Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 1;73(Pt 1):28–30. doi: 10.1107/S2056989016019575

Crystal structure of bis­{N′-[(E)-4-hy­droxy­benzyl­idene]pyridine-4-carbohydrazide-κN 1}di­iodidocadmium methanol disolvate

Farhad Akbari Afkhami a, Harald Krautscheid b, Zeliha Atioğlu c, Mehmet Akkurt d,*
PMCID: PMC5209764  PMID: 28083128

In the title structure, the CdII atom is located on a twofold rotation axis and is coordinated by two I atoms and two N atoms of two carboxyl­ate groups of two planar N′-[(E)-4-hy­droxy­benzyl­idene]pyridine-4-carbohydrazide ligands. N—H⋯O, O—H⋯O, C—H⋯O and C—H⋯I hydrogen bonding assembles the mol­ecules into a three-dimensional network.

Keywords: crystal structure, cadmium, hydrazone-based ligand, hydrogen bonding

Abstract

In the title compound, [Cd(C13H11IN3O2)2]·2CH3OH, which crystallizes with Z = 4 in the space group Pbcn, the CdII atom is located on a twofold rotation axis and coordinated by two I anions and two N atoms from the pyridine rings of the two N′-[(E)-4-hy­droxy­benzyl­idene]pyridine-4-carbohydrazide ligands. The geometry around the CdII atom is distorted tetra­hedral, with bond angles in the range 94.92 (11)–124.29 (2)°. The iodide anions undergo inter­molecular hydrogen-bonding contacts with the C—H groups of the organic ligands of an adjacent complex mol­ecule, generating a chain structure along the b axis. Furthermore, an extensive series of O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding inter­actions involving both the complex mol­ecules and the ethanol solvate mol­ecules generate a three-dimensional network.

Chemical context  

Hydrazones are organic compounds that incorporate –NH–N=CH– units in their mol­ecules. Hydrazone ligands based on pyridine are among the most important classes of flexible and versatile polydentate ligands and usually act as chelating ligands to metal cations (Afkhami et al., 2016), but in some cases they behave as monodentate ligands through the pyridine group alone. The hydrazone-based ligand in the title compound was prepared according to a method reported in the literature (Deng et al., 2005). The crystal structure of the ligand and three of its ZnII metal complexes have been reported previously (Mahmoudi et al., 2016). However, the title compound is the first reported crystal structure of a CdII complex of the ligand.graphic file with name e-73-00028-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The Cd atom, located on a twofold rotation axis, is coordinated by two Schiff base ligands, acting as monodentate ligands, through the nitro­gen atoms of the pyridine rings. The angle between the benzene and pyridine rings is 35.42 (19)°. The Cd—I distance is 2.6909 (5) Å and the Cd—N distance is 2.297 (3) Å. All bonds and angles in the title compound fall within acceptable ranges and are comparable with those reported for related structures of bis­{2-[(2,4-di­methyl­phen­yl)imino­meth­yl]pyridine-κ2 N,N′}bis­(thio­cyanato-κN)cadmium (Malekshahian et al., 2012), di-μ-chlorido-bis­(chlorido­{N-[phen­yl(pyridin-2-yl-κN)methyl­idene]pyridine-2-carbohydrazide-κ2 N,O}cadmium) (Akkurt et al., 2014) and cis-di­aqua­bis[(E)-4-(2-hy­droxy­benzyl-idene­amino)­benzoato-κ2 O,O′]cadmium in which layers are built from strong O—H⋯O hydrogen bonding (Yao et al., 2006).

Figure 1.

Figure 1

The molecular components of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level [symmetry code: (a) −x, y, −z + Inline graphic].

Supra­molecular features  

In the crystal, the iodide anions form inter­molecular C1—H1⋯I1 hydrogen-bonding contacts with the C—H groups of the pyridine rings of an adjacent complex mol­ecule. This generates a a chain structure along the b axis. In addition, an extensive series of O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding inter­actions, Table 1, involving both the complex mol­ecules and the methanol solvate mol­ecules, generates a three-dimensional network (Figs. 2, 3 and 4).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 0.77 (5) 2.09 (5) 2.849 (4) 174 (4)
O2—H2O⋯O1ii 0.81 (3) 1.89 (4) 2.656 (4) 159 (5)
O3—H3O⋯O2iii 0.80 (3) 2.03 (2) 2.828 (5) 173 (4)
C4—H4⋯O3 0.94 2.58 3.291 (5) 133
C7—H7⋯O3 0.94 2.56 3.327 (5) 140
C1—H1⋯I1iv 0.94 3.11 3.811 (4) 133

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

View of the hydrogen bonding and packing of the title compound along the a axis.

Figure 3.

Figure 3

View of the hydrogen bonding and packing of the title compound along the b axis.

Figure 4.

Figure 4

View of the hydrogen bonding and packing of the title compound along the c axis.

Synthesis and crystallization  

The title compound was synthesized by the reaction of a methanol solution of the ligand and Cd(NO3)2·4H2O in the presence of excess amount of NaI. The ligand (1 mmol, 0.240 g) and cadmium nitrate (1 mmol, 0.308 g) were placed in the main arm of a branched tube; sodium iodide (2 mmol, 0.300 g) was added to the mixture too. Methanol was carefully added to fill the arms. The tube was sealed and the ligand-containing arm was immersed in an oil bath at 333 K while the branched arm was kept at ambient temperature. After 24 h, suitable single crystals had deposited in the cooler arm which were isolated and air dried.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were ideal­ized (C—H = 0.98–0.99 Å) and refined using the riding-model approximation with U iso(H) = 1.2 or 1.5 U eq(C). The N—H and O—H hydrogen atoms were located from difference maps and refined with the restraints N2—H2N = 0.77 (5), O2—H2O = 0.81 (3), O3—H3O = 0.80 (3) Å and with U iso(H) = 1.2U eq(N) or U iso(H) = 1.5U eq(O).

Table 2. Experimental details.

Crystal data
Chemical formula [Cd(C13H11IN3O2)2]·2CH4O
M r 912.79
Crystal system, space group Orthorhombic, P b c n
Temperature (K) 213
a, b, c (Å) 8.0245 (4), 13.2482 (9), 30.4540 (19)
V3) 3237.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.63
Crystal size (mm) 0.5 × 0.3 × 0.3
 
Data collection
Diffractometer Stoe IPDS1
Absorption correction Numerical (X-RED32; Stoe & Cie, 2000)
T min, T max 0.337, 0.453
No. of measured, independent and observed [I > 2σ(I)] reflections 3511, 3511, 2542
(sin θ/λ)max−1) 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.094, 0.88
No. of reflections 3511
No. of parameters 206
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.68, −1.47

Computer programs: EXPOSE, CELL, SELECT and INTEGRATE (Stoe & Cie, 2000), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016019575/sj5516sup1.cif

e-73-00028-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019575/sj5516Isup2.hkl

e-73-00028-Isup2.hkl (192.8KB, hkl)

CCDC reference: 1521096

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, for the financial support of this research.

supplementary crystallographic information

Crystal data

[CdI2(C13H11N3O2)2]·2CH4O F(000) = 1768
Mr = 912.79 Dx = 1.873 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 428 reflections
a = 8.0245 (4) Å θ = 2.9–27.6°
b = 13.2482 (9) Å µ = 2.63 mm1
c = 30.4540 (19) Å T = 213 K
V = 3237.6 (3) Å3 Prism, colorless
Z = 4 0.5 × 0.3 × 0.3 mm

Data collection

Stoe IPDS1 diffractometer 3511 independent reflections
Radiation source: fine-focus sealed tube 2542 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.000
phi scan θmax = 27.6°, θmin = 2.9°
Absorption correction: numerical Stoe XRED32 (Stoe & Cie, 2000) h = 0→9
Tmin = 0.337, Tmax = 0.453 k = 0→17
3511 measured reflections l = 0→39

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0655P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094 (Δ/σ)max < 0.001
S = 0.88 Δρmax = 1.68 e Å3
3511 reflections Δρmin = −1.47 e Å3
206 parameters Extinction correction: SHELXL-2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001XFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.0026 (2)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 −0.24029 (5) 0.11226 (3) 0.20424 (2) 0.0555 (1)
Cd1 0.00000 0.20717 (2) 0.25000 0.0250 (1)
O1 0.3473 (4) 0.62436 (18) 0.12617 (10) 0.0359 (9)
O2 1.0000 (4) 0.70774 (18) −0.10066 (9) 0.0310 (8)
N1 0.1497 (5) 0.3244 (2) 0.21085 (10) 0.0284 (10)
N2 0.5039 (5) 0.4973 (2) 0.09734 (10) 0.0263 (9)
N3 0.5712 (5) 0.5598 (2) 0.06532 (10) 0.0269 (10)
C1 0.0746 (6) 0.4087 (3) 0.19639 (12) 0.0295 (11)
C2 0.1550 (5) 0.4791 (3) 0.17078 (12) 0.0280 (11)
C3 0.3166 (5) 0.4612 (2) 0.15733 (12) 0.0247 (10)
O3 0.6488 (4) 0.3011 (2) 0.09399 (12) 0.0431 (11)
C4 0.3962 (6) 0.3747 (3) 0.17287 (13) 0.0302 (11)
C5 0.3096 (6) 0.3093 (3) 0.19927 (13) 0.0319 (13)
C6 0.3943 (5) 0.5354 (2) 0.12611 (12) 0.0262 (10)
C7 0.6539 (5) 0.5138 (3) 0.03593 (12) 0.0265 (10)
C8 0.7372 (5) 0.5675 (3) −0.00022 (11) 0.0244 (10)
C9 0.7230 (5) 0.6713 (3) −0.00636 (13) 0.0290 (13)
C10 0.8101 (6) 0.7194 (3) −0.03945 (13) 0.0293 (13)
C11 0.9119 (5) 0.6642 (2) −0.06770 (11) 0.0230 (10)
C12 0.9264 (6) 0.5601 (3) −0.06211 (12) 0.0263 (10)
C13 0.8388 (5) 0.5132 (3) −0.02870 (12) 0.0268 (13)
C14 0.5662 (7) 0.2065 (3) 0.09320 (17) 0.0450 (16)
H1 −0.03730 0.42000 0.20410 0.0350*
H2 0.10030 0.53890 0.16250 0.0340*
H2N 0.541 (6) 0.444 (4) 0.0984 (14) 0.0320*
H2O 0.967 (7) 0.765 (2) −0.1033 (17) 0.0460*
H4 0.50760 0.36150 0.16530 0.0360*
H5 0.36440 0.25140 0.20980 0.0380*
H7 0.66220 0.44310 0.03730 0.0320*
H9 0.65340 0.70910 0.01220 0.0350*
H10 0.80070 0.78960 −0.04290 0.0350*
H12 0.99500 0.52210 −0.08090 0.0320*
H13 0.84820 0.44290 −0.02520 0.0320*
H3O 0.748 (3) 0.294 (5) 0.095 (2) 0.0650*
H14A 0.62690 0.15860 0.11120 0.0670*
H14B 0.56100 0.18190 0.06320 0.0670*
H14C 0.45410 0.21430 0.10460 0.0670*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0416 (3) 0.0625 (2) 0.0624 (2) −0.0191 (2) 0.0021 (2) −0.0255 (2)
Cd1 0.0250 (2) 0.0179 (2) 0.0320 (2) 0.0000 0.0051 (2) 0.0000
O1 0.041 (2) 0.0198 (12) 0.0469 (16) 0.0042 (12) 0.0127 (14) 0.0091 (11)
O2 0.0326 (17) 0.0217 (11) 0.0386 (13) 0.0017 (13) 0.0098 (13) 0.0098 (10)
N1 0.035 (2) 0.0209 (13) 0.0292 (16) 0.0023 (13) 0.0071 (14) 0.0038 (12)
N2 0.031 (2) 0.0184 (12) 0.0294 (14) 0.0000 (14) 0.0067 (15) 0.0076 (11)
N3 0.027 (2) 0.0232 (13) 0.0306 (16) −0.0034 (13) 0.0036 (14) 0.0093 (12)
C1 0.027 (2) 0.0294 (18) 0.0321 (19) 0.0061 (16) 0.0084 (16) 0.0039 (14)
C2 0.028 (2) 0.0216 (16) 0.0345 (19) 0.0068 (15) 0.0037 (16) 0.0054 (14)
C3 0.028 (2) 0.0198 (15) 0.0264 (17) −0.0006 (14) 0.0006 (15) 0.0019 (12)
O3 0.031 (2) 0.0273 (14) 0.071 (2) 0.0040 (13) 0.0092 (16) 0.0070 (14)
C4 0.024 (2) 0.0267 (18) 0.040 (2) 0.0058 (15) 0.0078 (17) 0.0102 (15)
C5 0.034 (3) 0.0256 (18) 0.036 (2) 0.0079 (16) 0.0064 (17) 0.0066 (15)
C6 0.026 (2) 0.0202 (16) 0.0323 (18) 0.0002 (14) −0.0008 (16) 0.0055 (13)
C7 0.028 (2) 0.0210 (16) 0.0304 (18) −0.0032 (15) 0.0004 (16) 0.0062 (14)
C8 0.026 (2) 0.0224 (15) 0.0249 (16) −0.0054 (15) −0.0014 (15) 0.0041 (13)
C9 0.027 (3) 0.0241 (17) 0.0360 (19) 0.0039 (15) 0.0084 (16) 0.0031 (14)
C10 0.031 (3) 0.0180 (16) 0.039 (2) 0.0031 (15) 0.0057 (17) 0.0062 (14)
C11 0.022 (2) 0.0199 (15) 0.0271 (17) −0.0009 (14) −0.0007 (15) 0.0050 (13)
C12 0.032 (2) 0.0184 (15) 0.0285 (17) 0.0034 (15) 0.0018 (16) 0.0005 (13)
C13 0.033 (3) 0.0164 (15) 0.0310 (18) −0.0025 (15) −0.0038 (16) 0.0022 (13)
C14 0.044 (3) 0.036 (2) 0.055 (3) −0.003 (2) −0.003 (2) 0.003 (2)

Geometric parameters (Å, º)

I1—Cd1 2.6909 (5) C8—C13 1.391 (5)
Cd1—I1i 2.6909 (5) C8—C9 1.393 (6)
Cd1—N1 2.297 (3) C9—C10 1.382 (6)
Cd1—N1i 2.297 (3) C10—C11 1.394 (5)
O1—C6 1.237 (4) C11—C12 1.395 (5)
O2—C11 1.357 (4) C12—C13 1.384 (6)
N1—C1 1.343 (5) C1—H1 0.9400
N1—C5 1.346 (6) C2—H2 0.9400
N2—N3 1.389 (4) O3—H3O 0.80 (3)
N2—C6 1.340 (5) C4—H4 0.9400
O2—H2O 0.81 (3) C5—H5 0.9400
N3—C7 1.270 (5) C7—H7 0.9400
C1—C2 1.376 (6) C9—H9 0.9400
C2—C3 1.380 (6) C10—H10 0.9400
N2—H2N 0.77 (5) C12—H12 0.9400
C3—C4 1.395 (5) C13—H13 0.9400
C3—C6 1.503 (5) C14—H14A 0.9700
O3—C14 1.418 (5) C14—H14B 0.9700
C4—C5 1.371 (6) C14—H14C 0.9700
C7—C8 1.471 (5)
I1—Cd1—N1 114.95 (8) O2—C11—C12 117.9 (3)
I1—Cd1—I1i 124.29 (2) O2—C11—C10 122.6 (3)
I1—Cd1—N1i 102.12 (9) C10—C11—C12 119.5 (3)
I1i—Cd1—N1 102.12 (9) C11—C12—C13 119.4 (4)
N1—Cd1—N1i 94.92 (11) C8—C13—C12 121.6 (4)
I1i—Cd1—N1i 114.95 (8) N1—C1—H1 119.00
Cd1—N1—C1 119.9 (3) C2—C1—H1 119.00
Cd1—N1—C5 122.3 (2) C1—C2—H2 120.00
C1—N1—C5 117.7 (3) C3—C2—H2 120.00
N3—N2—C6 119.3 (3) C14—O3—H3O 111 (5)
C11—O2—H2O 108 (4) C5—C4—H4 121.00
N2—N3—C7 114.3 (3) C3—C4—H4 120.00
N1—C1—C2 122.6 (4) N1—C5—H5 119.00
C1—C2—C3 119.5 (4) C4—C5—H5 119.00
C6—N2—H2N 125 (3) C8—C7—H7 119.00
N3—N2—H2N 115 (3) N3—C7—H7 119.00
C2—C3—C4 118.1 (3) C8—C9—H9 120.00
C2—C3—C6 117.7 (3) C10—C9—H9 120.00
C4—C3—C6 124.2 (4) C11—C10—H10 120.00
C3—C4—C5 119.1 (4) C9—C10—H10 120.00
N1—C5—C4 122.9 (4) C11—C12—H12 120.00
N2—C6—C3 116.1 (3) C13—C12—H12 120.00
O1—C6—C3 119.7 (3) C8—C13—H13 119.00
O1—C6—N2 124.0 (3) C12—C13—H13 119.00
N3—C7—C8 122.2 (4) O3—C14—H14A 110.00
C7—C8—C9 122.7 (3) O3—C14—H14B 109.00
C7—C8—C13 118.9 (4) O3—C14—H14C 109.00
C9—C8—C13 118.4 (3) H14A—C14—H14B 110.00
C8—C9—C10 120.8 (4) H14A—C14—H14C 109.00
C9—C10—C11 120.3 (4) H14B—C14—H14C 109.00
I1—Cd1—N1—C1 66.6 (3) C2—C3—C6—O1 27.7 (5)
I1i—Cd1—N1—C1 −156.1 (3) C2—C3—C4—C5 2.5 (6)
N1i—Cd1—N1—C1 −39.2 (3) C6—C3—C4—C5 −176.2 (4)
I1—Cd1—N1—C5 −109.3 (3) C2—C3—C6—N2 −147.5 (4)
I1i—Cd1—N1—C5 28.1 (3) C4—C3—C6—O1 −153.5 (4)
N1i—Cd1—N1—C5 144.9 (3) C3—C4—C5—N1 0.4 (6)
C1—N1—C5—C4 −1.5 (6) N3—C7—C8—C9 −4.1 (6)
Cd1—N1—C1—C2 −176.4 (3) N3—C7—C8—C13 173.8 (4)
C5—N1—C1—C2 −0.4 (6) C7—C8—C9—C10 176.7 (4)
Cd1—N1—C5—C4 174.5 (3) C13—C8—C9—C10 −1.2 (6)
C6—N2—N3—C7 −170.1 (4) C7—C8—C13—C12 −177.1 (4)
N3—N2—C6—O1 0.2 (6) C9—C8—C13—C12 0.9 (6)
N3—N2—C6—C3 175.1 (3) C8—C9—C10—C11 1.0 (6)
N2—N3—C7—C8 −178.8 (4) C9—C10—C11—O2 −180.0 (4)
N1—C1—C2—C3 3.3 (6) C9—C10—C11—C12 −0.5 (6)
C1—C2—C3—C6 174.6 (3) O2—C11—C12—C13 179.8 (4)
C1—C2—C3—C4 −4.3 (5) C10—C11—C12—C13 0.3 (6)
C4—C3—C6—N2 31.2 (5) C11—C12—C13—C8 −0.5 (6)

Symmetry code: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O3 0.77 (5) 2.09 (5) 2.849 (4) 174 (4)
O2—H2O···O1ii 0.81 (3) 1.89 (4) 2.656 (4) 159 (5)
O3—H3O···O2iii 0.80 (3) 2.03 (2) 2.828 (5) 173 (4)
C4—H4···O3 0.94 2.58 3.291 (5) 133
C7—H7···O3 0.94 2.56 3.327 (5) 140
C1—H1···I1iv 0.94 3.11 3.811 (4) 133

Symmetry codes: (ii) x+1/2, −y+3/2, −z; (iii) −x+2, −y+1, −z; (iv) −x−1/2, y+1/2, z.

References

  1. Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Lipkowski, J., White, J. M., Waterman, R., García-Granda, S., Zangrando, E., Bauzá, A. & Frontera, A. (2016). CrystEngComm, 18, 4587–4596.
  2. Akkurt, M., Khandar, A. A., Tahir, M. N., Afkhami, F. A. & Yazdi, S. A. H. (2014). Acta Cryst. E70, m213–m214. [DOI] [PMC free article] [PubMed]
  3. Deng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545–o2546.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Mahmoudi, G., Afkhami, F. A., Jena, H. S., Nematollahi, P., Esrafili, M. D., Garczarek, P., Van Hecke, K., Gargari, M. S. & Kirillov, A. M. (2016). New J. Chem. 40, 10116–10126.
  6. Malekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218–m219. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Stoe & Cie (2000). X-RED32, EXPOSE, CELL and INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.
  11. Yao, S.-Q., Zhu, M.-L., Lu, L.-P. & Gao, X.-L. (2006). Acta Cryst. C62, m183–m185. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016019575/sj5516sup1.cif

e-73-00028-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019575/sj5516Isup2.hkl

e-73-00028-Isup2.hkl (192.8KB, hkl)

CCDC reference: 1521096

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES