Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 1;73(Pt 1):17–19. doi: 10.1107/S2056989016019253

Crystal structure of {(S)-1-phenyl-N,N-bis­[(pyridin-2-yl)meth­yl]ethanamine-κ3 N,N′,N′′}bis­(thio­cyanato-κN)zinc from synchrotron data

Dong Won Lee a, Jong Won Shin a,*
PMCID: PMC5209761  PMID: 28083125

The ZnII ion in the title compound shows a distorted square-pyramidal coordination geometry with three N atoms of the chiral S-ppme ligand and two N atoms of the thio­cyanate anions. In the crystal, mol­ecules are connected by hydrogen bonds and π–π inter­actions, forming a two-dimensional supra­molecular network parallel to the bc plane.

Keywords: crystal structure, chiral ligand, sodium thio­cyanate, π–π inter­actions, synchrotron data

Abstract

The title ZnII complex, [Zn(NCS)2(C20H21N3)], has been characterized by synchrotron single-crystal diffraction and FT–IR spectroscopy. The central ZnII ion has a distorted square-pyramidal coordination geometry, with three N atoms of the chiral (S) 1-phenyl-N,N-bis­[(pyridin-2-yl)meth­yl]ethanamine (S-ppme) ligand and one N atom of a thio­cyanate anion in the equatorial plane, and one N atom of another thio­cyanate anion at the apical position. The average Zn—NS-ppme and Zn—NNCS bond lengths are 2.183 (2) and 1.986 (2) Å, respectively. In the crystal, inter­molecular C—H⋯S hydrogen bonds and a face-to-face π–π inter­action [centroid–centroid distance = 3.482 (1) Å] link the mol­ecules and give rise to a supra­molecular sheet structure parallel to the ac plane.

Chemical context  

Recently, the preparation of new polyamines or their derivatives have attracted increasing attention in organic chemistry, pharmaceutical chemistry and materials science because they can easily inter­act with metal ions and form stable multifunctional compounds with various applications in magnetic materials, sorption materials, as well as fluorescent substances (Lodeiro & Pina, 2009; Nowicka et al., 2011; Yao et al., 2015). For instance, metal complexes with cyclam or aza­macrocyclic ligands have been synthesized and investigated for selective adsorption of CO2 over N2 gases (Huang et al., 2013). In particular, chiral derivatives based on polyamine ligands can easily form chiral metal complexes with inter­esting properties, such as chiral recognition or as asymmetric catalysts. For example, the chiral two-dimensional coordination polymer, [Ni(L R,R)]3[C6H3(COO)3]2·12H2O·CH3CN {L R,R is 1,8-bis[(R)-α-methyl­benz­yl]-1,3,6,8,10,13-hexa­aza­cyclo­tetra­deca­ne}, showed an efficient chiral recognition for rac-1,1′-bi-2-naphthol (Ryoo et al., 2010). Moreover, a chiral iron(III) complex containing binol derivatives exhibited high enanti­o­selectivity and high yield for the enanti­opure β-amino alcohols (Tak et al., 2016). Nevertheless, only a few of these complexes have been reported and characterized because the preparation of these complexes remains a major challenge in synthetic chemistry and materials science (Gu et al., 2016). The thio­cyanate ion is a versatile anion which can bridge to metal ions through the S or N atom, thus allowing the assembly of supra­molecular compounds (Nawrot et al., 2016). We report here the preparation and crystal structure of a chiral zinc complex constructed from the versatile tridentate chiral ligand (S)-1-phenyl-N,N-bis­[(pyridin-2-yl)meth­yl]ethanamine (S-ppme) and the thio­cyanate ion, namely [Zn(NCS)2(S-ppme)].graphic file with name e-73-00017-scheme1.jpg

Structural commentary  

A view of the mol­ecular structure of the title compound is shown in Fig. 1. The coordination environment of the ZnII ion can be described as distorted square pyramidal. The ZnII ion is coordinated by three N atoms from the chiral S-ppme ligand and by two N atoms of thio­cyanate ions. The thio­cyanate ions coordinate through the N atoms in cis positions with respect to each other and are trans to the phenyl group of the chiral S-ppme ligand. The coordinating thio­cyanate ions are linear but slightly bent in relation to the ZnII ion [N4—C21—S1 = 179.9 (1)°, N5—C22—S2 = 178.5 (4)°, Zn1—N4—C21 = 171.6 (4)° and Zn1—N5—C22 = 170.3 (4)°]. The bond angle between the thio­cyanate ions is 101.43 (2)°. The average N≡C and C—S bond lengths of the thio­cyanate ions are 1.158 (4) and 1.629 (6) Å, respectively, which implies that both thio­cyanate ions are not delocalized. The former is very similar to the C≡N triple-bond length, while the latter is slightly shorter than reported C—S single-bond length (Hashem et al., 2014). The pyridine rings of the S-ppme ligand are twisted with respect to each other. The average Zn—NS-ppme and Zn—NNCS bond lengths are 2.183 (2) and 1.986 (2) Å, respectively. The bond angles around the ZnII ion range from 73.99 (1) to 156.01 (1)°.

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability.

Supra­molecular features  

The thio­cyanate ligands form inter­molecular C—H⋯S hydrogen bonds with adjacent pyridine groups of the chiral S-ppme ligand, giving rise to a sheet structure parallel to the ac plane (Fig. 2 and Table 1) (Steed & Atwood, 2009). In the sheet, adjacent C8–C12/N3 pyridine rings of chiral S-ppme ligands are also linked through a face-to-face π–π inter­action, with a centroid–centroid distance of 3.482 (1) Å and a dihedral angle of 2.947 (1)°.

Figure 2.

Figure 2

A view of the crystal-packing structure for the title compound, showing the C—H⋯S hydrogen bonds (sky-blue dashed lines) and π–π inter­actions (black dashed lines).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S2i 0.95 2.77 3.604 (5) 147
C11—H11⋯S1ii 0.95 2.80 3.738 (5) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (Version 5.37, February 2016 with two updates; Groom et al., 2016) gives three copper(II) complexes with the same chiral S-ppme ligand (Rowthu et al., 2011; Woo et al., 2011) for which syntheses, magnetic properties and crystal structures have been reported.

Synthesis and crystallization  

The chiral S-ppme ligand was prepared according to a slight modification of the method of Rowthu et al. (2011). A methanol solution (5 mL) of KNCS (0.078 g, 0.80 mmol) was added slowly to a methanol solution (15 mL) containing ZnSO4·7H2O (0.115 g, 0.40 mmol). The mixture was stirred for 20 min and the the formed white precipitates were eliminated by filtration. A solution of the chiral S-ppme (0.121 g, 0.40 mmol) in MeOH (10 mL) was added slowly to the filtered solution with vigorous stirring at room temperature. The resulting pale-yellow precipitates were collected by filtration, washed with methanol and diethyl ether, and dried in air. Single crystals were obtained by slow evaporation from methanol solution for a period of several days (yield: 0.123 g, 64%). FT–IR (KBr, cm−1): 3102, 3029, 2995, 2910, 2056, 1606.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95–0.99 Å and U iso(H) values of 1.2 or 1.5U eq of the parent atoms.

Table 2. Experimental details.

Crystal data
Chemical formula [Zn(NCS)2(C20H21N3)]
M r 484.93
Crystal system, space group Monoclinic, C2
Temperature (K) 100
a, b, c (Å) 19.270 (4), 7.7950 (16), 14.834 (3)
β (°) 91.71 (3)
V3) 2227.2 (8)
Z 4
Radiation type Synchrotron, λ = 0.630 Å
μ (mm−1) 0.94
Crystal size (mm) 0.10 × 0.04 × 0.02
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
T min, T max 0.912, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 11189, 6035, 5123
R int 0.048
(sin θ/λ)max−1) 0.696
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.093, 0.99
No. of reflections 6035
No. of parameters 272
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −1.03
Absolute structure Flack x determined using 2026 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.010 (6)

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019253/is5466sup1.cif

e-73-00017-sup1.cif (520.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019253/is5466Isup2.hkl

e-73-00017-Isup2.hkl (479.9KB, hkl)

CCDC reference: 1520395

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray crystallography BL2D-SMC beamline at the PLS-II were supported in part by MSIP and POSTECH.

supplementary crystallographic information

Crystal data

[Zn(NCS)2(C20H21N3)] F(000) = 1000
Mr = 484.93 Dx = 1.446 Mg m3
Monoclinic, C2 Synchrotron radiation, λ = 0.630 Å
a = 19.270 (4) Å Cell parameters from 32924 reflections
b = 7.7950 (16) Å θ = 0.4–33.6°
c = 14.834 (3) Å µ = 0.94 mm1
β = 91.71 (3)° T = 100 K
V = 2227.2 (8) Å3 Needle, colorless
Z = 4 0.10 × 0.04 × 0.02 mm

Data collection

ADSC Q210 CCD area detector diffractometer 5123 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnet Rint = 0.048
ω scan θmax = 26.0°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997) h = −26→26
Tmin = 0.912, Tmax = 0.981 k = −10→10
11189 measured reflections l = −20→20
6035 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0509P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093 (Δ/σ)max < 0.001
S = 0.99 Δρmax = 0.35 e Å3
6035 reflections Δρmin = −1.03 e Å3
272 parameters Absolute structure: Flack x determined using 2026 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.010 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.46128 (2) 0.33954 (6) 0.76988 (3) 0.01920 (11)
N1 0.52691 (16) 0.5093 (4) 0.8331 (2) 0.0213 (7)
N2 0.40589 (15) 0.6204 (4) 0.7503 (2) 0.0165 (7)
N3 0.43224 (14) 0.3562 (5) 0.6353 (2) 0.0199 (6)
C1 0.5905 (2) 0.4552 (6) 0.8617 (3) 0.0287 (9)
H1 0.6043 0.3414 0.8480 0.034*
C2 0.6357 (2) 0.5585 (7) 0.9097 (3) 0.0331 (10)
H2 0.6797 0.5161 0.9298 0.040*
C3 0.6165 (2) 0.7254 (7) 0.9286 (3) 0.0306 (10)
H3 0.6474 0.7999 0.9606 0.037*
C4 0.5509 (2) 0.7824 (6) 0.8998 (3) 0.0254 (9)
H4 0.5362 0.8960 0.9126 0.030*
C5 0.50773 (19) 0.6714 (6) 0.8525 (3) 0.0198 (8)
C6 0.4348 (2) 0.7272 (5) 0.8232 (3) 0.0232 (8)
H6A 0.4042 0.7208 0.8755 0.028*
H6B 0.4360 0.8480 0.8028 0.028*
C7 0.44001 (19) 0.6585 (6) 0.6647 (3) 0.0194 (7)
H7A 0.4905 0.6735 0.6761 0.023*
H7B 0.4212 0.7666 0.6388 0.023*
C8 0.42740 (19) 0.5140 (5) 0.5994 (3) 0.0188 (8)
C9 0.4133 (2) 0.5404 (7) 0.5076 (3) 0.0277 (10)
H9 0.4107 0.6529 0.4831 0.033*
C10 0.4032 (2) 0.3974 (7) 0.4533 (3) 0.0360 (13)
H10 0.3938 0.4108 0.3905 0.043*
C11 0.4069 (2) 0.2344 (7) 0.4910 (3) 0.0360 (13)
H11 0.3991 0.1356 0.4546 0.043*
C12 0.4220 (2) 0.2182 (6) 0.5822 (3) 0.0282 (10)
H12 0.4252 0.1069 0.6081 0.034*
C13 0.32788 (18) 0.6288 (5) 0.7383 (3) 0.0188 (8)
H13 0.3149 0.5409 0.6917 0.023*
C14 0.30213 (18) 0.8003 (5) 0.7011 (3) 0.0184 (8)
C15 0.2898 (2) 0.9419 (5) 0.7561 (3) 0.0238 (8)
H15 0.2977 0.9328 0.8194 0.029*
C16 0.2663 (2) 1.0954 (6) 0.7194 (3) 0.0286 (10)
H16 0.2576 1.1899 0.7579 0.034*
C17 0.2554 (2) 1.1123 (5) 0.6272 (3) 0.0258 (9)
H17 0.2394 1.2179 0.6024 0.031*
C18 0.2679 (2) 0.9745 (6) 0.5717 (3) 0.0272 (9)
H18 0.2616 0.9858 0.5083 0.033*
C19 0.28976 (18) 0.8195 (6) 0.6087 (3) 0.0221 (8)
H19 0.2964 0.7241 0.5701 0.027*
C20 0.2913 (2) 0.5759 (6) 0.8239 (3) 0.0253 (9)
H20A 0.2982 0.6648 0.8700 0.038*
H20B 0.3107 0.4672 0.8462 0.038*
H20C 0.2415 0.5619 0.8104 0.038*
N4 0.53102 (18) 0.1463 (5) 0.7434 (3) 0.0299 (8)
C21 0.5672 (2) 0.0390 (5) 0.7176 (3) 0.0210 (8)
S1 0.61788 (5) −0.11203 (13) 0.68120 (7) 0.0269 (2)
N5 0.40467 (18) 0.2318 (5) 0.8601 (3) 0.0267 (8)
S2 0.31745 (6) 0.13587 (16) 0.99713 (8) 0.0303 (3)
C22 0.3691 (2) 0.1913 (5) 0.9177 (3) 0.0220 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.01633 (18) 0.0166 (2) 0.0249 (2) 0.0000 (2) 0.00448 (14) 0.0002 (2)
N1 0.0170 (15) 0.0190 (17) 0.0276 (17) 0.0002 (14) −0.0009 (13) 0.0016 (13)
N2 0.0123 (13) 0.0154 (16) 0.0221 (16) −0.0017 (12) 0.0027 (12) −0.0035 (12)
N3 0.0122 (12) 0.0209 (17) 0.0270 (15) 0.0012 (16) 0.0053 (11) −0.0060 (15)
C1 0.0173 (18) 0.029 (2) 0.039 (2) 0.0041 (18) −0.0019 (17) 0.0042 (19)
C2 0.0173 (19) 0.039 (3) 0.043 (3) −0.003 (2) −0.0062 (18) 0.004 (2)
C3 0.027 (2) 0.040 (3) 0.025 (2) −0.012 (2) −0.0027 (17) 0.0042 (19)
C4 0.0291 (19) 0.026 (2) 0.0212 (19) −0.0066 (18) 0.0015 (15) 0.0004 (15)
C5 0.0170 (17) 0.021 (2) 0.0212 (18) −0.0035 (17) 0.0021 (14) 0.0012 (15)
C6 0.0206 (18) 0.022 (2) 0.027 (2) 0.0001 (17) 0.0027 (15) −0.0061 (16)
C7 0.0145 (16) 0.0213 (19) 0.0226 (18) 0.0009 (16) 0.0041 (14) 0.0029 (16)
C8 0.0103 (16) 0.025 (2) 0.0217 (19) 0.0004 (16) 0.0050 (14) −0.0006 (16)
C9 0.0163 (18) 0.044 (3) 0.023 (2) 0.005 (2) 0.0043 (15) 0.0002 (19)
C10 0.0156 (17) 0.069 (4) 0.024 (2) 0.001 (2) 0.0044 (15) −0.011 (2)
C11 0.020 (2) 0.053 (4) 0.036 (3) −0.004 (2) 0.0055 (19) −0.026 (2)
C12 0.018 (2) 0.027 (2) 0.040 (3) 0.0004 (19) 0.0066 (17) −0.009 (2)
C13 0.0138 (16) 0.0162 (19) 0.027 (2) 0.0018 (15) 0.0036 (14) −0.0021 (15)
C14 0.0110 (14) 0.016 (2) 0.0280 (19) 0.0010 (14) 0.0021 (13) −0.0027 (14)
C15 0.0221 (19) 0.021 (2) 0.029 (2) 0.0023 (18) 0.0022 (15) −0.0063 (17)
C16 0.026 (2) 0.023 (2) 0.037 (2) 0.0081 (19) −0.0006 (18) −0.0068 (18)
C17 0.0190 (19) 0.021 (2) 0.037 (2) 0.0048 (17) −0.0008 (17) 0.0020 (17)
C18 0.0201 (19) 0.031 (2) 0.030 (2) 0.0104 (19) −0.0016 (16) 0.0013 (18)
C19 0.0171 (15) 0.021 (2) 0.0277 (18) 0.0029 (18) −0.0016 (13) −0.0064 (18)
C20 0.0179 (17) 0.027 (2) 0.031 (2) 0.0028 (18) 0.0079 (15) 0.0043 (18)
N4 0.0291 (18) 0.027 (2) 0.034 (2) 0.0080 (17) 0.0060 (16) 0.0060 (16)
C21 0.0214 (18) 0.020 (2) 0.0216 (18) 0.0018 (17) 0.0034 (14) 0.0026 (15)
S1 0.0247 (5) 0.0236 (6) 0.0326 (5) 0.0079 (4) 0.0072 (4) 0.0012 (4)
N5 0.0260 (18) 0.0229 (18) 0.0316 (19) −0.0019 (15) 0.0071 (14) 0.0042 (15)
S2 0.0287 (5) 0.0326 (6) 0.0300 (6) −0.0088 (5) 0.0087 (4) 0.0029 (5)
C22 0.0219 (18) 0.0156 (19) 0.028 (2) −0.0021 (17) −0.0032 (15) 0.0011 (16)

Geometric parameters (Å, º)

Zn1—N5 1.942 (3) C9—H9 0.9500
Zn1—N1 2.039 (3) C10—C11 1.389 (8)
Zn1—N3 2.061 (3) C10—H10 0.9500
Zn1—N4 2.064 (4) C11—C12 1.381 (7)
Zn1—N2 2.449 (3) C11—H11 0.9500
N1—C5 1.350 (5) C12—H12 0.9500
N1—C1 1.352 (5) C13—C14 1.524 (5)
N2—C6 1.461 (5) C13—C20 1.526 (5)
N2—C7 1.478 (5) C13—H13 1.0000
N2—C13 1.510 (5) C14—C19 1.392 (5)
N3—C8 1.342 (6) C14—C15 1.397 (5)
N3—C12 1.344 (6) C15—C16 1.385 (6)
C1—C2 1.370 (7) C15—H15 0.9500
C1—H1 0.9500 C16—C17 1.384 (6)
C2—C3 1.383 (7) C16—H16 0.9500
C2—H2 0.9500 C17—C18 1.378 (6)
C3—C4 1.394 (6) C17—H17 0.9500
C3—H3 0.9500 C18—C19 1.387 (6)
C4—C5 1.378 (6) C18—H18 0.9500
C4—H4 0.9500 C19—H19 0.9500
C5—C6 1.523 (5) C20—H20A 0.9800
C6—H6A 0.9900 C20—H20B 0.9800
C6—H6B 0.9900 C20—H20C 0.9800
C7—C8 1.500 (6) N4—C21 1.160 (5)
C7—H7A 0.9900 C21—S1 1.633 (4)
C7—H7B 0.9900 N5—C22 1.155 (5)
C8—C9 1.397 (6) S2—C22 1.624 (4)
C9—C10 1.385 (7)
N5—Zn1—N1 108.46 (15) N3—C8—C9 122.1 (4)
N5—Zn1—N3 123.55 (14) N3—C8—C7 115.1 (4)
N1—Zn1—N3 123.46 (14) C9—C8—C7 122.8 (4)
N5—Zn1—N4 101.43 (15) C10—C9—C8 117.9 (5)
N1—Zn1—N4 99.36 (15) C10—C9—H9 121.1
N3—Zn1—N4 91.21 (14) C8—C9—H9 121.1
N5—Zn1—N2 102.49 (13) C9—C10—C11 119.9 (4)
N1—Zn1—N2 74.73 (12) C9—C10—H10 120.1
N3—Zn1—N2 73.99 (13) C11—C10—H10 120.1
N4—Zn1—N2 156.01 (13) C12—C11—C10 119.0 (5)
C5—N1—C1 118.4 (4) C12—C11—H11 120.5
C5—N1—Zn1 122.4 (3) C10—C11—H11 120.5
C1—N1—Zn1 119.1 (3) N3—C12—C11 121.6 (5)
C6—N2—C7 110.6 (3) N3—C12—H12 119.2
C6—N2—C13 114.7 (3) C11—C12—H12 119.2
C7—N2—C13 110.9 (3) N2—C13—C14 113.1 (3)
C6—N2—Zn1 105.5 (2) N2—C13—C20 111.9 (3)
C7—N2—Zn1 94.5 (2) C14—C13—C20 112.6 (3)
C13—N2—Zn1 118.8 (2) N2—C13—H13 106.2
C8—N3—C12 119.6 (4) C14—C13—H13 106.2
C8—N3—Zn1 117.1 (3) C20—C13—H13 106.2
C12—N3—Zn1 123.2 (3) C19—C14—C15 117.6 (4)
N1—C1—C2 122.4 (4) C19—C14—C13 119.7 (4)
N1—C1—H1 118.8 C15—C14—C13 122.7 (4)
C2—C1—H1 118.8 C16—C15—C14 120.8 (4)
C1—C2—C3 119.2 (4) C16—C15—H15 119.6
C1—C2—H2 120.4 C14—C15—H15 119.6
C3—C2—H2 120.4 C17—C16—C15 120.6 (4)
C2—C3—C4 118.9 (4) C17—C16—H16 119.7
C2—C3—H3 120.5 C15—C16—H16 119.7
C4—C3—H3 120.5 C18—C17—C16 119.5 (4)
C5—C4—C3 118.9 (4) C18—C17—H17 120.3
C5—C4—H4 120.5 C16—C17—H17 120.3
C3—C4—H4 120.5 C17—C18—C19 119.9 (4)
N1—C5—C4 122.1 (4) C17—C18—H18 120.0
N1—C5—C6 117.6 (4) C19—C18—H18 120.0
C4—C5—C6 120.3 (4) C18—C19—C14 121.6 (4)
N2—C6—C5 112.1 (3) C18—C19—H19 119.2
N2—C6—H6A 109.2 C14—C19—H19 119.2
C5—C6—H6A 109.2 C13—C20—H20A 109.5
N2—C6—H6B 109.2 C13—C20—H20B 109.5
C5—C6—H6B 109.2 H20A—C20—H20B 109.5
H6A—C6—H6B 107.9 C13—C20—H20C 109.5
N2—C7—C8 109.6 (3) H20A—C20—H20C 109.5
N2—C7—H7A 109.7 H20B—C20—H20C 109.5
C8—C7—H7A 109.7 C21—N4—Zn1 171.6 (4)
N2—C7—H7B 109.7 N4—C21—S1 179.9 (5)
C8—C7—H7B 109.7 C22—N5—Zn1 170.3 (4)
H7A—C7—H7B 108.2 N5—C22—S2 178.5 (4)
C5—N1—C1—C2 0.3 (6) N3—C8—C9—C10 0.9 (6)
Zn1—N1—C1—C2 −175.7 (4) C7—C8—C9—C10 179.3 (3)
N1—C1—C2—C3 −1.2 (7) C8—C9—C10—C11 0.4 (6)
C1—C2—C3—C4 1.4 (7) C9—C10—C11—C12 −1.3 (6)
C2—C3—C4—C5 −0.8 (6) C8—N3—C12—C11 0.4 (5)
C1—N1—C5—C4 0.3 (6) Zn1—N3—C12—C11 −175.8 (3)
Zn1—N1—C5—C4 176.2 (3) C10—C11—C12—N3 0.9 (7)
C1—N1—C5—C6 −177.4 (4) C6—N2—C13—C14 70.2 (4)
Zn1—N1—C5—C6 −1.5 (5) C7—N2—C13—C14 −56.0 (4)
C3—C4—C5—N1 0.0 (6) Zn1—N2—C13—C14 −163.8 (2)
C3—C4—C5—C6 177.7 (4) C6—N2—C13—C20 −58.3 (4)
C7—N2—C6—C5 −72.5 (4) C7—N2—C13—C20 175.5 (3)
C13—N2—C6—C5 161.1 (3) Zn1—N2—C13—C20 67.7 (4)
Zn1—N2—C6—C5 28.5 (4) N2—C13—C14—C19 94.8 (4)
N1—C5—C6—N2 −21.4 (5) C20—C13—C14—C19 −137.1 (4)
C4—C5—C6—N2 160.8 (3) N2—C13—C14—C15 −85.5 (4)
C6—N2—C7—C8 161.8 (3) C20—C13—C14—C15 42.7 (5)
C13—N2—C7—C8 −69.7 (4) C19—C14—C15—C16 −0.1 (6)
Zn1—N2—C7—C8 53.4 (3) C13—C14—C15—C16 −179.9 (4)
C12—N3—C8—C9 −1.3 (5) C14—C15—C16—C17 −0.9 (7)
Zn1—N3—C8—C9 175.1 (3) C15—C16—C17—C18 0.2 (7)
C12—N3—C8—C7 −179.8 (3) C16—C17—C18—C19 1.5 (6)
Zn1—N3—C8—C7 −3.4 (4) C17—C18—C19—C14 −2.5 (6)
N2—C7—C8—N3 −41.4 (4) C15—C14—C19—C18 1.8 (6)
N2—C7—C8—C9 140.1 (4) C13—C14—C19—C18 −178.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···S2i 0.95 2.77 3.604 (5) 147
C11—H11···S1ii 0.95 2.80 3.738 (5) 169

Symmetry codes: (i) −x+1, y+1, −z+2; (ii) −x+1, y, −z+1.

References

  1. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  2. Gu, Z.-G., Zhan, C., Zhang, J. & Bu, X. (2016). Chem. Soc. Rev. 45, 3122–3144. [DOI] [PubMed]
  3. Hashem, E., Platts, J. A., Hartl, F., Lorusso, G., Evangelisti, M., Schulzke, C. & Baker, R. J. (2014). Inorg. Chem. 53, 8624–8637. [DOI] [PubMed]
  4. Huang, S.-L., Zhang, L., Lin, Y.-J. & Jin, G.-X. (2013). CrystEngComm, 15, 78–85.
  5. Lodeiro, C. & Pina, F. (2009). Coord. Chem. Rev. 253, 1353–1383.
  6. Nawrot, I., Machura, B. & Kruszynski, R. (2016). CrystEngComm, 18, 2650–2663.
  7. Nowicka, B., Bałanda, M., Gaweł, B., Ćwiak, G., Budziak, A., Łasocha, W. & Sieklucka, B. (2011). Dalton Trans. 40, 3067–3073. [DOI] [PubMed]
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press: New York.
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  11. Rowthu, S. R., Shin, J. W., Kim, S.-H., Kim, J. J. & Min, K. S. (2011). Acta Cryst. E67, m873–m874. [DOI] [PMC free article] [PubMed]
  12. Ryoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232–7234. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [DOI] [PubMed]
  16. Steed, J. W. & Atwood, J. L. (2009). In Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd.
  17. Tak, R., Kumar, M., Kureshy, R. I., Choudhary, M. K., Khan, N. H., Abdi, S. H. R. & Bajaj, H. C. (2016). RSC Adv. 6, 7693–7700.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  19. Woo, A., Lee, Y. H., Hayami, S., Lindoy, L. F., Thuery, P. & Kim, Y. (2011). J. Inclusion Phenom. Macrocycl. Chem. 71, 409–417.
  20. Yao, J., Fu, X., Zheng, X.-L., Cao, Z.-Q. & Qu, D.-H. (2015). Dyes Pigm. 121, 12–20.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019253/is5466sup1.cif

e-73-00017-sup1.cif (520.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019253/is5466Isup2.hkl

e-73-00017-Isup2.hkl (479.9KB, hkl)

CCDC reference: 1520395

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES