051 (5) −0.004 (4) 0.017 (4) −0.003 (4)
C6 0.044 (4) 0.041 (4) 0.037 (4) 0.009 (3) 0.014 (3) 0.002 (3)
N4 0.047 (3) 0.038 (3) 0.045 (4) −0.008 (3) 0.013 (3) −0.006 (3)
C5 0.041 (4) 0.041 (4) 0.057 (5) 0.005 (3) 0.012 (3) 0.017 (3)
C12 0.044 (4) 0.042 (4) 0.050 (4) −0.006 (3) 0.022 (3) −0.007 (3)
C3 0.077 (5) 0.042 (5) 0.064 (5) 0.006 (4) 0.007 (4) 0.004 (4)
C7 0.037 (4) 0.049 (4) 0.044 (5) 0.005 (3) 0.008 (3) 0.008 (3)
C21 0.047 (4) 0.052 (5) 0.042 (4) 0.003 (4) 0.012 (4) 0.002 (4)
C15 0.042 (3) 0.041 (4) 0.035 (4) 0.004 (3) 0.009 (3) −0.001 (3)
C1 0.046 (4) 0.044 (4) 0.063 (5) 0.006 (4) 0.004 (4) 0.007 (4)
C4 0.054 (5) 0.066 (6) 0.062 (6) 0.027 (4) 0.011 (4) 0.018 (4)
C19 0.042 (4) 0.046 (4) 0.051 (5) −0.004 (3) 0.015 (3) −0.005 (3)
C14 0.050 (4) 0.029 (4) 0.063 (5) −0.002 (3) 0.023 (4) −0.006 (3)
C2 0.062 (5) 0.050 (5) 0.078 (6) 0.001 (4) −0.006 (4) 0.000 (4)
C17 0.043 (3) 0.036 (4) 0.052 (5) 0.006 (3) 0.001 (3) 0.000 (3)
C9 0.037 (3) 0.046 (5) 0.056 (5) −0.002 (3) 0.012 (3) −0.001 (4)
C20 0.046 (4) 0.062 (5) 0.051 (5) −0.005 (4) 0.006 (4) −0.007 (4)
C13 0.056 (5) 0.059 (5) 0.093 (7) −0.009 (4) 0.023 (5) −0.013 (4)

Geometric parameters (Å, º)

Br1—C17 1.918 (6) C5—C4 1.359 (9)
Br2—C17 1.950 (7) C5—H5A 0.9300
O2—C18 1.213 (7) C12—C14 1.372 (8)
N2—C8 1.330 (7) C12—C13 1.513 (9)
N2—C16 1.348 (7) C3—C2 1.373 (10)
N3—C15 1.312 (7) C3—C4 1.375 (10)
N3—C16 1.372 (7) C3—H3B 0.9300
C10—C9 1.366 (8) C21—C20 1.505 (9)
C10—C11 1.415 (8) C15—C14 1.399 (8)
C10—H10A 0.9300 C15—C17 1.524 (8)
C16—C11 1.424 (8) C1—C2 1.379 (9)
O3—C21 1.211 (7) C1—H1B 0.9300
C11—C12 1.408 (8) C4—H4B 0.9300
O1—C7 1.225 (7) C19—C20 1.529 (8)
C8—N1 1.390 (7) C19—H19A 0.9700
C8—C9 1.410 (8) C19—H19B 0.9700
N1—C7 1.383 (7) C14—H14A 0.9300
N1—H1A 0.8600 C2—H2B 0.9300
C18—N4 1.389 (8) C17—H17A 0.9800
C18—C19 1.485 (9) C9—H9A 0.9300
C6—C5 1.385 (8) C20—H20A 0.9700
C6—C1 1.396 (9) C20—H20B 0.9700
C6—C7 1.505 (8) C13—H13A 0.9600
N4—C21 1.370 (8) C13—H13B 0.9600
N4—H4A 0.8600 C13—H13C 0.9600
C8—N2—C16 118.2 (5) N3—C15—C17 112.3 (5)
C15—N3—C16 116.9 (5) C14—C15—C17 123.4 (6)
C9—C10—C11 120.5 (6) C2—C1—C6 120.1 (6)
C9—C10—H10A 119.8 C2—C1—H1B 119.9
C11—C10—H10A 119.8 C6—C1—H1B 119.9
N2—C16—N3 113.7 (5) C5—C4—C3 121.7 (7)
N2—C16—C11 123.7 (5) C5—C4—H4B 119.2
N3—C16—C11 122.6 (5) C3—C4—H4B 119.2
C12—C11—C10 125.9 (6) C18—C19—C20 105.4 (5)
C12—C11—C16 118.2 (5) C18—C19—H19A 110.7
C10—C11—C16 115.9 (5) C20—C19—H19A 110.7
N2—C8—N1 112.4 (5) C18—C19—H19B 110.7
N2—C8—C9 122.8 (6) C20—C19—H19B 110.7
N1—C8—C9 124.8 (5) H19A—C19—H19B 108.8
C7—N1—C8 128.3 (5) C12—C14—C15 120.1 (6)
C7—N1—H1A 115.8 C12—C14—H14A 119.9
C8—N1—H1A 115.8 C15—C14—H14A 119.9
O2—C18—N4 125.0 (6) C3—C2—C1 120.1 (7)
O2—C18—C19 127.0 (6) C3—C2—H2B 120.0
N4—C18—C19 107.9 (6) C1—C2—H2B 120.0
C5—C6—C1 119.1 (6) C15—C17—Br1 114.3 (5)
C5—C6—C7 116.6 (6) C15—C17—Br2 108.3 (4)
C1—C6—C7 124.3 (6) Br1—C17—Br2 110.3 (3)
C21—N4—C18 113.9 (6) C15—C17—H17A 107.9
C21—N4—H4A 123.0 Br1—C17—H17A 107.9
C18—N4—H4A 123.0 Br2—C17—H17A 107.9
C4—C5—C6 119.7 (6) C10—C9—C8 118.9 (6)
C4—C5—H5A 120.1 C10—C9—H9A 120.5
C6—C5—H5A 120.1 C8—C9—H9A 120.5
C14—C12—C11 117.9 (6) C21—C20—C19 105.0 (5)
C14—C12—C13 120.4 (6) C21—C20—H20A 110.8
C11—C12—C13 121.7 (6) C19—C20—H20A 110.8
C2—C3—C4 119.3 (7) C21—C20—H20B 110.8
C2—C3—H3B 120.3 C19—C20—H20B 110.8
C4—C3—H3B 120.3 H20A—C20—H20B 108.8
O1—C7—N1 122.0 (6) C12—C13—H13A 109.5
O1—C7—C6 121.1 (6) C12—C13—H13B 109.5
N1—C7—C6 116.8 (6) H13A—C13—H13B 109.5
O3—C21—N4 124.9 (6) C12—C13—H13C 109.5
O3—C21—C20 127.3 (7) H13A—C13—H13C 109.5
N4—C21—C20 107.8 (6) H13B—C13—H13C 109.5
N3—C15—C14 124.4 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.86 2.22 3.060 (7) 164
N4—H4A···N2 0.86 2.48 3.195 (7) 141
N4—H4A···N3 0.86 2.27 3.098 (7) 162
C1—H1B···O2 0.93 2.43 3.299 (8) 156
C9—H9A···O1 0.93 2.30 2.870 (8) 119
C17—H17A···O3 0.98 2.60 3.504 (8) 154
C19—H19B···N3i 0.97 2.58 3.538 (8) 170

Symmetry code: (i) −x+1, −y+1, −z+1.

References

  1. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Du, M. L., Hu, C. Y., Wang, L. F., Li, C., Han, Y. Y., Gan, X., Chen, Y., Mu, W. H., Huang, M. L. & Fu, W. F. (2014). Dalton Trans. 43, 13924–13931. [DOI] [PubMed]
  3. Elansary, A. K., Moneer, A. A., Kadry, H. H. & Gedawy, E. M. (2014). J. Chem. Res. (S), 38, 147–153.
  4. Fuentes, J. A., Lebl, T., Slawin, A. M. Z. & Clarke, M. L. (2011). Chem. Sci. 2, 1997–2005.
  5. Gou, G.-Z., Kou, J.-F., Zhou, Q.-D. & Chi, S.-M. (2013). Acta Cryst. E69, o153–o154. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  8. Hu, S. Z. & Chen, C. F. (2010). Chem. Commun. 46, 4199–4201. [DOI] [PubMed]
  9. Katz, J. L., Geller, B. J. & Foster, P. D. (2007). Chem. Commun. pp. 1026–1028. [DOI] [PubMed]
  10. Kuo, J. H., Tsao, T. B., Lee, G. H., Lee, H. W., Yeh, C. Y. & Peng, S. M. (2011). Eur. J. Inorg. Chem. pp. 2025–2028.
  11. Li, Z. S., Lv, X. J., Chen, Y. & Fu, W. F. (2014). Dyes Pigments, 105, 157–162.
  12. Liang, F., Lindsay, S. & Zhang, P. (2012). Org. Biomol. Chem. 10, 8654–8659. [DOI] [PMC free article] [PubMed]
  13. Liang, Y., Shi, L.-Q. & Yang, Z.-W. (2016). Acta Cryst. E72, 60–62. [DOI] [PMC free article] [PubMed]
  14. Matveeva, A. G., Baulina, T., Starikova, Z. A., Grigor’ev, M. S., Klemenkova, Z. S., Matveev, S. V., Leites, L. A., Aysin, R. R. & Nifant’ev, E. E. (2012). Inorg. Chim. Acta, 384, 266–274.
  15. Matveeva, A. G., Starikova, Z. A., Aysin, R. R., Skazov, R. S., Matveev, S. V., Timofeeva, G. I., Passechnik, M. P. & Nifant’ev, E. E. (2013). Polyhedron, 61, 172–180.
  16. Nakatani, K., Toda, M. & He, H. (2013). Bioorg. Med. Chem. Lett. 23, 558–561. [DOI] [PubMed]
  17. Quan, L., Chen, Y., Lv, X. J. & Fu, W. F. (2012). Chem. Eur. J. 18, 14599–14604. [DOI] [PubMed]
  18. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  19. Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Tang, W. H., Liu, Y. H., Peng, S. M. & Liu, S. T. (2015). J. Organomet. Chem. 775, 94–100.
  22. Wu, Y. Y., Chen, Y., Gou, G. Z., Mu, W. H., Lv, X. J., Du, M. L. & Fu, W.-F. (2012). Org. Lett. 14, 5226–5229. [DOI] [PubMed]
  23. Wu, Y. Y., Chen, Y., Mu, W. H., Lv, X. J. & Fu, W. F. (2013). J. Photochem. Photobiol. Chem. 272, 73–79.
  24. Yamazaki, H., Hakamata, T., Komi, M. & Yagi, M. (2011). J. Am. Chem. Soc. 133, 8846–8849. [DOI] [PubMed]
  25. Yu, M. M., Yuan, R. L., Shi, C. X., Zhou, W., Wei, L.-H. & Li, Z. X. (2013). Dyes Pigments, 99, 887–894.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019034/wm5334sup1.cif

e-73-00001-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019034/wm5334Isup2.hkl

e-73-00001-Isup2.hkl (202.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016019034/wm5334Isup3.cml

CCDC reference: 1519551

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES