The ZnII ion in the title compound shows a distorted square-pyramidal coordination geometry with three N atoms of the chiral S-ppme ligand and two N atoms of the thiocyanate anions. In the crystal, molecules are connected by hydrogen bonds and π–π interactions, forming a two-dimensional supramolecular network parallel to the bc plane.
Keywords: crystal structure, chiral ligand, sodium thiocyanate, π–π interactions, synchrotron data
Abstract
The title ZnII complex, [Zn(NCS)2(C20H21N3)], has been characterized by synchrotron single-crystal diffraction and FT–IR spectroscopy. The central ZnII ion has a distorted square-pyramidal coordination geometry, with three N atoms of the chiral (S) 1-phenyl-N,N-bis[(pyridin-2-yl)methyl]ethanamine (S-ppme) ligand and one N atom of a thiocyanate anion in the equatorial plane, and one N atom of another thiocyanate anion at the apical position. The average Zn—NS-ppme and Zn—NNCS bond lengths are 2.183 (2) and 1.986 (2) Å, respectively. In the crystal, intermolecular C—H⋯S hydrogen bonds and a face-to-face π–π interaction [centroid–centroid distance = 3.482 (1) Å] link the molecules and give rise to a supramolecular sheet structure parallel to the ac plane.
Chemical context
Recently, the preparation of new polyamines or their derivatives have attracted increasing attention in organic chemistry, pharmaceutical chemistry and materials science because they can easily interact with metal ions and form stable multifunctional compounds with various applications in magnetic materials, sorption materials, as well as fluorescent substances (Lodeiro & Pina, 2009 ▸; Nowicka et al., 2011 ▸; Yao et al., 2015 ▸). For instance, metal complexes with cyclam or azamacrocyclic ligands have been synthesized and investigated for selective adsorption of CO2 over N2 gases (Huang et al., 2013 ▸). In particular, chiral derivatives based on polyamine ligands can easily form chiral metal complexes with interesting properties, such as chiral recognition or as asymmetric catalysts. For example, the chiral two-dimensional coordination polymer, [Ni(L
R,R)]3[C6H3(COO)3]2·12H2O·CH3CN {L
R,R is 1,8-bis[(R)-α-methylbenzyl]-1,3,6,8,10,13-hexaazacyclotetradecane}, showed an efficient chiral recognition for rac-1,1′-bi-2-naphthol (Ryoo et al., 2010 ▸). Moreover, a chiral iron(III) complex containing binol derivatives exhibited high enantioselectivity and high yield for the enantiopure β-amino alcohols (Tak et al., 2016 ▸). Nevertheless, only a few of these complexes have been reported and characterized because the preparation of these complexes remains a major challenge in synthetic chemistry and materials science (Gu et al., 2016 ▸). The thiocyanate ion is a versatile anion which can bridge to metal ions through the S or N atom, thus allowing the assembly of supramolecular compounds (Nawrot et al., 2016 ▸). We report here the preparation and crystal structure of a chiral zinc complex constructed from the versatile tridentate chiral ligand (S)-1-phenyl-N,N-bis[(pyridin-2-yl)methyl]ethanamine (S-ppme) and the thiocyanate ion, namely [Zn(NCS)2(S-ppme)].
Structural commentary
A view of the molecular structure of the title compound is shown in Fig. 1 ▸. The coordination environment of the ZnII ion can be described as distorted square pyramidal. The ZnII ion is coordinated by three N atoms from the chiral S-ppme ligand and by two N atoms of thiocyanate ions. The thiocyanate ions coordinate through the N atoms in cis positions with respect to each other and are trans to the phenyl group of the chiral S-ppme ligand. The coordinating thiocyanate ions are linear but slightly bent in relation to the ZnII ion [N4—C21—S1 = 179.9 (1)°, N5—C22—S2 = 178.5 (4)°, Zn1—N4—C21 = 171.6 (4)° and Zn1—N5—C22 = 170.3 (4)°]. The bond angle between the thiocyanate ions is 101.43 (2)°. The average N≡C and C—S bond lengths of the thiocyanate ions are 1.158 (4) and 1.629 (6) Å, respectively, which implies that both thiocyanate ions are not delocalized. The former is very similar to the C≡N triple-bond length, while the latter is slightly shorter than reported C—S single-bond length (Hashem et al., 2014 ▸). The pyridine rings of the S-ppme ligand are twisted with respect to each other. The average Zn—NS-ppme and Zn—NNCS bond lengths are 2.183 (2) and 1.986 (2) Å, respectively. The bond angles around the ZnII ion range from 73.99 (1) to 156.01 (1)°.
Figure 1.
A view of the molecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability.
Supramolecular features
The thiocyanate ligands form intermolecular C—H⋯S hydrogen bonds with adjacent pyridine groups of the chiral S-ppme ligand, giving rise to a sheet structure parallel to the ac plane (Fig. 2 ▸ and Table 1 ▸) (Steed & Atwood, 2009 ▸). In the sheet, adjacent C8–C12/N3 pyridine rings of chiral S-ppme ligands are also linked through a face-to-face π–π interaction, with a centroid–centroid distance of 3.482 (1) Å and a dihedral angle of 2.947 (1)°.
Figure 2.
A view of the crystal-packing structure for the title compound, showing the C—H⋯S hydrogen bonds (sky-blue dashed lines) and π–π interactions (black dashed lines).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C3—H3⋯S2i | 0.95 | 2.77 | 3.604 (5) | 147 |
| C11—H11⋯S1ii | 0.95 | 2.80 | 3.738 (5) | 169 |
Symmetry codes: (i)
; (ii)
.
Database survey
A search of the Cambridge Structural Database (Version 5.37, February 2016 with two updates; Groom et al., 2016 ▸) gives three copper(II) complexes with the same chiral S-ppme ligand (Rowthu et al., 2011 ▸; Woo et al., 2011 ▸) for which syntheses, magnetic properties and crystal structures have been reported.
Synthesis and crystallization
The chiral S-ppme ligand was prepared according to a slight modification of the method of Rowthu et al. (2011 ▸). A methanol solution (5 mL) of KNCS (0.078 g, 0.80 mmol) was added slowly to a methanol solution (15 mL) containing ZnSO4·7H2O (0.115 g, 0.40 mmol). The mixture was stirred for 20 min and the the formed white precipitates were eliminated by filtration. A solution of the chiral S-ppme (0.121 g, 0.40 mmol) in MeOH (10 mL) was added slowly to the filtered solution with vigorous stirring at room temperature. The resulting pale-yellow precipitates were collected by filtration, washed with methanol and diethyl ether, and dried in air. Single crystals were obtained by slow evaporation from methanol solution for a period of several days (yield: 0.123 g, 64%). FT–IR (KBr, cm−1): 3102, 3029, 2995, 2910, 2056, 1606.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95–0.99 Å and U iso(H) values of 1.2 or 1.5U eq of the parent atoms.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Zn(NCS)2(C20H21N3)] |
| M r | 484.93 |
| Crystal system, space group | Monoclinic, C2 |
| Temperature (K) | 100 |
| a, b, c (Å) | 19.270 (4), 7.7950 (16), 14.834 (3) |
| β (°) | 91.71 (3) |
| V (Å3) | 2227.2 (8) |
| Z | 4 |
| Radiation type | Synchrotron, λ = 0.630 Å |
| μ (mm−1) | 0.94 |
| Crystal size (mm) | 0.10 × 0.04 × 0.02 |
| Data collection | |
| Diffractometer | ADSC Q210 CCD area detector |
| Absorption correction | Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997 ▸) |
| T min, T max | 0.912, 0.981 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 11189, 6035, 5123 |
| R int | 0.048 |
| (sin θ/λ)max (Å−1) | 0.696 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.039, 0.093, 0.99 |
| No. of reflections | 6035 |
| No. of parameters | 272 |
| No. of restraints | 1 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.35, −1.03 |
| Absolute structure | Flack x determined using 2026 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | −0.010 (6) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019253/is5466sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019253/is5466Isup2.hkl
CCDC reference: 1520395
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The X-ray crystallography BL2D-SMC beamline at the PLS-II were supported in part by MSIP and POSTECH.
supplementary crystallographic information
Crystal data
| [Zn(NCS)2(C20H21N3)] | F(000) = 1000 |
| Mr = 484.93 | Dx = 1.446 Mg m−3 |
| Monoclinic, C2 | Synchrotron radiation, λ = 0.630 Å |
| a = 19.270 (4) Å | Cell parameters from 32924 reflections |
| b = 7.7950 (16) Å | θ = 0.4–33.6° |
| c = 14.834 (3) Å | µ = 0.94 mm−1 |
| β = 91.71 (3)° | T = 100 K |
| V = 2227.2 (8) Å3 | Needle, colorless |
| Z = 4 | 0.10 × 0.04 × 0.02 mm |
Data collection
| ADSC Q210 CCD area detector diffractometer | 5123 reflections with I > 2σ(I) |
| Radiation source: PLSII 2D bending magnet | Rint = 0.048 |
| ω scan | θmax = 26.0°, θmin = 2.4° |
| Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997) | h = −26→26 |
| Tmin = 0.912, Tmax = 0.981 | k = −10→10 |
| 11189 measured reflections | l = −20→20 |
| 6035 independent reflections |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0509P)2] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.093 | (Δ/σ)max < 0.001 |
| S = 0.99 | Δρmax = 0.35 e Å−3 |
| 6035 reflections | Δρmin = −1.03 e Å−3 |
| 272 parameters | Absolute structure: Flack x determined using 2026 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| 1 restraint | Absolute structure parameter: −0.010 (6) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Zn1 | 0.46128 (2) | 0.33954 (6) | 0.76988 (3) | 0.01920 (11) | |
| N1 | 0.52691 (16) | 0.5093 (4) | 0.8331 (2) | 0.0213 (7) | |
| N2 | 0.40589 (15) | 0.6204 (4) | 0.7503 (2) | 0.0165 (7) | |
| N3 | 0.43224 (14) | 0.3562 (5) | 0.6353 (2) | 0.0199 (6) | |
| C1 | 0.5905 (2) | 0.4552 (6) | 0.8617 (3) | 0.0287 (9) | |
| H1 | 0.6043 | 0.3414 | 0.8480 | 0.034* | |
| C2 | 0.6357 (2) | 0.5585 (7) | 0.9097 (3) | 0.0331 (10) | |
| H2 | 0.6797 | 0.5161 | 0.9298 | 0.040* | |
| C3 | 0.6165 (2) | 0.7254 (7) | 0.9286 (3) | 0.0306 (10) | |
| H3 | 0.6474 | 0.7999 | 0.9606 | 0.037* | |
| C4 | 0.5509 (2) | 0.7824 (6) | 0.8998 (3) | 0.0254 (9) | |
| H4 | 0.5362 | 0.8960 | 0.9126 | 0.030* | |
| C5 | 0.50773 (19) | 0.6714 (6) | 0.8525 (3) | 0.0198 (8) | |
| C6 | 0.4348 (2) | 0.7272 (5) | 0.8232 (3) | 0.0232 (8) | |
| H6A | 0.4042 | 0.7208 | 0.8755 | 0.028* | |
| H6B | 0.4360 | 0.8480 | 0.8028 | 0.028* | |
| C7 | 0.44001 (19) | 0.6585 (6) | 0.6647 (3) | 0.0194 (7) | |
| H7A | 0.4905 | 0.6735 | 0.6761 | 0.023* | |
| H7B | 0.4212 | 0.7666 | 0.6388 | 0.023* | |
| C8 | 0.42740 (19) | 0.5140 (5) | 0.5994 (3) | 0.0188 (8) | |
| C9 | 0.4133 (2) | 0.5404 (7) | 0.5076 (3) | 0.0277 (10) | |
| H9 | 0.4107 | 0.6529 | 0.4831 | 0.033* | |
| C10 | 0.4032 (2) | 0.3974 (7) | 0.4533 (3) | 0.0360 (13) | |
| H10 | 0.3938 | 0.4108 | 0.3905 | 0.043* | |
| C11 | 0.4069 (2) | 0.2344 (7) | 0.4910 (3) | 0.0360 (13) | |
| H11 | 0.3991 | 0.1356 | 0.4546 | 0.043* | |
| C12 | 0.4220 (2) | 0.2182 (6) | 0.5822 (3) | 0.0282 (10) | |
| H12 | 0.4252 | 0.1069 | 0.6081 | 0.034* | |
| C13 | 0.32788 (18) | 0.6288 (5) | 0.7383 (3) | 0.0188 (8) | |
| H13 | 0.3149 | 0.5409 | 0.6917 | 0.023* | |
| C14 | 0.30213 (18) | 0.8003 (5) | 0.7011 (3) | 0.0184 (8) | |
| C15 | 0.2898 (2) | 0.9419 (5) | 0.7561 (3) | 0.0238 (8) | |
| H15 | 0.2977 | 0.9328 | 0.8194 | 0.029* | |
| C16 | 0.2663 (2) | 1.0954 (6) | 0.7194 (3) | 0.0286 (10) | |
| H16 | 0.2576 | 1.1899 | 0.7579 | 0.034* | |
| C17 | 0.2554 (2) | 1.1123 (5) | 0.6272 (3) | 0.0258 (9) | |
| H17 | 0.2394 | 1.2179 | 0.6024 | 0.031* | |
| C18 | 0.2679 (2) | 0.9745 (6) | 0.5717 (3) | 0.0272 (9) | |
| H18 | 0.2616 | 0.9858 | 0.5083 | 0.033* | |
| C19 | 0.28976 (18) | 0.8195 (6) | 0.6087 (3) | 0.0221 (8) | |
| H19 | 0.2964 | 0.7241 | 0.5701 | 0.027* | |
| C20 | 0.2913 (2) | 0.5759 (6) | 0.8239 (3) | 0.0253 (9) | |
| H20A | 0.2982 | 0.6648 | 0.8700 | 0.038* | |
| H20B | 0.3107 | 0.4672 | 0.8462 | 0.038* | |
| H20C | 0.2415 | 0.5619 | 0.8104 | 0.038* | |
| N4 | 0.53102 (18) | 0.1463 (5) | 0.7434 (3) | 0.0299 (8) | |
| C21 | 0.5672 (2) | 0.0390 (5) | 0.7176 (3) | 0.0210 (8) | |
| S1 | 0.61788 (5) | −0.11203 (13) | 0.68120 (7) | 0.0269 (2) | |
| N5 | 0.40467 (18) | 0.2318 (5) | 0.8601 (3) | 0.0267 (8) | |
| S2 | 0.31745 (6) | 0.13587 (16) | 0.99713 (8) | 0.0303 (3) | |
| C22 | 0.3691 (2) | 0.1913 (5) | 0.9177 (3) | 0.0220 (8) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Zn1 | 0.01633 (18) | 0.0166 (2) | 0.0249 (2) | 0.0000 (2) | 0.00448 (14) | 0.0002 (2) |
| N1 | 0.0170 (15) | 0.0190 (17) | 0.0276 (17) | 0.0002 (14) | −0.0009 (13) | 0.0016 (13) |
| N2 | 0.0123 (13) | 0.0154 (16) | 0.0221 (16) | −0.0017 (12) | 0.0027 (12) | −0.0035 (12) |
| N3 | 0.0122 (12) | 0.0209 (17) | 0.0270 (15) | 0.0012 (16) | 0.0053 (11) | −0.0060 (15) |
| C1 | 0.0173 (18) | 0.029 (2) | 0.039 (2) | 0.0041 (18) | −0.0019 (17) | 0.0042 (19) |
| C2 | 0.0173 (19) | 0.039 (3) | 0.043 (3) | −0.003 (2) | −0.0062 (18) | 0.004 (2) |
| C3 | 0.027 (2) | 0.040 (3) | 0.025 (2) | −0.012 (2) | −0.0027 (17) | 0.0042 (19) |
| C4 | 0.0291 (19) | 0.026 (2) | 0.0212 (19) | −0.0066 (18) | 0.0015 (15) | 0.0004 (15) |
| C5 | 0.0170 (17) | 0.021 (2) | 0.0212 (18) | −0.0035 (17) | 0.0021 (14) | 0.0012 (15) |
| C6 | 0.0206 (18) | 0.022 (2) | 0.027 (2) | 0.0001 (17) | 0.0027 (15) | −0.0061 (16) |
| C7 | 0.0145 (16) | 0.0213 (19) | 0.0226 (18) | 0.0009 (16) | 0.0041 (14) | 0.0029 (16) |
| C8 | 0.0103 (16) | 0.025 (2) | 0.0217 (19) | 0.0004 (16) | 0.0050 (14) | −0.0006 (16) |
| C9 | 0.0163 (18) | 0.044 (3) | 0.023 (2) | 0.005 (2) | 0.0043 (15) | 0.0002 (19) |
| C10 | 0.0156 (17) | 0.069 (4) | 0.024 (2) | 0.001 (2) | 0.0044 (15) | −0.011 (2) |
| C11 | 0.020 (2) | 0.053 (4) | 0.036 (3) | −0.004 (2) | 0.0055 (19) | −0.026 (2) |
| C12 | 0.018 (2) | 0.027 (2) | 0.040 (3) | 0.0004 (19) | 0.0066 (17) | −0.009 (2) |
| C13 | 0.0138 (16) | 0.0162 (19) | 0.027 (2) | 0.0018 (15) | 0.0036 (14) | −0.0021 (15) |
| C14 | 0.0110 (14) | 0.016 (2) | 0.0280 (19) | 0.0010 (14) | 0.0021 (13) | −0.0027 (14) |
| C15 | 0.0221 (19) | 0.021 (2) | 0.029 (2) | 0.0023 (18) | 0.0022 (15) | −0.0063 (17) |
| C16 | 0.026 (2) | 0.023 (2) | 0.037 (2) | 0.0081 (19) | −0.0006 (18) | −0.0068 (18) |
| C17 | 0.0190 (19) | 0.021 (2) | 0.037 (2) | 0.0048 (17) | −0.0008 (17) | 0.0020 (17) |
| C18 | 0.0201 (19) | 0.031 (2) | 0.030 (2) | 0.0104 (19) | −0.0016 (16) | 0.0013 (18) |
| C19 | 0.0171 (15) | 0.021 (2) | 0.0277 (18) | 0.0029 (18) | −0.0016 (13) | −0.0064 (18) |
| C20 | 0.0179 (17) | 0.027 (2) | 0.031 (2) | 0.0028 (18) | 0.0079 (15) | 0.0043 (18) |
| N4 | 0.0291 (18) | 0.027 (2) | 0.034 (2) | 0.0080 (17) | 0.0060 (16) | 0.0060 (16) |
| C21 | 0.0214 (18) | 0.020 (2) | 0.0216 (18) | 0.0018 (17) | 0.0034 (14) | 0.0026 (15) |
| S1 | 0.0247 (5) | 0.0236 (6) | 0.0326 (5) | 0.0079 (4) | 0.0072 (4) | 0.0012 (4) |
| N5 | 0.0260 (18) | 0.0229 (18) | 0.0316 (19) | −0.0019 (15) | 0.0071 (14) | 0.0042 (15) |
| S2 | 0.0287 (5) | 0.0326 (6) | 0.0300 (6) | −0.0088 (5) | 0.0087 (4) | 0.0029 (5) |
| C22 | 0.0219 (18) | 0.0156 (19) | 0.028 (2) | −0.0021 (17) | −0.0032 (15) | 0.0011 (16) |
Geometric parameters (Å, º)
| Zn1—N5 | 1.942 (3) | C9—H9 | 0.9500 |
| Zn1—N1 | 2.039 (3) | C10—C11 | 1.389 (8) |
| Zn1—N3 | 2.061 (3) | C10—H10 | 0.9500 |
| Zn1—N4 | 2.064 (4) | C11—C12 | 1.381 (7) |
| Zn1—N2 | 2.449 (3) | C11—H11 | 0.9500 |
| N1—C5 | 1.350 (5) | C12—H12 | 0.9500 |
| N1—C1 | 1.352 (5) | C13—C14 | 1.524 (5) |
| N2—C6 | 1.461 (5) | C13—C20 | 1.526 (5) |
| N2—C7 | 1.478 (5) | C13—H13 | 1.0000 |
| N2—C13 | 1.510 (5) | C14—C19 | 1.392 (5) |
| N3—C8 | 1.342 (6) | C14—C15 | 1.397 (5) |
| N3—C12 | 1.344 (6) | C15—C16 | 1.385 (6) |
| C1—C2 | 1.370 (7) | C15—H15 | 0.9500 |
| C1—H1 | 0.9500 | C16—C17 | 1.384 (6) |
| C2—C3 | 1.383 (7) | C16—H16 | 0.9500 |
| C2—H2 | 0.9500 | C17—C18 | 1.378 (6) |
| C3—C4 | 1.394 (6) | C17—H17 | 0.9500 |
| C3—H3 | 0.9500 | C18—C19 | 1.387 (6) |
| C4—C5 | 1.378 (6) | C18—H18 | 0.9500 |
| C4—H4 | 0.9500 | C19—H19 | 0.9500 |
| C5—C6 | 1.523 (5) | C20—H20A | 0.9800 |
| C6—H6A | 0.9900 | C20—H20B | 0.9800 |
| C6—H6B | 0.9900 | C20—H20C | 0.9800 |
| C7—C8 | 1.500 (6) | N4—C21 | 1.160 (5) |
| C7—H7A | 0.9900 | C21—S1 | 1.633 (4) |
| C7—H7B | 0.9900 | N5—C22 | 1.155 (5) |
| C8—C9 | 1.397 (6) | S2—C22 | 1.624 (4) |
| C9—C10 | 1.385 (7) | ||
| N5—Zn1—N1 | 108.46 (15) | N3—C8—C9 | 122.1 (4) |
| N5—Zn1—N3 | 123.55 (14) | N3—C8—C7 | 115.1 (4) |
| N1—Zn1—N3 | 123.46 (14) | C9—C8—C7 | 122.8 (4) |
| N5—Zn1—N4 | 101.43 (15) | C10—C9—C8 | 117.9 (5) |
| N1—Zn1—N4 | 99.36 (15) | C10—C9—H9 | 121.1 |
| N3—Zn1—N4 | 91.21 (14) | C8—C9—H9 | 121.1 |
| N5—Zn1—N2 | 102.49 (13) | C9—C10—C11 | 119.9 (4) |
| N1—Zn1—N2 | 74.73 (12) | C9—C10—H10 | 120.1 |
| N3—Zn1—N2 | 73.99 (13) | C11—C10—H10 | 120.1 |
| N4—Zn1—N2 | 156.01 (13) | C12—C11—C10 | 119.0 (5) |
| C5—N1—C1 | 118.4 (4) | C12—C11—H11 | 120.5 |
| C5—N1—Zn1 | 122.4 (3) | C10—C11—H11 | 120.5 |
| C1—N1—Zn1 | 119.1 (3) | N3—C12—C11 | 121.6 (5) |
| C6—N2—C7 | 110.6 (3) | N3—C12—H12 | 119.2 |
| C6—N2—C13 | 114.7 (3) | C11—C12—H12 | 119.2 |
| C7—N2—C13 | 110.9 (3) | N2—C13—C14 | 113.1 (3) |
| C6—N2—Zn1 | 105.5 (2) | N2—C13—C20 | 111.9 (3) |
| C7—N2—Zn1 | 94.5 (2) | C14—C13—C20 | 112.6 (3) |
| C13—N2—Zn1 | 118.8 (2) | N2—C13—H13 | 106.2 |
| C8—N3—C12 | 119.6 (4) | C14—C13—H13 | 106.2 |
| C8—N3—Zn1 | 117.1 (3) | C20—C13—H13 | 106.2 |
| C12—N3—Zn1 | 123.2 (3) | C19—C14—C15 | 117.6 (4) |
| N1—C1—C2 | 122.4 (4) | C19—C14—C13 | 119.7 (4) |
| N1—C1—H1 | 118.8 | C15—C14—C13 | 122.7 (4) |
| C2—C1—H1 | 118.8 | C16—C15—C14 | 120.8 (4) |
| C1—C2—C3 | 119.2 (4) | C16—C15—H15 | 119.6 |
| C1—C2—H2 | 120.4 | C14—C15—H15 | 119.6 |
| C3—C2—H2 | 120.4 | C17—C16—C15 | 120.6 (4) |
| C2—C3—C4 | 118.9 (4) | C17—C16—H16 | 119.7 |
| C2—C3—H3 | 120.5 | C15—C16—H16 | 119.7 |
| C4—C3—H3 | 120.5 | C18—C17—C16 | 119.5 (4) |
| C5—C4—C3 | 118.9 (4) | C18—C17—H17 | 120.3 |
| C5—C4—H4 | 120.5 | C16—C17—H17 | 120.3 |
| C3—C4—H4 | 120.5 | C17—C18—C19 | 119.9 (4) |
| N1—C5—C4 | 122.1 (4) | C17—C18—H18 | 120.0 |
| N1—C5—C6 | 117.6 (4) | C19—C18—H18 | 120.0 |
| C4—C5—C6 | 120.3 (4) | C18—C19—C14 | 121.6 (4) |
| N2—C6—C5 | 112.1 (3) | C18—C19—H19 | 119.2 |
| N2—C6—H6A | 109.2 | C14—C19—H19 | 119.2 |
| C5—C6—H6A | 109.2 | C13—C20—H20A | 109.5 |
| N2—C6—H6B | 109.2 | C13—C20—H20B | 109.5 |
| C5—C6—H6B | 109.2 | H20A—C20—H20B | 109.5 |
| H6A—C6—H6B | 107.9 | C13—C20—H20C | 109.5 |
| N2—C7—C8 | 109.6 (3) | H20A—C20—H20C | 109.5 |
| N2—C7—H7A | 109.7 | H20B—C20—H20C | 109.5 |
| C8—C7—H7A | 109.7 | C21—N4—Zn1 | 171.6 (4) |
| N2—C7—H7B | 109.7 | N4—C21—S1 | 179.9 (5) |
| C8—C7—H7B | 109.7 | C22—N5—Zn1 | 170.3 (4) |
| H7A—C7—H7B | 108.2 | N5—C22—S2 | 178.5 (4) |
| C5—N1—C1—C2 | 0.3 (6) | N3—C8—C9—C10 | 0.9 (6) |
| Zn1—N1—C1—C2 | −175.7 (4) | C7—C8—C9—C10 | 179.3 (3) |
| N1—C1—C2—C3 | −1.2 (7) | C8—C9—C10—C11 | 0.4 (6) |
| C1—C2—C3—C4 | 1.4 (7) | C9—C10—C11—C12 | −1.3 (6) |
| C2—C3—C4—C5 | −0.8 (6) | C8—N3—C12—C11 | 0.4 (5) |
| C1—N1—C5—C4 | 0.3 (6) | Zn1—N3—C12—C11 | −175.8 (3) |
| Zn1—N1—C5—C4 | 176.2 (3) | C10—C11—C12—N3 | 0.9 (7) |
| C1—N1—C5—C6 | −177.4 (4) | C6—N2—C13—C14 | 70.2 (4) |
| Zn1—N1—C5—C6 | −1.5 (5) | C7—N2—C13—C14 | −56.0 (4) |
| C3—C4—C5—N1 | 0.0 (6) | Zn1—N2—C13—C14 | −163.8 (2) |
| C3—C4—C5—C6 | 177.7 (4) | C6—N2—C13—C20 | −58.3 (4) |
| C7—N2—C6—C5 | −72.5 (4) | C7—N2—C13—C20 | 175.5 (3) |
| C13—N2—C6—C5 | 161.1 (3) | Zn1—N2—C13—C20 | 67.7 (4) |
| Zn1—N2—C6—C5 | 28.5 (4) | N2—C13—C14—C19 | 94.8 (4) |
| N1—C5—C6—N2 | −21.4 (5) | C20—C13—C14—C19 | −137.1 (4) |
| C4—C5—C6—N2 | 160.8 (3) | N2—C13—C14—C15 | −85.5 (4) |
| C6—N2—C7—C8 | 161.8 (3) | C20—C13—C14—C15 | 42.7 (5) |
| C13—N2—C7—C8 | −69.7 (4) | C19—C14—C15—C16 | −0.1 (6) |
| Zn1—N2—C7—C8 | 53.4 (3) | C13—C14—C15—C16 | −179.9 (4) |
| C12—N3—C8—C9 | −1.3 (5) | C14—C15—C16—C17 | −0.9 (7) |
| Zn1—N3—C8—C9 | 175.1 (3) | C15—C16—C17—C18 | 0.2 (7) |
| C12—N3—C8—C7 | −179.8 (3) | C16—C17—C18—C19 | 1.5 (6) |
| Zn1—N3—C8—C7 | −3.4 (4) | C17—C18—C19—C14 | −2.5 (6) |
| N2—C7—C8—N3 | −41.4 (4) | C15—C14—C19—C18 | 1.8 (6) |
| N2—C7—C8—C9 | 140.1 (4) | C13—C14—C19—C18 | −178.4 (3) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C3—H3···S2i | 0.95 | 2.77 | 3.604 (5) | 147 |
| C11—H11···S1ii | 0.95 | 2.80 | 3.738 (5) | 169 |
Symmetry codes: (i) −x+1, y+1, −z+2; (ii) −x+1, y, −z+1.
References
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gu, Z.-G., Zhan, C., Zhang, J. & Bu, X. (2016). Chem. Soc. Rev. 45, 3122–3144. [DOI] [PubMed]
- Hashem, E., Platts, J. A., Hartl, F., Lorusso, G., Evangelisti, M., Schulzke, C. & Baker, R. J. (2014). Inorg. Chem. 53, 8624–8637. [DOI] [PubMed]
- Huang, S.-L., Zhang, L., Lin, Y.-J. & Jin, G.-X. (2013). CrystEngComm, 15, 78–85.
- Lodeiro, C. & Pina, F. (2009). Coord. Chem. Rev. 253, 1353–1383.
- Nawrot, I., Machura, B. & Kruszynski, R. (2016). CrystEngComm, 18, 2650–2663.
- Nowicka, B., Bałanda, M., Gaweł, B., Ćwiak, G., Budziak, A., Łasocha, W. & Sieklucka, B. (2011). Dalton Trans. 40, 3067–3073. [DOI] [PubMed]
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press: New York.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Rowthu, S. R., Shin, J. W., Kim, S.-H., Kim, J. J. & Min, K. S. (2011). Acta Cryst. E67, m873–m874. [DOI] [PMC free article] [PubMed]
- Ryoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232–7234. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [DOI] [PubMed]
- Steed, J. W. & Atwood, J. L. (2009). In Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd.
- Tak, R., Kumar, M., Kureshy, R. I., Choudhary, M. K., Khan, N. H., Abdi, S. H. R. & Bajaj, H. C. (2016). RSC Adv. 6, 7693–7700.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Woo, A., Lee, Y. H., Hayami, S., Lindoy, L. F., Thuery, P. & Kim, Y. (2011). J. Inclusion Phenom. Macrocycl. Chem. 71, 409–417.
- Yao, J., Fu, X., Zheng, X.-L., Cao, Z.-Q. & Qu, D.-H. (2015). Dyes Pigm. 121, 12–20.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019253/is5466sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019253/is5466Isup2.hkl
CCDC reference: 1520395
Additional supporting information: crystallographic information; 3D view; checkCIF report


