Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 1;73(Pt 1):13–16. doi: 10.1107/S2056989016018934

Crystal structure of (6E,20E)-3,24-di­fluoro-13,14,28,29-tetra­hydro-5H,22H-tetra­benzo[e,j,p,u][1,4,12,15]tetra­oxa­cyclo­docosine-5,22-dione

Shaaban K Mohamed a, Mehmet Akkurt b, Farouq E Hawaiz c,*, Mzgin M Ayoob c, Eric Hosten d
PMCID: PMC5209760  PMID: 28083124

The conformation of the title compound is cone-shaped, partially determined by short intra­molecular C—H⋯O contacts. In the crystal, mol­ecules are linked via C—H⋯O and C—H⋯F hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional supra­molecular structure.

Keywords: crystal structure, cone-shaped conformation, hydrogen bonds, crown ether, supra­molecular compounds.

Abstract

The conformation of the title compound, C34H26F2O6, is cone-shaped, partially determined by intra­molecular C—H⋯O short contacts. The benzene rings at the top of the cone are inclined to one another by 73.10 (7)°, while the benzene rings at the bottom of the cone are inclined to one another by 35.49 (8)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional supra­molecular structure. There are also C—H⋯π contacts present within the framework structure.

Chemical context  

Macrocyclic compounds are known for their various applications, particularly in coordination chemistry (Delgado; 1995). The study of synthetic macrocyclic compounds is an important area of chemistry in view of their presence in many biologically significant naturally occurring metal complexes. Such compounds have received special attention because of their presence in many important biological systems such as metallo-porphyrins (for example haemoglobin, myoglobin, cytochromes, chloro­phylls), corrins (vitamin B12) and anti­biotics (valinomycin, nona­ctin) with anti­biotic, anti­fungal, anti­cancer and immunosuppressive activities as seen for erythromycin (McGuire et al., 1952; Woodward et al.; 1981), amphotericin B (Vandeputte et al., 1956; Nicolaou et al., 1988), epithilone B (Gerth et al., 1996; Bode & Carreira; 2001) and rapamycin (Vezina et al., 1975; Smith et al., 1997). In addition, macrocyclic compounds having ether linkages and chalcone moieties have important applications (Rina et al., 2012, Matsushima et al., 2001). In this context the title compound was prepared and herein we report on its synthesis and crystal structure.

Structural commentary  

The title compound, Fig. 1, has a cone-shaped conformation, partially determined by intra­molecular C—H⋯O short contacts (Table 1 and Fig. 1). The benzene rings at the top of the cone (C11–C16 and C31–C36) are inclined to one another by 73.10 (7)°, while the benzene rings at the bottom of the cone (C21–C26 and C41–C46) are inclined to one another by 35.49 (8)° (Fig. 2). The bond lengths and angles are similar to those observed in one of the starting materials for the synthesis of the title compound, viz. 2,2′-[ethane-1,2-diylbis(­oxy)]dibenzaldehyde (Aravindan et al., 2003; Zhang et al., 2003); both measured at room temperature. A low temperature (120 K) structure analysis of the same compound has also been reported (Akkurt et al., 2013).graphic file with name e-73-00013-scheme1.jpg

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, with atom labelling and 50% probability displacement ellipsoids. The short intra­molecular C—H⋯O contacts are shown as dashed lines (see Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4 0.95 2.35 2.7023 (16) 101
C9—H9⋯O1 0.95 2.40 2.7281 (16) 100
C4—H4⋯F2i 0.95 2.37 3.1387 (17) 138
C15—H15⋯O3ii 0.95 2.51 3.3211 (19) 143
C33—H33⋯F2iii 0.95 2.53 3.483 (2) 176
C34—H34⋯O6iv 0.95 2.51 3.3649 (17) 150
C36—H36⋯F2i 0.95 2.43 3.3380 (19) 161
C44—H44⋯O1v 0.95 2.58 3.4986 (18) 163
C46—H46⋯Cg3iii 0.95 2.84 3.6829 (16) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

A CPK model of the title compound, illustrating the cone-shaped conformation.

Supra­molecular features  

In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional supra­molecular structure (Fig. 3 and Table 1). There are also C—H⋯π inter­actions present, involving inversion-related mol­ecules, within the three-dimensional framework (Table 1).

Figure 3.

Figure 3

The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1), and for clarity only the H atoms involved in hydrogen bonding have been included.

Database survey  

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016) indicated the presence of the subunit 1,2-bis­(2-vinyl­phen­oxy)ethane in a number of macrocyclic-type compounds. However, no macrocyclic-type compounds were found containing the subunit 2,2′-[ethane-1,2-diylbis(­oxy)]dibenzaldehyde. The title compound, which contains both these subunits, is unique; no other reports of mol­ecules of this type were found.

Synthesis and crystallization  

The title compound has been synthesized by two methods, illustrated in Fig. 4.

Figure 4.

Figure 4

Reaction scheme.

Method ( a ): High-dilution method

A mixture of 2,2′-[ethane-1,2-diylbis(­oxy)]dibenzaldehyde (A) (67.6 mg; 0.25 mmol) and 1,1′-{(ethane-1,2-diylbis(­oxy)]bis­(5-fluoro-2,1-phenyl­ene)}bis­(ethan-1-one) (B) (83.6 mg; 0.25 mmol) was dissolved in a KOH solution (10%, 130–160 ml) in MeOH/H2O (3:1) and the mixture was refluxed for 6 h. The reaction mixture was left at room temperature with stirring for ca four days, then the solvent was reduced to nearly half volume under reduced pressure. The resulting precipitate was collected by filtration, dried and recrystallized from chloro­form/methanol solution (1:1) to give yellow block-shaped crystals, suitable for x-ray diffraction (yield 80%, m.p. 553–554 K).

Method ( b ): Ultrasound-assisted synthesis

Compound A (0.55 mmol, 0.15 gm) was dissolved in ethanol (5 ml) and added to a solution of compound B (0.55 mmol) in ethanol (5 ml), and solid NaOH (0.3 gm) was added to the mixture. The mixture was then irradiated in the water bath of an ultrasonic cleaner at room temperature for 20 min. The mixture solidified and the product was separated by filtration under vacuum, washed with ethanol, dried and purified by recrystallization from chloro­form solution (yield 74%). Single crystals were obtained by slow evaporation of a dilute solution of the title compound in chloro­form over 13 days at room temperature (m.p. 553–554 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–0.99 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C34H26F2O6
M r 568.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 16.2618 (7), 11.6708 (5), 14.7359 (7)
β (°) 96.945 (2)
V3) 2776.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.63 × 0.29 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.894, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 38582, 6911, 5302
R int 0.020
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.106, 1.01
No. of reflections 6911
No. of parameters 379
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.39

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXT2014/7 (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989016018934/su5336sup1.cif

e-73-00013-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016018934/su5336Isup2.hkl

e-73-00013-Isup2.hkl (549.2KB, hkl)

CCDC reference: 1519443

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the X-ray staff at Nelson Mandela Metropolitan University, South Africa for providing the X-ray data.

supplementary crystallographic information

Crystal data

C34H26F2O6 F(000) = 1184
Mr = 568.55 Dx = 1.360 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.2618 (7) Å Cell parameters from 9878 reflections
b = 11.6708 (5) Å θ = 2.5–28.2°
c = 14.7359 (7) Å µ = 0.10 mm1
β = 96.945 (2)° T = 200 K
V = 2776.2 (2) Å3 Block, yellow
Z = 4 0.63 × 0.29 × 0.15 mm

Data collection

Bruker APEXII CCD diffractometer 6911 independent reflections
Radiation source: sealed tube 5302 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
Detector resolution: 8.3333 pixels mm-1 θmax = 28.3°, θmin = 2.5°
φ and ω scans h = −21→20
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −15→15
Tmin = 0.894, Tmax = 1.000 l = −19→19
38582 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0392P)2 + 1.1029P] where P = (Fo2 + 2Fc2)/3
6911 reflections (Δ/σ)max < 0.001
379 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 −0.00518 (7) −0.16078 (10) 0.73153 (8) 0.0712 (3)
F2 0.30286 (7) 0.77217 (11) 0.36051 (9) 0.0823 (4)
O1 0.07789 (6) 0.21042 (8) 0.53657 (8) 0.0426 (2)
O2 0.12188 (7) 0.44266 (9) 0.50741 (7) 0.0479 (3)
O3 0.13697 (6) 0.63181 (11) 0.65378 (8) 0.0567 (3)
O4 0.45695 (6) 0.39443 (9) 0.59069 (6) 0.0389 (2)
O5 0.41025 (6) 0.24383 (8) 0.44309 (6) 0.0365 (2)
O6 0.23814 (6) −0.05205 (9) 0.57921 (8) 0.0473 (3)
C1 0.02059 (8) 0.30158 (12) 0.51429 (11) 0.0423 (3)
H1A 0.0096 0.3429 0.5703 0.051*
H1B −0.0325 0.2714 0.4835 0.051*
C2 0.05993 (9) 0.37973 (13) 0.45186 (11) 0.0433 (3)
H2A 0.0851 0.3349 0.4053 0.052*
H2B 0.0181 0.4324 0.4202 0.052*
C3 0.20104 (8) 0.60305 (12) 0.62506 (10) 0.0376 (3)
C4 0.27425 (8) 0.57029 (12) 0.68694 (10) 0.0388 (3)
H4 0.2730 0.5805 0.7507 0.047*
C5 0.34280 (8) 0.52688 (11) 0.65906 (9) 0.0335 (3)
H5 0.3429 0.5177 0.5950 0.040*
C6 0.51460 (8) 0.32791 (12) 0.54755 (10) 0.0368 (3)
H6A 0.5213 0.2511 0.5760 0.044*
H6B 0.5693 0.3661 0.5535 0.044*
C7 0.48031 (8) 0.31774 (12) 0.44922 (9) 0.0372 (3)
H7A 0.4638 0.3942 0.4242 0.045*
H7B 0.5228 0.2859 0.4135 0.045*
C8 0.26989 (8) 0.11337 (11) 0.44357 (9) 0.0337 (3)
H8 0.3169 0.0888 0.4834 0.040*
C9 0.19546 (8) 0.08387 (12) 0.46483 (9) 0.0352 (3)
H9 0.1477 0.1089 0.4264 0.042*
C10 0.18427 (8) 0.01401 (11) 0.54551 (9) 0.0336 (3)
C11 0.05441 (8) 0.11931 (11) 0.58468 (9) 0.0341 (3)
C12 0.10509 (8) 0.02187 (11) 0.58816 (9) 0.0321 (3)
C13 0.08374 (9) −0.07270 (12) 0.63846 (10) 0.0387 (3)
H13 0.1166 −0.1402 0.6413 0.046*
C14 0.01517 (10) −0.06726 (14) 0.68353 (10) 0.0454 (4)
C15 −0.03344 (9) 0.02861 (14) 0.68325 (11) 0.0468 (4)
H15 −0.0795 0.0305 0.7173 0.056*
C16 −0.01442 (9) 0.12229 (13) 0.63273 (10) 0.0421 (3)
H16 −0.0482 0.1889 0.6306 0.050*
C21 0.16576 (9) 0.52274 (13) 0.46597 (10) 0.0399 (3)
C22 0.20682 (8) 0.60381 (12) 0.52387 (10) 0.0352 (3)
C23 0.25285 (8) 0.68864 (13) 0.48752 (12) 0.0452 (4)
H23 0.2808 0.7455 0.5257 0.054*
C24 0.25707 (9) 0.68851 (16) 0.39503 (13) 0.0559 (5)
C25 0.21969 (11) 0.6085 (2) 0.33750 (12) 0.0684 (6)
H25 0.2256 0.6099 0.2742 0.082*
C26 0.17280 (11) 0.52466 (18) 0.37308 (11) 0.0607 (5)
H26 0.1454 0.4683 0.3339 0.073*
C31 0.41776 (8) 0.49208 (11) 0.71727 (9) 0.0329 (3)
C32 0.47646 (8) 0.42363 (11) 0.68041 (9) 0.0332 (3)
C33 0.54911 (8) 0.39044 (13) 0.73364 (10) 0.0393 (3)
H33 0.5881 0.3429 0.7085 0.047*
C34 0.56427 (9) 0.42722 (14) 0.82355 (10) 0.0442 (3)
H34 0.6142 0.4056 0.8597 0.053*
C35 0.50782 (10) 0.49464 (14) 0.86091 (10) 0.0455 (4)
H35 0.5188 0.5196 0.9225 0.055*
C36 0.43489 (9) 0.52605 (13) 0.80844 (10) 0.0409 (3)
H36 0.3957 0.5716 0.8350 0.049*
C41 0.35808 (8) 0.24427 (11) 0.36284 (9) 0.0333 (3)
C42 0.28472 (8) 0.18095 (11) 0.36335 (9) 0.0337 (3)
C43 0.22821 (9) 0.18261 (13) 0.28370 (10) 0.0429 (3)
H43 0.1776 0.1418 0.2828 0.051*
C44 0.24391 (10) 0.24171 (15) 0.20655 (11) 0.0503 (4)
H44 0.2045 0.2416 0.1534 0.060*
C45 0.31735 (11) 0.30101 (14) 0.20740 (11) 0.0501 (4)
H45 0.3289 0.3408 0.1542 0.060*
C46 0.37440 (9) 0.30306 (13) 0.28523 (10) 0.0419 (3)
H46 0.4246 0.3447 0.2854 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0696 (7) 0.0713 (7) 0.0754 (7) −0.0146 (6) 0.0193 (6) 0.0290 (6)
F2 0.0549 (6) 0.0891 (8) 0.1024 (9) −0.0128 (6) 0.0076 (6) 0.0586 (7)
O1 0.0308 (5) 0.0332 (5) 0.0649 (7) 0.0023 (4) 0.0108 (4) 0.0063 (5)
O2 0.0516 (6) 0.0491 (6) 0.0411 (6) −0.0208 (5) −0.0019 (5) 0.0028 (5)
O3 0.0340 (5) 0.0756 (8) 0.0623 (7) 0.0065 (5) 0.0129 (5) −0.0085 (6)
O4 0.0311 (5) 0.0489 (6) 0.0351 (5) 0.0073 (4) −0.0020 (4) −0.0084 (4)
O5 0.0345 (5) 0.0411 (5) 0.0330 (5) −0.0087 (4) 0.0010 (4) −0.0006 (4)
O6 0.0344 (5) 0.0437 (6) 0.0630 (7) 0.0062 (4) 0.0029 (5) 0.0083 (5)
C1 0.0292 (6) 0.0323 (7) 0.0637 (10) 0.0012 (5) −0.0018 (6) −0.0020 (6)
C2 0.0398 (7) 0.0360 (7) 0.0506 (8) −0.0017 (6) −0.0087 (6) −0.0006 (6)
C3 0.0306 (6) 0.0341 (7) 0.0485 (8) −0.0021 (5) 0.0063 (6) −0.0064 (6)
C4 0.0370 (7) 0.0429 (8) 0.0363 (7) −0.0010 (6) 0.0031 (5) −0.0087 (6)
C5 0.0341 (6) 0.0335 (7) 0.0324 (6) −0.0010 (5) 0.0019 (5) −0.0022 (5)
C6 0.0268 (6) 0.0379 (7) 0.0453 (8) 0.0013 (5) 0.0021 (5) −0.0061 (6)
C7 0.0329 (6) 0.0390 (7) 0.0408 (7) −0.0060 (6) 0.0087 (5) −0.0057 (6)
C8 0.0298 (6) 0.0342 (7) 0.0361 (7) −0.0005 (5) 0.0003 (5) −0.0046 (5)
C9 0.0303 (6) 0.0383 (7) 0.0364 (7) 0.0015 (5) 0.0009 (5) −0.0041 (6)
C10 0.0275 (6) 0.0322 (6) 0.0401 (7) −0.0028 (5) −0.0008 (5) −0.0046 (5)
C11 0.0288 (6) 0.0327 (6) 0.0401 (7) −0.0067 (5) 0.0013 (5) −0.0045 (5)
C12 0.0274 (6) 0.0345 (7) 0.0331 (6) −0.0046 (5) −0.0013 (5) −0.0036 (5)
C13 0.0373 (7) 0.0374 (7) 0.0393 (7) −0.0058 (6) −0.0032 (6) 0.0012 (6)
C14 0.0448 (8) 0.0500 (9) 0.0410 (8) −0.0150 (7) 0.0034 (6) 0.0065 (7)
C15 0.0398 (8) 0.0572 (9) 0.0453 (8) −0.0138 (7) 0.0129 (6) −0.0087 (7)
C16 0.0338 (7) 0.0408 (8) 0.0524 (9) −0.0051 (6) 0.0086 (6) −0.0122 (6)
C21 0.0343 (7) 0.0443 (8) 0.0395 (7) −0.0034 (6) −0.0021 (6) 0.0082 (6)
C22 0.0248 (6) 0.0350 (7) 0.0451 (7) 0.0041 (5) 0.0016 (5) 0.0059 (6)
C23 0.0299 (7) 0.0387 (8) 0.0661 (10) 0.0003 (6) 0.0020 (6) 0.0107 (7)
C24 0.0336 (7) 0.0656 (11) 0.0672 (11) −0.0028 (7) 0.0011 (7) 0.0377 (9)
C25 0.0500 (10) 0.1086 (16) 0.0438 (9) −0.0169 (10) −0.0062 (7) 0.0300 (10)
C26 0.0565 (10) 0.0842 (13) 0.0384 (8) −0.0195 (9) −0.0065 (7) 0.0085 (8)
C31 0.0329 (6) 0.0339 (6) 0.0314 (6) −0.0037 (5) 0.0021 (5) 0.0016 (5)
C32 0.0317 (6) 0.0343 (7) 0.0326 (6) −0.0045 (5) −0.0002 (5) 0.0012 (5)
C33 0.0315 (6) 0.0422 (8) 0.0426 (8) −0.0012 (6) −0.0016 (5) 0.0035 (6)
C34 0.0383 (7) 0.0506 (9) 0.0405 (8) −0.0078 (6) −0.0084 (6) 0.0112 (7)
C35 0.0506 (8) 0.0539 (9) 0.0304 (7) −0.0085 (7) −0.0025 (6) 0.0022 (6)
C36 0.0441 (8) 0.0448 (8) 0.0337 (7) −0.0022 (6) 0.0038 (6) −0.0022 (6)
C41 0.0344 (6) 0.0337 (6) 0.0315 (6) 0.0026 (5) 0.0029 (5) −0.0031 (5)
C42 0.0332 (6) 0.0338 (7) 0.0340 (7) 0.0021 (5) 0.0033 (5) −0.0037 (5)
C43 0.0355 (7) 0.0469 (8) 0.0442 (8) −0.0007 (6) −0.0036 (6) −0.0021 (6)
C44 0.0521 (9) 0.0539 (9) 0.0411 (8) 0.0043 (8) −0.0105 (7) 0.0036 (7)
C45 0.0602 (10) 0.0506 (9) 0.0383 (8) 0.0006 (8) 0.0010 (7) 0.0085 (7)
C46 0.0438 (8) 0.0429 (8) 0.0392 (7) −0.0038 (6) 0.0055 (6) 0.0021 (6)

Geometric parameters (Å, º)

F1—C14 1.3628 (18) C12—C13 1.3966 (19)
F2—C24 1.3632 (18) C13—C14 1.367 (2)
O1—C11 1.3581 (16) C13—H13 0.9500
O1—C1 1.4262 (16) C14—C15 1.370 (2)
O2—C21 1.3643 (17) C15—C16 1.379 (2)
O2—C2 1.4230 (17) C15—H15 0.9500
O3—C3 1.2183 (16) C16—H16 0.9500
O4—C32 1.3651 (16) C21—C26 1.388 (2)
O4—C6 1.4247 (16) C21—C22 1.390 (2)
O5—C41 1.3695 (15) C22—C23 1.387 (2)
O5—C7 1.4231 (15) C23—C24 1.373 (2)
O6—C10 1.2261 (16) C23—H23 0.9500
C1—C2 1.493 (2) C24—C25 1.355 (3)
C1—H1A 0.9900 C25—C26 1.382 (3)
C1—H1B 0.9900 C25—H25 0.9500
C2—H2A 0.9900 C26—H26 0.9500
C2—H2B 0.9900 C31—C36 1.3962 (19)
C3—C4 1.460 (2) C31—C32 1.4035 (19)
C3—C22 1.505 (2) C32—C33 1.3918 (18)
C4—C5 1.3338 (19) C33—C34 1.386 (2)
C4—H4 0.9500 C33—H33 0.9500
C5—C31 1.4608 (18) C34—C35 1.374 (2)
C5—H5 0.9500 C34—H34 0.9500
C6—C7 1.4931 (19) C35—C36 1.385 (2)
C6—H6A 0.9900 C35—H35 0.9500
C6—H6B 0.9900 C36—H36 0.9500
C7—H7A 0.9900 C41—C46 1.3867 (19)
C7—H7B 0.9900 C41—C42 1.4041 (18)
C8—C9 1.3317 (18) C42—C43 1.4006 (19)
C8—C42 1.4652 (19) C43—C44 1.380 (2)
C8—H8 0.9500 C43—H43 0.9500
C9—C10 1.471 (2) C44—C45 1.379 (2)
C9—H9 0.9500 C44—H44 0.9500
C10—C12 1.5022 (18) C45—C46 1.385 (2)
C11—C16 1.3955 (19) C45—H45 0.9500
C11—C12 1.4017 (19) C46—H46 0.9500
C11—O1—C1 119.15 (11) C14—C15—H15 120.6
C21—O2—C2 117.92 (11) C16—C15—H15 120.6
C32—O4—C6 118.67 (10) C15—C16—C11 120.02 (14)
C41—O5—C7 117.40 (10) C15—C16—H16 120.0
O1—C1—C2 106.30 (11) C11—C16—H16 120.0
O1—C1—H1A 110.5 O2—C21—C26 124.24 (14)
C2—C1—H1A 110.5 O2—C21—C22 115.48 (12)
O1—C1—H1B 110.5 C26—C21—C22 120.25 (14)
C2—C1—H1B 110.5 C23—C22—C21 119.38 (14)
H1A—C1—H1B 108.7 C23—C22—C3 119.20 (13)
O2—C2—C1 106.68 (12) C21—C22—C3 121.41 (12)
O2—C2—H2A 110.4 C24—C23—C22 118.46 (15)
C1—C2—H2A 110.4 C24—C23—H23 120.8
O2—C2—H2B 110.4 C22—C23—H23 120.8
C1—C2—H2B 110.4 C25—C24—F2 118.96 (17)
H2A—C2—H2B 108.6 C25—C24—C23 123.32 (15)
O3—C3—C4 121.47 (14) F2—C24—C23 117.70 (17)
O3—C3—C22 120.06 (13) C24—C25—C26 118.48 (17)
C4—C3—C22 118.44 (12) C24—C25—H25 120.8
C5—C4—C3 123.76 (13) C26—C25—H25 120.8
C5—C4—H4 118.1 C25—C26—C21 120.06 (17)
C3—C4—H4 118.1 C25—C26—H26 120.0
C4—C5—C31 126.44 (13) C21—C26—H26 120.0
C4—C5—H5 116.8 C36—C31—C32 117.91 (12)
C31—C5—H5 116.8 C36—C31—C5 122.77 (13)
O4—C6—C7 106.72 (10) C32—C31—C5 119.30 (12)
O4—C6—H6A 110.4 O4—C32—C33 123.95 (12)
C7—C6—H6A 110.4 O4—C32—C31 115.31 (11)
O4—C6—H6B 110.4 C33—C32—C31 120.74 (12)
C7—C6—H6B 110.4 C34—C33—C32 119.55 (14)
H6A—C6—H6B 108.6 C34—C33—H33 120.2
O5—C7—C6 108.18 (11) C32—C33—H33 120.2
O5—C7—H7A 110.1 C35—C34—C33 120.69 (13)
C6—C7—H7A 110.1 C35—C34—H34 119.7
O5—C7—H7B 110.1 C33—C34—H34 119.7
C6—C7—H7B 110.1 C34—C35—C36 119.78 (14)
H7A—C7—H7B 108.4 C34—C35—H35 120.1
C9—C8—C42 124.89 (12) C36—C35—H35 120.1
C9—C8—H8 117.6 C35—C36—C31 121.33 (14)
C42—C8—H8 117.6 C35—C36—H36 119.3
C8—C9—C10 122.56 (12) C31—C36—H36 119.3
C8—C9—H9 118.7 O5—C41—C46 123.62 (12)
C10—C9—H9 118.7 O5—C41—C42 115.56 (11)
O6—C10—C9 121.58 (12) C46—C41—C42 120.82 (12)
O6—C10—C12 118.40 (12) C43—C42—C41 117.39 (13)
C9—C10—C12 120.02 (11) C43—C42—C8 121.89 (12)
O1—C11—C16 122.60 (13) C41—C42—C8 120.70 (12)
O1—C11—C12 116.94 (11) C44—C43—C42 121.96 (14)
C16—C11—C12 120.39 (13) C44—C43—H43 119.0
C13—C12—C11 118.54 (12) C42—C43—H43 119.0
C13—C12—C10 117.03 (12) C45—C44—C43 119.33 (14)
C11—C12—C10 124.34 (12) C45—C44—H44 120.3
C14—C13—C12 119.41 (14) C43—C44—H44 120.3
C14—C13—H13 120.3 C44—C45—C46 120.58 (15)
C12—C13—H13 120.3 C44—C45—H45 119.7
F1—C14—C13 118.59 (15) C46—C45—H45 119.7
F1—C14—C15 118.66 (14) C45—C46—C41 119.89 (14)
C13—C14—C15 122.75 (14) C45—C46—H46 120.1
C14—C15—C16 118.84 (14) C41—C46—H46 120.1
C11—O1—C1—C2 −172.73 (12) C4—C3—C22—C21 109.61 (15)
C21—O2—C2—C1 −178.45 (12) C21—C22—C23—C24 −0.8 (2)
O1—C1—C2—O2 −75.81 (14) C3—C22—C23—C24 −179.61 (13)
O3—C3—C4—C5 172.72 (15) C22—C23—C24—C25 −1.2 (2)
C22—C3—C4—C5 −8.9 (2) C22—C23—C24—F2 −179.71 (13)
C3—C4—C5—C31 −179.75 (13) F2—C24—C25—C26 −179.42 (17)
C32—O4—C6—C7 −175.40 (11) C23—C24—C25—C26 2.1 (3)
C41—O5—C7—C6 164.74 (11) C24—C25—C26—C21 −0.9 (3)
O4—C6—C7—O5 −71.01 (14) O2—C21—C26—C25 −179.07 (16)
C42—C8—C9—C10 178.86 (12) C22—C21—C26—C25 −1.0 (3)
C8—C9—C10—O6 −25.3 (2) C4—C5—C31—C36 −16.4 (2)
C8—C9—C10—C12 155.24 (13) C4—C5—C31—C32 165.00 (14)
C1—O1—C11—C16 −16.33 (19) C6—O4—C32—C33 −1.32 (19)
C1—O1—C11—C12 166.75 (12) C6—O4—C32—C31 178.13 (12)
O1—C11—C12—C13 178.80 (11) C36—C31—C32—O4 −179.10 (12)
C16—C11—C12—C13 1.80 (19) C5—C31—C32—O4 −0.44 (18)
O1—C11—C12—C10 2.40 (19) C36—C31—C32—C33 0.4 (2)
C16—C11—C12—C10 −174.60 (12) C5—C31—C32—C33 179.02 (12)
O6—C10—C12—C13 −23.85 (18) O4—C32—C33—C34 178.22 (13)
C9—C10—C12—C13 155.65 (12) C31—C32—C33—C34 −1.2 (2)
O6—C10—C12—C11 152.60 (13) C32—C33—C34—C35 0.9 (2)
C9—C10—C12—C11 −27.90 (18) C33—C34—C35—C36 0.2 (2)
C11—C12—C13—C14 −0.82 (19) C34—C35—C36—C31 −1.0 (2)
C10—C12—C13—C14 175.85 (12) C32—C31—C36—C35 0.8 (2)
C12—C13—C14—F1 179.36 (13) C5—C31—C36—C35 −177.86 (14)
C12—C13—C14—C15 −1.3 (2) C7—O5—C41—C46 6.93 (19)
F1—C14—C15—C16 −178.23 (13) C7—O5—C41—C42 −172.61 (11)
C13—C14—C15—C16 2.5 (2) O5—C41—C42—C43 177.69 (12)
C14—C15—C16—C11 −1.4 (2) C46—C41—C42—C43 −1.9 (2)
O1—C11—C16—C15 −177.51 (13) O5—C41—C42—C8 −4.12 (18)
C12—C11—C16—C15 −0.7 (2) C46—C41—C42—C8 176.32 (13)
C2—O2—C21—C26 −20.2 (2) C9—C8—C42—C43 −26.3 (2)
C2—O2—C21—C22 161.70 (13) C9—C8—C42—C41 155.60 (13)
O2—C21—C22—C23 −179.87 (12) C41—C42—C43—C44 1.4 (2)
C26—C21—C22—C23 1.9 (2) C8—C42—C43—C44 −176.79 (14)
O2—C21—C22—C3 −1.14 (19) C42—C43—C44—C45 0.1 (2)
C26—C21—C22—C3 −179.34 (15) C43—C44—C45—C46 −1.0 (3)
O3—C3—C22—C23 106.71 (16) C44—C45—C46—C41 0.6 (2)
C4—C3—C22—C23 −71.66 (17) O5—C41—C46—C45 −178.58 (14)
O3—C3—C22—C21 −72.03 (19) C42—C41—C46—C45 0.9 (2)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C31–C36 ring.

D—H···A D—H H···A D···A D—H···A
C5—H5···O4 0.95 2.35 2.7023 (16) 101
C9—H9···O1 0.95 2.40 2.7281 (16) 100
C4—H4···F2i 0.95 2.37 3.1387 (17) 138
C15—H15···O3ii 0.95 2.51 3.3211 (19) 143
C33—H33···F2iii 0.95 2.53 3.483 (2) 176
C34—H34···O6iv 0.95 2.51 3.3649 (17) 150
C36—H36···F2i 0.95 2.43 3.3380 (19) 161
C44—H44···O1v 0.95 2.58 3.4986 (18) 163
C46—H46···Cg3iii 0.95 2.84 3.6829 (16) 149

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, y−1/2, −z+3/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y+1/2, −z+3/2; (v) x, −y+1/2, z−1/2.

References

  1. Akkurt, M., Mohamed, S. K., Horton, P. N., Abdel-Raheem, E. M. M. & Albayati, M. R. (2013). Acta Cryst. E69, o1260. [DOI] [PMC free article] [PubMed]
  2. Aravindan, P. G., Yogavel, M., Thirumavalavan, M., Akilan, P., Velmurugan, D., Kandaswamy, M., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o806–o807. [DOI] [PubMed]
  3. Bode, J. W. & Carreira, E. M. (2001). J. Org. Chem. 66, 6410–6424. [DOI] [PubMed]
  4. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Delgado, R. (1995). Revista Portuguesa de Química, 2, 18–29.
  6. Gerth, K., Bedorf, N., HÖfle, G., Irschik, H. & Reichenbach, H. (1996). J. Antibiot. 49, 560–563. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Matsushima, R., Fujimoto, S. & Tokumura, K. (2001). Bull. Chem. Soc. Jpn, 74, 827–832.
  9. McGuire, J. M., Bunch, R. L., Anderson, R. C., Boaz, H. E., Flynn, E. H., Powell, H. M. & Smith, J. W. (1952). Antibiot. Chemother. 2, 281–283. [PubMed]
  10. Nicolaou, K. C., Daines, O. Y., Ogawa, Y. & Chakraborty, T. K. (1988). J. Am. Chem. Soc. 110, 4696–4705.
  11. Rina, M., Mandal, T. K., Asok, K. & Mallik, A. K. (2012). ARKIVOC (ix). pp. 95-110.
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Smith, A. B., Condon, S. M., McCauley, J. A., Leazer, J. L., Leahy, J. W. & Maleczka, R. E. (1997). J. Am. Chem. Soc. 119, 962–973.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Vandeputte, J., Wachtel, J. L. & Stiller, E. T. (1956). Antibiot. Annu. 587–591. [PubMed]
  17. Vézina, C., Kudelski, A. & Sehgal, S. N. (1975). J. Antibiot. 28, 721–726. [DOI] [PubMed]
  18. Woodward, R. B., Logusch, E., Nambiar, K. P., Sakan, K., Ward, D. E., Au-Yeung, B. W., Balaram, P., Browne, L. J., Card, P. J. & Chen, C. H. (1981). J. Am. Chem. Soc. 103, 3215–3217.
  19. Zhang, J., Han, Q., Yang, X., Xu, X. & Wang, X. (2003). Nanjing Ligong Daxue Xuebao, 27, 128.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989016018934/su5336sup1.cif

e-73-00013-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016018934/su5336Isup2.hkl

e-73-00013-Isup2.hkl (549.2KB, hkl)

CCDC reference: 1519443

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES