Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 1;73(Pt 1):38–40. doi: 10.1107/S2056989016019733

Crystal structure of (E)-9-({[4-(di­ethyl­amino)­phen­yl]imino}­meth­yl)-2,3,6,7-tetra­hydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol

Md Serajul Haque Faizi a, Musheer Ahmad b, Anatoly A Kapshuk c, Irina A Golenya c,*
PMCID: PMC5209767  PMID: 28083131

In the title compound, the hy­droxy group forms a intra­molecular hydrogen bond to the imine N atom and generates an S(6) ring motif. The conformation about the C=N bond is E, and the aromatic ring of the julolidine moiety is inclined to the benzene ring by 3.74 (14)°.

Keywords: crystal structure; Schiff base; julolidine; 8-hy­droxy­julolidine-9-carboxaldehyde; N,N-diethyl-p-phenyl­enedi­amine; hydrogen bonding; C—H⋯π inter­actions

Abstract

The title compound, C23H29N3O, was synthesized from the condensation reaction of 8-hy­droxy­julolidine-9-carbaldehyde and N,N-diethyl-p-phenyl­enedi­amine. The hy­droxy group forms a intra­molecular hydrogen bond to the imine N atom and generates an S(6) ring motif. The conformation about the C=N bond is E, and the aromatic ring of the julolidine moiety is inclined to the benzene ring by 3.74 (14)°. One of the fused non-aromatic rings of the julolidine moiety adopts an envelope conformation and the other has a screw-boat conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions involving the aromatic julolidine ring, forming slabs parallel to the bc plane. The tricyclic fragment of the julolidine ring and the azomethine C=N bond are disordered over two sets of sites with a refined occupancy ratio of 0.773 (3):0.227 (3).

Chemical context  

8-Hy­droxy­julolidine-9-carboxaldehyde is a well-known chromo­phore used in fluorescence chemosensors, and chemosensors with the julolidine moiety are usually soluble in aqueous solutions (Narayanaswamy & Govindaraju, 2012; Maity et al., 2011; Na et al., 2013; Noh et al., 2013). Compounds containing a julolidine group exhibit chromogenic naked-eye detection of copper, zinc, iron and aluminium ions as well as fluoride ions (Choi et al., 2015; Wang et al., 2013a ,b ; Kim et al., 2015; Jo et al., 2015). There are many reports in the literature on 8-hy­droxy­julolidine-9-carboxaldehyde-based Schiff bases and their application as metal sensors (Park et al., 2014; Lee et al., 2014; Kim et al., 2016). Julolidine dyes exhibit excited state intra­molecular proton transfer (Nano et al., 2015), and julolidine ring-containing compounds are also used as fluorescent probes for the measurement of cell membrane viscosity.graphic file with name e-73-00038-scheme1.jpg

The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic and polynuclear coordination compounds (Faizi & Sen, 2014; Faizi et al., 2015, 2016a ,b ). We report herein on the synthesis and crystal structure of a new julolidine derivative.

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The conformation about the azomethine N2=C11 bond [1.285 (3) A°] is E, and the C14—N2—C12—C13 torsion angle is 177.86 (5)°. The mol­ecule is non-planar, with the dihedral angle between benzene ring (C1–C6) and the aromatic ring (C12–C17) of the julolidine moiety being 3.74 (14)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 1). The minor component of the disordered fragment has been omitted for clarity.

Depending on the tautomers, two types of intra­molecular hydrogen bonds are observed in Schiff bases: O—H⋯N in phenol–imine and N—H⋯O in keto–amine tautomers. The present analysis shows that the title compound exists in the phenol–imine form (Fig. 1). It exhibits an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring motif (Fig. 1 and Table 1). This intra­molecular O—H⋯N hydrogen bond has been detected previously in julolidine derivatives (Barbero et al., 2012). The C13—O1 [1.344 (2) Å] bond length is in agreement with the values reported for similar compounds, viz. 5-di­ethyl­amino-2-[(E)-(2,4-di­meth­oxy­phen­yl)imino­meth­yl]phenol and 8-{(E)-[(4-chloro­phen­yl)imino]­meth­yl}-1,1,7,7-tetra­methyl-1,2,3,5,6,7-hexa­hydro­pyrido[3,2,1-ij]quinolin-9-ol (Kantar et al., 2013). One of the fused non-aromatic rings of the julolidine moiety (N1/C14/C15/C18–C20) adopts an envelope conformation while the other (N1/C15/C16/C21–C23) has a screw-boat conformation.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.83 2.557 (4) 147
C7—H7ACg1i 0.97 2.79 3.574 (3) 138
C20—H20BCg1ii 0.97 2.62 3.521 (3) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked by C—H⋯π inter­actions (Table 1), involving the aromatic julolidine ring, forming layers lying parallel to the bc plane, as illustrated in Fig. 2.

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title compound. The C—H⋯π inter­actions are shown as dashed lines (see Table 1) and the minor component of the disordered fragment has been omitted for clarity.

Database survey  

There are very few examples of similar compounds in the literature and, to the best of our knowledge, the new fluorescent chemosensor for the selective detection of Zn2+ in aqueous solution, mentioned in the Chemical context section (Choi et al., 2015), has not been characterized crystallographically. A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) gave 121 hits for the julolidine moiety. Of these, six have an OH group in position 8, and four also have a C=N group in position 1. Of the latter, one compound, viz. 9-{[(4-chlorophen­yl)imino]­meth­yl}-1,1,7,7-tetra­methyl-2,3,6,7-tetra­hydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (CSD refcode: IGALUZ; Kantar et al., 2013), resembles the title compound and also exists in the phenol–imine form with an intra­molecular O—H⋯N hydrogen bond.

Synthesis and crystallization  

An ethano­lic solution of 8-hy­droxy­julolidine-9-carboxaldehyde (100 mg, 0.46 mmol) was added to N,N-diethyl-p-phenyl­enedi­amine (75 mg, 0.46 mmol) in absolute ethanol (3 ml). Two drops of HCl were added to the reaction solution and it was stirred for 30 min at room temperature. The resulting yellow precipitate was recovered by filtration, washed several times with a small portions of ice EtOH and then with diethyl ether to give 130 mg (78%) of the title compound. Colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained within three days by slow evaporation of a solution in methanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were located from difference Fourier maps but in the final cycles of refinement they were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.93–0.98 Å with U iso(H) = 1.5U eq(O, C-meth­yl) and 1.2U eq(C) for other H atoms. The tricyclic fragment of the julolidine ring and the azomethine C=N bond are disordered over two sets of sites with a refined occupancy ratio of 0.773 (3):0.227 (3). The non-hydrogen atoms of the major fraction were refined anisotropically while those of the minor fraction were refined isotropically, and one disordered atom, C21A, is probably further disordered, but this was not corrected for. The bond lengths C1—N2 and C1—N2A were refined with distance restraints of 1.40 (2) Å.

Table 2. Experimental details.

Crystal data
Chemical formula C23H29N3O
M r 363.49
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.565 (2), 8.0504 (16), 20.665 (4)
β (°) 97.68 (3)
V3) 1906.7 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.18 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005)
T min, T max 0.894, 0.943
No. of measured, independent and observed [I > 2σ(I)] reflections 15990, 3900, 2582
R int 0.077
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.064, 0.150, 1.06
No. of reflections 3900
No. of parameters 286
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.25

Computer programs: APEX2 and SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016019733/su5338sup1.cif

e-73-00038-sup1.cif (581.8KB, cif)

Supporting information file. DOI: 10.1107/S2056989016019733/su5338Isup2.cml

CCDC reference: 1521905

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Taras Shevchenko University, Kyiv, Ukraine, for financial support, and to Dr Igor Fritsky and Dr Graham Smith for valuable discussions.

supplementary crystallographic information

Crystal data

C23H29N3O F(000) = 784
Mr = 363.49 Dx = 1.266 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.565 (2) Å Cell parameters from 1274 reflections
b = 8.0504 (16) Å θ = 2.8–25.3°
c = 20.665 (4) Å µ = 0.08 mm1
β = 97.68 (3)° T = 293 K
V = 1906.7 (7) Å3 Block, colourless
Z = 4 0.18 × 0.14 × 0.11 mm

Data collection

Bruker APEXII CCD diffractometer 3900 independent reflections
Radiation source: fine-focus sealed tube 2582 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromator Rint = 0.077
Detector resolution: 9 pixels mm-1 θmax = 26.4°, θmin = 2.7°
φ scans and ω scans with κ offset h = −12→14
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −10→10
Tmin = 0.894, Tmax = 0.943 l = −25→25
15990 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064 H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0313P)2 + 1.5846P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3900 reflections Δρmax = 0.33 e Å3
286 parameters Δρmin = −0.25 e Å3
2 restraints Extinction correction: SHELXL2014 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0087 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N3 0.95181 (17) 0.9756 (2) 0.12926 (9) 0.0289 (5)
C1 0.8227 (2) 0.9508 (3) 0.31028 (11) 0.0267 (6)
C2 0.9203 (2) 1.0455 (3) 0.30272 (11) 0.0267 (6)
H2A 0.9582 1.1033 0.3384 0.032*
C3 0.9622 (2) 1.0554 (3) 0.24346 (11) 0.0250 (5)
H3A 1.0274 1.1207 0.2399 0.030*
C4 0.9085 (2) 0.9688 (3) 0.18799 (11) 0.0242 (5)
C5 0.8084 (2) 0.8765 (3) 0.19602 (12) 0.0287 (6)
H5A 0.7691 0.8196 0.1606 0.034*
C6 0.7677 (2) 0.8689 (3) 0.25534 (12) 0.0299 (6)
H6A 0.7010 0.8069 0.2589 0.036*
C7 0.8953 (2) 0.8891 (3) 0.07152 (11) 0.0301 (6)
H7A 0.8613 0.7867 0.0849 0.036*
H7B 0.9537 0.8603 0.0438 0.036*
C8 0.8010 (2) 0.9924 (3) 0.03270 (11) 0.0334 (6)
H8A 0.7665 0.9305 −0.0047 0.050*
H8B 0.7422 1.0193 0.0596 0.050*
H8C 0.8345 1.0929 0.0185 0.050*
C9 1.0547 (2) 1.0715 (3) 0.12163 (11) 0.0289 (6)
H9A 1.0537 1.1734 0.1466 0.035*
H9B 1.0526 1.1015 0.0760 0.035*
C10 1.1672 (2) 0.9792 (3) 0.14382 (12) 0.0342 (6)
H10A 1.2325 1.0485 0.1377 0.051*
H10B 1.1708 0.9513 0.1892 0.051*
H10C 1.1697 0.8794 0.1186 0.051*
O1 0.61126 (18) 0.7817 (3) 0.42135 (9) 0.0284 (6) 0.773 (3)
H1 0.6486 0.8056 0.3916 0.034* 0.773 (3)
N1 0.5791 (6) 0.9127 (8) 0.6414 (3) 0.0271 (15) 0.773 (3)
N2 0.7705 (3) 0.9226 (4) 0.36617 (15) 0.0236 (8) 0.773 (3)
C11 0.8123 (3) 0.9873 (3) 0.42118 (16) 0.0208 (7) 0.773 (3)
H11 0.8803 1.0502 0.4242 0.025* 0.773 (3)
C12 0.75428 (19) 0.9631 (3) 0.47925 (8) 0.0209 (7) 0.773 (3)
C13 0.65542 (19) 0.8636 (2) 0.47575 (8) 0.0190 (8) 0.773 (3)
C14 0.59674 (17) 0.8471 (3) 0.52987 (10) 0.0229 (7) 0.773 (3)
C15 0.6369 (2) 0.9301 (3) 0.58749 (8) 0.0236 (10) 0.773 (3)
C16 0.7358 (2) 1.0296 (3) 0.59099 (7) 0.0225 (7) 0.773 (3)
C17 0.79445 (17) 1.0461 (2) 0.53687 (9) 0.0245 (7) 0.773 (3)
H17A 0.8606 1.1127 0.5392 0.029* 0.773 (3)
C18 0.4822 (3) 0.8028 (4) 0.64386 (18) 0.0275 (8) 0.773 (3)
H18A 0.4100 0.8642 0.6333 0.033* 0.773 (3)
H18B 0.4845 0.7595 0.6878 0.033* 0.773 (3)
C19 0.4846 (3) 0.6604 (4) 0.59677 (19) 0.0279 (8) 0.773 (3)
H19A 0.4141 0.5946 0.5958 0.033* 0.773 (3)
H19B 0.5511 0.5894 0.6106 0.033* 0.773 (3)
C20 0.4932 (3) 0.7308 (4) 0.52849 (15) 0.0260 (7) 0.773 (3)
H20A 0.5014 0.6401 0.4985 0.031* 0.773 (3)
H20B 0.4221 0.7904 0.5128 0.031* 0.773 (3)
C21 0.5959 (5) 1.0430 (7) 0.6951 (2) 0.0239 (11) 0.773 (3)
H21A 0.5196 1.0810 0.7034 0.029* 0.773 (3)
H21B 0.6333 0.9908 0.7348 0.029* 0.773 (3)
C22 0.6643 (5) 1.1862 (8) 0.6814 (3) 0.0324 (13) 0.773 (3)
H22A 0.6863 1.2493 0.7212 0.039* 0.773 (3)
H22B 0.6186 1.2577 0.6500 0.039* 0.773 (3)
C23 0.7737 (3) 1.1264 (5) 0.65402 (19) 0.0279 (9) 0.773 (3)
H23A 0.8212 1.2208 0.6451 0.034* 0.773 (3)
H23B 0.8197 1.0556 0.6856 0.034* 0.773 (3)
O1A 0.8436 (7) 1.0727 (9) 0.5042 (4) 0.034 (2)* 0.227 (3)
H1AA 0.8521 1.0552 0.4660 0.051* 0.227 (3)
N1A 0.5787 (18) 0.935 (3) 0.6525 (10) 0.009 (4)* 0.227 (3)
N2A 0.8007 (11) 0.9666 (15) 0.3807 (6) 0.023 (3)* 0.227 (3)
C11A 0.7106 (9) 0.8852 (13) 0.4005 (5) 0.025 (2)* 0.227 (3)
H11A 0.6618 0.8214 0.3709 0.030* 0.227 (3)
C12A 0.6880 (9) 0.8961 (12) 0.4695 (3) 0.028 (4)* 0.227 (3)
C13A 0.7477 (7) 0.9960 (11) 0.5177 (5) 0.025 (3)* 0.227 (3)
C14A 0.7114 (9) 1.0041 (14) 0.5791 (4) 0.046 (5)* 0.227 (3)
C15A 0.6155 (9) 0.9122 (15) 0.5923 (3) 0.022 (3)* 0.227 (3)
C16A 0.5559 (7) 0.8122 (11) 0.5440 (4) 0.017 (3)* 0.227 (3)
C17A 0.5922 (8) 0.8041 (10) 0.4826 (3) 0.031 (3)* 0.227 (3)
H17B 0.5523 0.7372 0.4504 0.038* 0.227 (3)
C18A 0.4874 (14) 0.8190 (19) 0.6734 (7) 0.038 (4)* 0.227 (3)
H18C 0.5076 0.7940 0.7195 0.046* 0.227 (3)
H18D 0.4126 0.8753 0.6680 0.046* 0.227 (3)
C19A 0.4757 (11) 0.6612 (15) 0.6364 (6) 0.031 (3)* 0.227 (3)
H19C 0.4114 0.5969 0.6490 0.038* 0.227 (3)
H19D 0.5465 0.5963 0.6460 0.038* 0.227 (3)
C20A 0.4527 (11) 0.7013 (15) 0.5615 (7) 0.027 (3)* 0.227 (3)
H20C 0.3793 0.7599 0.5513 0.033* 0.227 (3)
H20D 0.4486 0.5992 0.5364 0.033* 0.227 (3)
C21A 0.607 (4) 1.042 (6) 0.694 (2) 0.131 (15)* 0.227 (3)
H21C 0.6512 0.9897 0.7323 0.157* 0.227 (3)
H21D 0.5369 1.0892 0.7081 0.157* 0.227 (3)
C22A 0.6852 (19) 1.190 (3) 0.6675 (9) 0.024 (5)* 0.227 (3)
H22C 0.6362 1.2647 0.6388 0.028* 0.227 (3)
H22D 0.7251 1.2540 0.7036 0.028* 0.227 (3)
C23A 0.7747 (14) 1.100 (2) 0.6295 (7) 0.029 (4)* 0.227 (3)
H23C 0.8229 1.1815 0.6109 0.035* 0.227 (3)
H23D 0.8251 1.0293 0.6588 0.035* 0.227 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N3 0.0334 (12) 0.0315 (11) 0.0207 (10) −0.0089 (10) 0.0000 (9) −0.0024 (9)
C1 0.0270 (13) 0.0232 (12) 0.0307 (13) 0.0075 (11) 0.0067 (11) 0.0096 (11)
C2 0.0303 (13) 0.0252 (12) 0.0235 (12) 0.0024 (11) 0.0000 (10) −0.0006 (10)
C3 0.0260 (13) 0.0222 (12) 0.0262 (12) −0.0031 (10) 0.0006 (10) 0.0023 (10)
C4 0.0264 (13) 0.0191 (11) 0.0253 (12) 0.0018 (10) −0.0027 (10) 0.0034 (10)
C5 0.0286 (13) 0.0250 (13) 0.0306 (13) −0.0022 (11) −0.0031 (11) 0.0027 (11)
C6 0.0250 (13) 0.0229 (12) 0.0412 (15) −0.0017 (11) 0.0018 (11) 0.0097 (11)
C7 0.0414 (15) 0.0241 (12) 0.0241 (12) −0.0074 (11) 0.0023 (11) −0.0038 (11)
C8 0.0442 (16) 0.0270 (13) 0.0267 (13) −0.0092 (12) −0.0038 (11) 0.0001 (11)
C9 0.0368 (14) 0.0293 (13) 0.0207 (12) −0.0080 (11) 0.0039 (10) −0.0007 (10)
C10 0.0367 (15) 0.0369 (15) 0.0291 (13) −0.0058 (12) 0.0041 (11) −0.0023 (12)
O1 0.0353 (13) 0.0284 (12) 0.0212 (11) −0.0021 (10) 0.0027 (9) −0.0041 (9)
N1 0.038 (2) 0.021 (3) 0.021 (3) 0.0025 (16) 0.0033 (19) −0.0086 (18)
N2 0.0244 (17) 0.0194 (16) 0.0268 (17) 0.0040 (14) 0.0029 (14) 0.0021 (13)
C11 0.0210 (15) 0.0143 (14) 0.0269 (18) 0.0029 (12) 0.0022 (13) 0.0026 (13)
C12 0.0241 (17) 0.0124 (14) 0.0252 (17) 0.0024 (13) −0.0008 (13) 0.0028 (13)
C13 0.0208 (19) 0.0129 (15) 0.0221 (16) 0.0025 (16) −0.0012 (13) −0.0030 (12)
C14 0.0276 (18) 0.0196 (16) 0.0222 (17) 0.0055 (14) 0.0054 (14) 0.0048 (13)
C15 0.033 (2) 0.0161 (17) 0.0201 (17) 0.0108 (16) −0.0008 (14) 0.0040 (13)
C16 0.0298 (18) 0.0170 (16) 0.0192 (16) 0.0081 (15) −0.0022 (15) 0.0061 (14)
C17 0.0245 (17) 0.0188 (15) 0.0278 (17) −0.0010 (14) −0.0060 (15) 0.0006 (14)
C18 0.0267 (18) 0.034 (2) 0.0224 (19) 0.0030 (15) 0.0054 (15) 0.0011 (17)
C19 0.0286 (18) 0.0233 (17) 0.032 (2) 0.0009 (14) 0.0030 (16) 0.0018 (16)
C20 0.0325 (18) 0.0235 (16) 0.0219 (16) 0.0062 (15) 0.0036 (14) 0.0007 (14)
C21 0.035 (2) 0.0291 (19) 0.0078 (14) 0.0111 (15) 0.0027 (12) −0.0008 (13)
C22 0.047 (3) 0.031 (2) 0.018 (2) 0.003 (2) 0.000 (2) −0.005 (2)
C23 0.035 (2) 0.0259 (19) 0.021 (2) −0.0021 (15) −0.0018 (17) −0.0045 (17)

Geometric parameters (Å, º)

N3—C4 1.375 (3) C19—C20 1.536 (4)
N3—C9 1.445 (3) C19—H19A 0.9700
N3—C7 1.458 (3) C19—H19B 0.9700
C1—C2 1.388 (3) C20—H20A 0.9700
C1—C6 1.391 (3) C20—H20B 0.9700
C1—N2 1.392 (4) C21—C22 1.447 (9)
C1—N2A 1.516 (12) C21—H21A 0.9700
C2—C3 1.378 (3) C21—H21B 0.9700
C2—H2A 0.9300 C22—C23 1.532 (7)
C3—C4 1.412 (3) C22—H22A 0.9700
C3—H3A 0.9300 C22—H22B 0.9700
C4—C5 1.404 (3) C23—H23A 0.9700
C5—C6 1.372 (3) C23—H23B 0.9700
C5—H5A 0.9300 O1A—C13A 1.331 (11)
C6—H6A 0.9300 O1A—H1AA 0.8200
C7—C8 1.514 (3) N1A—C21A 1.23 (4)
C7—H7A 0.9700 N1A—C15A 1.38 (2)
C7—H7B 0.9700 N1A—C18A 1.51 (3)
C8—H8A 0.9600 N2A—C11A 1.341 (16)
C8—H8B 0.9600 C11A—C12A 1.485 (12)
C8—H8C 0.9600 C11A—H11A 0.9300
C9—C10 1.515 (3) C12A—C13A 1.3900
C9—H9A 0.9700 C12A—C17A 1.3900
C9—H9B 0.9700 C13A—C14A 1.3900
C10—H10A 0.9600 C14A—C15A 1.3900
C10—H10B 0.9600 C14A—C23A 1.421 (16)
C10—H10C 0.9600 C15A—C16A 1.3900
O1—C13 1.344 (2) C16A—C17A 1.3900
O1—H1 0.8200 C16A—C20A 1.571 (14)
N1—C15 1.381 (6) C17A—H17B 0.9300
N1—C18 1.434 (8) C18A—C19A 1.479 (18)
N1—C21 1.521 (7) C18A—H18C 0.9700
N2—C11 1.285 (5) C18A—H18D 0.9700
C11—C12 1.464 (3) C19A—C20A 1.568 (17)
C11—H11 0.9300 C19A—H19C 0.9700
C12—C13 1.3900 C19A—H19D 0.9700
C12—C17 1.3900 C20A—H20C 0.9700
C13—C14 1.3900 C20A—H20D 0.9700
C14—C15 1.3900 C21A—C22A 1.64 (5)
C14—C20 1.517 (4) C21A—H21C 0.9700
C15—C16 1.3900 C21A—H21D 0.9700
C16—C17 1.3900 C22A—C23A 1.56 (2)
C16—C23 1.531 (4) C22A—H22C 0.9700
C17—H17A 0.9300 C22A—H22D 0.9700
C18—C19 1.506 (5) C23A—H23C 0.9700
C18—H18A 0.9700 C23A—H23D 0.9700
C18—H18B 0.9700
C4—N3—C9 121.33 (19) C14—C20—H20A 109.4
C4—N3—C7 121.8 (2) C19—C20—H20A 109.4
C9—N3—C7 116.83 (19) C14—C20—H20B 109.4
C2—C1—C6 117.3 (2) C19—C20—H20B 109.4
C2—C1—N2 129.3 (3) H20A—C20—H20B 108.0
C6—C1—N2 113.4 (2) C22—C21—N1 115.2 (5)
C2—C1—N2A 107.8 (5) C22—C21—H21A 108.5
C6—C1—N2A 134.9 (5) N1—C21—H21A 108.5
C3—C2—C1 121.3 (2) C22—C21—H21B 108.5
C3—C2—H2A 119.3 N1—C21—H21B 108.5
C1—C2—H2A 119.3 H21A—C21—H21B 107.5
C2—C3—C4 121.6 (2) C21—C22—C23 108.8 (5)
C2—C3—H3A 119.2 C21—C22—H22A 109.9
C4—C3—H3A 119.2 C23—C22—H22A 109.9
N3—C4—C5 121.9 (2) C21—C22—H22B 109.9
N3—C4—C3 121.6 (2) C23—C22—H22B 109.9
C5—C4—C3 116.5 (2) H22A—C22—H22B 108.3
C6—C5—C4 121.1 (2) C16—C23—C22 108.5 (3)
C6—C5—H5A 119.5 C16—C23—H23A 110.0
C4—C5—H5A 119.5 C22—C23—H23A 110.0
C5—C6—C1 122.2 (2) C16—C23—H23B 110.0
C5—C6—H6A 118.9 C22—C23—H23B 110.0
C1—C6—H6A 118.9 H23A—C23—H23B 108.4
N3—C7—C8 112.5 (2) C13A—O1A—H1AA 109.5
N3—C7—H7A 109.1 C21A—N1A—C15A 130 (3)
C8—C7—H7A 109.1 C21A—N1A—C18A 111 (3)
N3—C7—H7B 109.1 C15A—N1A—C18A 119.1 (16)
C8—C7—H7B 109.1 C11A—N2A—C1 119.3 (10)
H7A—C7—H7B 107.8 N2A—C11A—C12A 120.5 (10)
C7—C8—H8A 109.5 N2A—C11A—H11A 119.7
C7—C8—H8B 109.5 C12A—C11A—H11A 119.7
H8A—C8—H8B 109.5 C13A—C12A—C17A 120.0
C7—C8—H8C 109.5 C13A—C12A—C11A 126.0 (8)
H8A—C8—H8C 109.5 C17A—C12A—C11A 113.8 (8)
H8B—C8—H8C 109.5 O1A—C13A—C12A 117.8 (8)
N3—C9—C10 113.1 (2) O1A—C13A—C14A 122.1 (8)
N3—C9—H9A 109.0 C12A—C13A—C14A 120.0
C10—C9—H9A 109.0 C15A—C14A—C13A 120.0
N3—C9—H9B 109.0 C15A—C14A—C23A 119.5 (9)
C10—C9—H9B 109.0 C13A—C14A—C23A 120.4 (9)
H9A—C9—H9B 107.8 N1A—C15A—C14A 117.2 (11)
C9—C10—H10A 109.5 N1A—C15A—C16A 122.6 (11)
C9—C10—H10B 109.5 C14A—C15A—C16A 120.0
H10A—C10—H10B 109.5 C17A—C16A—C15A 120.0
C9—C10—H10C 109.5 C17A—C16A—C20A 121.0 (7)
H10A—C10—H10C 109.5 C15A—C16A—C20A 118.9 (7)
H10B—C10—H10C 109.5 C16A—C17A—C12A 120.0
C13—O1—H1 109.5 C16A—C17A—H17B 120.0
C15—N1—C18 123.8 (4) C12A—C17A—H17B 120.0
C15—N1—C21 119.4 (5) C19A—C18A—N1A 113.6 (13)
C18—N1—C21 115.1 (5) C19A—C18A—H18C 108.8
C11—N2—C1 120.9 (3) N1A—C18A—H18C 108.8
N2—C11—C12 120.8 (3) C19A—C18A—H18D 108.8
N2—C11—H11 119.6 N1A—C18A—H18D 108.8
C12—C11—H11 119.6 H18C—C18A—H18D 107.7
C13—C12—C17 120.0 C18A—C19A—C20A 109.0 (11)
C13—C12—C11 119.86 (18) C18A—C19A—H19C 109.9
C17—C12—C11 120.06 (18) C20A—C19A—H19C 109.9
O1—C13—C14 117.02 (18) C18A—C19A—H19D 109.9
O1—C13—C12 122.97 (18) C20A—C19A—H19D 109.9
C14—C13—C12 120.0 H19C—C19A—H19D 108.3
C13—C14—C15 120.0 C19A—C20A—C16A 108.1 (9)
C13—C14—C20 120.86 (18) C19A—C20A—H20C 110.1
C15—C14—C20 119.03 (18) C16A—C20A—H20C 110.1
N1—C15—C14 120.0 (3) C19A—C20A—H20D 110.1
N1—C15—C16 120.0 (3) C16A—C20A—H20D 110.1
C14—C15—C16 120.0 H20C—C20A—H20D 108.4
C17—C16—C15 120.0 N1A—C21A—C22A 112 (3)
C17—C16—C23 121.4 (2) N1A—C21A—H21C 109.2
C15—C16—C23 118.6 (2) C22A—C21A—H21C 109.2
C16—C17—C12 120.0 N1A—C21A—H21D 109.2
C16—C17—H17A 120.0 C22A—C21A—H21D 109.2
C12—C17—H17A 120.0 H21C—C21A—H21D 107.9
N1—C18—C19 111.4 (3) C23A—C22A—C21A 105 (2)
N1—C18—H18A 109.3 C23A—C22A—H22C 110.6
C19—C18—H18A 109.3 C21A—C22A—H22C 110.6
N1—C18—H18B 109.3 C23A—C22A—H22D 110.6
C19—C18—H18B 109.3 C21A—C22A—H22D 110.6
H18A—C18—H18B 108.0 H22C—C22A—H22D 108.8
C18—C19—C20 108.8 (3) C14A—C23A—C22A 108.1 (14)
C18—C19—H19A 109.9 C14A—C23A—H23C 110.1
C20—C19—H19A 109.9 C22A—C23A—H23C 110.1
C18—C19—H19B 109.9 C14A—C23A—H23D 110.1
C20—C19—H19B 109.9 C22A—C23A—H23D 110.1
H19A—C19—H19B 108.3 H23C—C23A—H23D 108.4
C14—C20—C19 111.0 (2)
C6—C1—C2—C3 −1.2 (3) N1—C18—C19—C20 −53.5 (4)
N2—C1—C2—C3 178.0 (3) C13—C14—C20—C19 149.3 (2)
N2A—C1—C2—C3 179.9 (5) C15—C14—C20—C19 −26.9 (3)
C1—C2—C3—C4 −0.6 (4) C18—C19—C20—C14 54.4 (3)
C9—N3—C4—C5 179.8 (2) C15—N1—C21—C22 5.9 (8)
C7—N3—C4—C5 0.9 (3) C18—N1—C21—C22 −159.6 (5)
C9—N3—C4—C3 0.2 (3) N1—C21—C22—C23 −46.1 (6)
C7—N3—C4—C3 −178.7 (2) C17—C16—C23—C22 139.8 (3)
C2—C3—C4—N3 −178.5 (2) C15—C16—C23—C22 −36.9 (4)
C2—C3—C4—C5 1.9 (3) C21—C22—C23—C16 60.4 (5)
N3—C4—C5—C6 178.9 (2) C2—C1—N2A—C11A −179.7 (9)
C3—C4—C5—C6 −1.5 (3) C6—C1—N2A—C11A 1.6 (15)
C4—C5—C6—C1 −0.2 (4) C1—N2A—C11A—C12A 179.0 (8)
C2—C1—C6—C5 1.5 (3) N2A—C11A—C12A—C13A 5.3 (14)
N2—C1—C6—C5 −177.8 (2) N2A—C11A—C12A—C17A −179.6 (9)
N2A—C1—C6—C5 −179.9 (7) C17A—C12A—C13A—O1A 175.5 (8)
C4—N3—C7—C8 87.5 (3) C11A—C12A—C13A—O1A −9.7 (10)
C9—N3—C7—C8 −91.5 (3) C17A—C12A—C13A—C14A 0.0
C4—N3—C9—C10 83.4 (3) C11A—C12A—C13A—C14A 174.9 (10)
C7—N3—C9—C10 −97.6 (2) O1A—C13A—C14A—C15A −175.3 (9)
C2—C1—N2—C11 −0.4 (4) C12A—C13A—C14A—C15A 0.0
C6—C1—N2—C11 178.8 (2) O1A—C13A—C14A—C23A 2.1 (12)
C1—N2—C11—C12 177.4 (2) C12A—C13A—C14A—C23A 177.3 (12)
N2—C11—C12—C13 2.7 (3) C21A—N1A—C15A—C14A 11 (4)
N2—C11—C12—C17 −174.1 (2) C18A—N1A—C15A—C14A −170.4 (12)
C17—C12—C13—O1 179.2 (2) C21A—N1A—C15A—C16A −164 (3)
C11—C12—C13—O1 2.4 (2) C18A—N1A—C15A—C16A 14 (2)
C17—C12—C13—C14 0.0 C13A—C14A—C15A—N1A −175.3 (14)
C11—C12—C13—C14 −176.8 (2) C23A—C14A—C15A—N1A 7.3 (13)
O1—C13—C14—C15 −179.2 (2) C13A—C14A—C15A—C16A 0.0
C12—C13—C14—C15 0.0 C23A—C14A—C15A—C16A −177.4 (12)
O1—C13—C14—C20 4.6 (2) N1A—C15A—C16A—C17A 175.1 (15)
C12—C13—C14—C20 −176.1 (2) C14A—C15A—C16A—C17A 0.0
C18—N1—C15—C14 4.7 (7) N1A—C15A—C16A—C20A −8.7 (15)
C21—N1—C15—C14 −159.5 (4) C14A—C15A—C16A—C20A 176.3 (9)
C18—N1—C15—C16 −174.9 (4) C15A—C16A—C17A—C12A 0.0
C21—N1—C15—C16 20.9 (7) C20A—C16A—C17A—C12A −176.2 (9)
C13—C14—C15—N1 −179.6 (4) C13A—C12A—C17A—C16A 0.0
C20—C14—C15—N1 −3.3 (4) C11A—C12A—C17A—C16A −175.4 (9)
C13—C14—C15—C16 0.0 C21A—N1A—C18A—C19A −162 (3)
C20—C14—C15—C16 176.2 (2) C15A—N1A—C18A—C19A 19 (2)
N1—C15—C16—C17 179.6 (4) N1A—C18A—C19A—C20A −54.2 (16)
C14—C15—C16—C17 0.0 C18A—C19A—C20A—C16A 57.0 (13)
N1—C15—C16—C23 −3.7 (4) C17A—C16A—C20A—C19A 149.1 (8)
C14—C15—C16—C23 176.8 (3) C15A—C16A—C20A—C19A −27.1 (11)
C15—C16—C17—C12 0.0 C15A—N1A—C21A—C22A 10 (5)
C23—C16—C17—C12 −176.7 (3) C18A—N1A—C21A—C22A −169 (2)
C13—C12—C17—C16 0.0 N1A—C21A—C22A—C23A −44 (4)
C11—C12—C17—C16 176.8 (2) C15A—C14A—C23A—C22A −42.8 (15)
C15—N1—C18—C19 25.3 (7) C13A—C14A—C23A—C22A 139.8 (12)
C21—N1—C18—C19 −169.9 (4) C21A—C22A—C23A—C14A 58 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C12–C17 ring.

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.82 1.83 2.557 (4) 147
C7—H7A···Cg1i 0.97 2.79 3.574 (3) 138
C20—H20B···Cg1ii 0.97 2.62 3.521 (3) 154

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z+1.

References

  1. Barbero, N., Barolo, C., Marabello, D., Buscaino, R., Gervasio, G. & Viscardi, G. (2012). Dyes Pigments, 92, 1177–1183.
  2. Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463–86472.
  4. Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016b). Acta Cryst. E72, 1366–1369. [DOI] [PMC free article] [PubMed]
  5. Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016a). Sens. Actuators B Chem. 222, 15–20.
  6. Faizi, M. S. H., Iskenderov, T. S. & Sharkina, N. O. (2015). Acta Cryst. E71, 28–30. [DOI] [PMC free article] [PubMed]
  7. Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Jo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. & Kim, C. (2015). New J. Chem. 39, 2580–2587.
  11. Kantar, E. N., Köysal, Y., Akdemir, N., Ağar, A. A. & Soylu, M. S. (2013). Acta Cryst. E69, o883. [DOI] [PMC free article] [PubMed]
  12. Kim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. & Kim, C. (2016). Dyes Pigments, 129, 43–53.
  13. Kim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 11229–11239.
  14. Lee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. & Kim, C. (2014). Dalton Trans. 43, 6650–6659. [DOI] [PubMed]
  15. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  16. Maity, D., Manna, A. K., Karthigeyan, D., Kundu, T. K., Pati, S. K. & Govindaraju, T. (2011). Chem. Eur. J. 17, 11152–11161. [DOI] [PubMed]
  17. Na, Y. J., Hwang, I. H., Jo, H. Y., Lee, S. A., Park, G. J. & Kim, C. (2013). Inorg. Chem. Commun. 35, 342–345.
  18. Nano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. & Ziessel, R. (2015). Chem. Commun. 51, 3351–3354. [DOI] [PubMed]
  19. Narayanaswamy, N. & Govindaraju, T. (2012). Sens. Actuators B Chem. 161, 304–310.
  20. Noh, J. Y., Kim, S., Hwang, I. H., Lee, G. Y., Kang, J., Kim, S. H., Min, J., Park, S., Kim, C. & Kim, J. (2013). Dyes Pigments, 99, 1016–1021.
  21. Park, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. & Kim, C. (2014). Tetrahedron, 70, 7429–7438.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  24. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  25. Wang, L., Li, H. & Cao, D. (2013a). Sens. Actuators B Chem. 181, 749–755.
  26. Wang, M., Wang, J., Xue, W. & Wu, A. (2013b). Dyes Pigments, 97, 475–480.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016019733/su5338sup1.cif

e-73-00038-sup1.cif (581.8KB, cif)

Supporting information file. DOI: 10.1107/S2056989016019733/su5338Isup2.cml

CCDC reference: 1521905

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES