Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 1;73(Pt 1):41–44. doi: 10.1107/S2056989016019368

Crystal structure of chlorido­[1-(4-nitro­phen­yl)thio­urea-κS]bis­(tri­phenyl­phosphane-κP)copper(I)

Arunpatcha Nimthong-Roldán a, Nichakan Promsuwhan b, Walailak Puetpaiboon b, Yupa Wattanakanjana b,*
PMCID: PMC5209768  PMID: 28083132

The mononuclear title complex contains a chloride, a 1-(4-nitro­phen­yl)thio­urea and two tri­phenyl­phosphane ligands, leading to a tetra­hedrally arranged ClP2S coordination set. N—H⋯Cl and C—H⋯O hydrogen bonds connect the mol­ecules into a three-dimensional network.

Keywords: crystal structure, N—H⋯Cl hydrogen bonding, intra- and inter­molecular hydrogen bonding

Abstract

The mononuclear mixed-ligand title complex, [CuCl(C7H7N3O2S)(C18H15P)2], displays a distorted tetra­hedral coordination sphere around the CuI atom, with two P atoms from two tri­phenyl­phosphane mol­ecules, one terminal S atom from a 1-(4-nitro­phen­yl)thio­urea mol­ecule and a chloride ion as ligands. An intra­molecular N—H⋯Cl hydrogen bond stabilizes the mol­ecular conformation [graph-set motif R 2 2(6)]. In the crystal, further N—H⋯Cl hydrogen bonds connect individual mol­ecules into zigzag chains parallel to [001]. The chains are linked by weak C—H⋯O hydrogen-bonding inter­actions into a three-dimensional network.

Chemical context  

Thio­urea and thio­urea derivatives constitute an inter­esting class of ligands, bearing a soft sulfur and a hard nitro­gen donor atom in the sense of the HSAB (hard and soft acids and bases) concept. Such ligands are of relevance in biological systems because they exhibit a moderate inhibitory potency on the diphenolase activity of tyrosinase (Liu et al., 2016), anti­microbial and cytotoxic activity (Bielenica et al., 2015) and are developed for anti-hepatitis C virus (HCV) activity (Khatri et al., 2015). Copper(I) complexes with thio­urea derivatives have received significant attention for several decades due to their anti­bacterial activity (Chetana et al., 2016), cytotoxic activity (Rauf et al., 2009), catalytic and oxidation properties (Gunasekaran et al., 2017). In this context, we report here on synthesis and crystal structure of the title compound, [CuCl(C7H7N3O2S)(C18H15P)2], (I).graphic file with name e-73-00041-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) comprises of one CuI atom, one chloride ligand, two tri­phenyl­phosphane (PPh3) ligands, and one 1-(4-nitro­phen­yl)thio­urea (NPTU) ligand. The distorted tetra­hedral coordination of the CuI atom results from binding to the chloride ligand, the P atoms of the two PPh3 ligands and the terminal S atom of the 1-(4-nitro­phen­yl)thio­urea ligand (Fig. 1). The distortion is evident from the angular range around the CuI atom [99.870 (15)–129.119 (16)°] and the disparate bond lengths (Table 1). The Cu—S distance in (I) is somewhat smaller than the values of 2.4148 (16) and 2.3942 (15) Å reported in mol­ecules A and B, respectively, of [CuI(PPh3)2(ptu)] (ptu is phenyl thio­urea) (Nimthong et al., 2008). The formation of an intra­molecular N—H⋯Cl hydrogen bond involving the primary amine functionality (N2—H2B; Table 2) creates a six-membered ring system with graph set motif Inline graphic(6).

Figure 1.

Figure 1

The mol­ecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity.

Table 1. Selected geometric parameters (Å, °).

Cu1—P2 2.2602 (4) Cu1—S1 2.3782 (4)
Cu1—P1 2.2671 (4) Cu1—Cl1 2.4023 (4)
       
P2—Cu1—P1 129.119 (16) P2—Cu1—Cl1 99.870 (15)
P2—Cu1—S1 101.267 (15) P1—Cu1—Cl1 109.823 (16)
P1—Cu1—S1 110.861 (15) S1—Cu1—Cl1 102.637 (15)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.88 (2) 2.35 (2) 3.1974 (14) 160 (2)
N2—H2B⋯Cl1 0.88 (1) 2.42 (2) 3.2504 (15) 158 (2)
N3—H3A⋯Cl1i 0.87 (1) 2.49 (2) 3.3199 (14) 158 (2)
C9—H9⋯O1ii 0.95 2.57 3.303 (2) 135
C30—H30⋯O2iii 0.95 2.70 3.386 (2) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, neighbouring mol­ecules are linked by further N—H⋯Cl hydrogen bonds between the NPTU NH2 (N2—H2A) and NHPh (N1—H3A) moieties and the chloride ligands into zigzag chains extending parallel to [001] (Fig. 2, Table 2). The chains are connected via weak C9—H9⋯O1 and C30—H30⋯O2 hydrogen bonds (Fig. 3, Table 2), leading to the formation of a three-dimensional network (Fig. 3).

Figure 2.

Figure 2

Part of the crystal structure of (I), showing inter­molecular N—H⋯Cl hydrogen bonds as dashed lines, forming a zigzag chain parallel to [001].

Figure 3.

Figure 3

Part of the crystal structure of (I), showing the three-dimensional network formed by inter­molecular C—H⋯O hydrogen bonds (shown as dashed lines).

Database survey  

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016) revealed no complexes with the 1-(4-nitro­phen­yl)thio­urea ligand, and only the crystal structure of the ligand itself has been reported (LONSEN; Xian et al., 2008). A search for phenyl­thio­urea ligands with substitutions on the phenyl ring yielded 34 hits. Of these, four hits were CuI complexes, namely IYUXOP01 (Li et al., 2006), TULXIJ, TULXUV (Grifasi et al., 2015) and TULXUV (Nimthong et al., 2008).

Synthesis and crystallization  

Tri­phenyl­phosphane (0.26 g, 0.99 mmol) was dissolved in 30 ml of aceto­nitrile at 338 K and then copper(I) chloride (0.1 g, 1.01 mmol) was added. The mixture was stirred for 3 h and then 1-(4-nitro­phen­yl)thio­urea, (0.2 g, 1.01 mmol) was added. The resulting reaction mixture was heated under reflux for 3 h during which the precipitate gradually disappeared. The resulting clear solution was filtered and left to evaporate at room temperature. The crystalline complex, which deposited upon standing for a couple of days, was filtered off and dried in vacuo (0.38 g, 45% yield). M.p. 483–485 K. IR bands (KBr, cm−1): 3066 (m), 3049 (m), 3017 (m), 2345 (w), 1961 (w), 1890 (w), 1814 (w), 1582 (w), 1474 (s), 1433 (s), 1307 (w), 1268 (w), 1176 (m), 1153 (m), 1088 (s), 1065 (m), 1024 (s), 994 (m), 916 (w), 852 (m), 741 (s), 692 (s).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 Å. Nitro­gen-bound H atoms were located in difference density maps and were refined with an N—H distance restraint of 0.88 (2) Å. U iso(H) values were set to 1.2U eq(C/N).

Table 3. Experimental details.

Crystal data
Chemical formula [CuCl(C7H7N3O2S)(C18H15P)2]
M r 820.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.6986 (1), 28.7847 (4), 11.8471 (1)
β (°) 106.3394 (9)
V3) 3828.28 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.45 × 0.32 × 0.20
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997)
T min, T max 0.746, 0.853
No. of measured, independent and observed [I > 2σ(I)] reflections 37561, 10435, 8243
R int 0.034
(sin θ/λ)max−1) 0.720
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.095, 1.10
No. of reflections 10435
No. of parameters 488
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.70

Computer programs: COLLECT (Nonius, 1998), HKL-3000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019368/wm5344sup1.cif

e-73-00041-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019368/wm5344Isup2.hkl

e-73-00041-Isup2.hkl (828KB, hkl)

CCDC reference: 1520741

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Department of Chemistry, Prince of Songkla University, is gratefully acknowledged. We would like to thank Dr Matthias Zeller for valuable suggestions and assistance with the X-ray structure determination and use of structure refinement programs.

supplementary crystallographic information

Crystal data

[CuCl(C7H7N3O2S)(C18H15P)2] F(000) = 1696
Mr = 820.74 Dx = 1.424 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.6986 (1) Å Cell parameters from 37561 reflections
b = 28.7847 (4) Å θ = 1.9–30.8°
c = 11.8471 (1) Å µ = 0.82 mm1
β = 106.3394 (9)° T = 100 K
V = 3828.28 (7) Å3 Plate, yellow
Z = 4 0.45 × 0.32 × 0.20 mm

Data collection

Nonius KappaCCD diffractometer 10435 independent reflections
Radiation source: fine focus X-ray tube 8243 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
ω and φ scans θmax = 30.8°, θmin = 1.9°
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) h = −15→16
Tmin = 0.746, Tmax = 0.853 k = −31→38
37561 measured reflections l = −15→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.4104P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.002
10435 reflections Δρmax = 0.53 e Å3
488 parameters Δρmin = −0.70 e Å3
3 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0016 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.28282 (2) 0.15638 (2) 0.54942 (2) 0.01735 (6)
O1 −0.17866 (13) 0.01265 (5) 0.98751 (12) 0.0385 (3)
N1 −0.18661 (13) 0.05452 (6) 1.00307 (13) 0.0286 (3)
S1 0.14096 (4) 0.14121 (2) 0.65448 (3) 0.01970 (9)
Cl1 0.27367 (4) 0.23943 (2) 0.52868 (3) 0.02252 (9)
P1 0.46802 (4) 0.13469 (2) 0.65603 (3) 0.01731 (9)
C1 0.58276 (14) 0.13035 (6) 0.57889 (14) 0.0193 (3)
P2 0.17975 (4) 0.13535 (2) 0.36507 (3) 0.01688 (9)
N2 0.26531 (13) 0.20750 (5) 0.78940 (12) 0.0226 (3)
H2A 0.2850 (17) 0.2247 (6) 0.8536 (14) 0.027*
H2B 0.2894 (17) 0.2142 (7) 0.7271 (15) 0.027*
O2 −0.25332 (12) 0.07159 (5) 1.05564 (12) 0.0357 (3)
C2 0.70247 (15) 0.14023 (6) 0.63207 (15) 0.0242 (3)
H2 0.7269 0.1515 0.7106 0.029*
C3 0.78635 (16) 0.13360 (6) 0.57006 (17) 0.0284 (4)
H3 0.8678 0.1406 0.6062 0.034*
N3 0.12426 (13) 0.17546 (5) 0.86177 (12) 0.0205 (3)
H3A 0.1444 (17) 0.1990 (6) 0.9099 (15) 0.025*
C4 0.63253 (17) 0.10666 (7) 0.40297 (16) 0.0305 (4)
H4 0.6086 0.0949 0.3249 0.037*
C6 0.75117 (17) 0.11684 (6) 0.45616 (16) 0.0298 (4)
H6 0.8086 0.1123 0.4142 0.036*
C7 0.25157 (14) 0.13084 (5) 0.24718 (13) 0.0185 (3)
C8 0.22295 (15) 0.09615 (6) 0.16151 (14) 0.0220 (3)
H8 0.1626 0.0741 0.1620 0.026*
C9 0.28264 (15) 0.09374 (6) 0.07539 (15) 0.0256 (4)
H9 0.2639 0.0697 0.0181 0.031*
C10 0.36928 (15) 0.12618 (6) 0.07284 (14) 0.0244 (3)
H10 0.4096 0.1245 0.0137 0.029*
C11 0.39707 (15) 0.16098 (6) 0.15629 (15) 0.0244 (4)
H11 0.4555 0.1835 0.1536 0.029*
C12 0.33950 (15) 0.16309 (6) 0.24439 (14) 0.0216 (3)
H12 0.3603 0.1866 0.3028 0.026*
C13 0.05888 (14) 0.17673 (5) 0.30754 (13) 0.0190 (3)
C14 −0.02848 (15) 0.18109 (6) 0.36695 (14) 0.0252 (4)
H14 −0.0266 0.1612 0.4315 0.030*
C15 −0.11740 (16) 0.21401 (7) 0.33257 (16) 0.0301 (4)
H15 −0.1775 0.2161 0.3721 0.036*
C16 −0.11927 (16) 0.24407 (6) 0.24056 (15) 0.0292 (4)
H16 −0.1803 0.2668 0.2173 0.035*
C17 −0.03195 (16) 0.24083 (6) 0.18273 (15) 0.0272 (4)
H17 −0.0324 0.2616 0.1203 0.033*
C18 0.05679 (15) 0.20707 (6) 0.21616 (14) 0.0221 (3)
H18 0.1163 0.2049 0.1759 0.027*
C19 0.10921 (15) 0.07869 (6) 0.36250 (14) 0.0219 (3)
C20 0.18067 (18) 0.04382 (6) 0.42833 (16) 0.0298 (4)
H20 0.2598 0.0508 0.4730 0.036*
C21 0.1372 (2) −0.00109 (7) 0.42928 (18) 0.0397 (5)
H21 0.1869 −0.0248 0.4727 0.048*
C22 0.0206 (2) −0.01094 (7) 0.36626 (17) 0.0409 (5)
H22 −0.0099 −0.0415 0.3677 0.049*
C23 −0.05114 (19) 0.02317 (7) 0.30175 (16) 0.0366 (5)
H23 −0.1309 0.0161 0.2591 0.044*
C24 −0.00719 (16) 0.06825 (7) 0.29855 (15) 0.0273 (4)
H24 −0.0566 0.0916 0.2529 0.033*
C25 0.53685 (14) 0.17298 (6) 0.78059 (13) 0.0189 (3)
C26 0.54102 (14) 0.22062 (6) 0.75712 (15) 0.0228 (3)
H26 0.5135 0.2316 0.6785 0.027*
C27 0.58508 (15) 0.25178 (6) 0.84823 (16) 0.0272 (4)
H27 0.5884 0.2840 0.8317 0.033*
C28 0.62437 (15) 0.23607 (7) 0.96356 (16) 0.0291 (4)
H28 0.6532 0.2575 1.0261 0.035*
C29 0.62144 (16) 0.18898 (7) 0.98716 (15) 0.0283 (4)
H29 0.6489 0.1782 1.0660 0.034*
C30 0.57845 (15) 0.15744 (6) 0.89593 (14) 0.0229 (3)
H30 0.5776 0.1252 0.9126 0.027*
C31 0.47481 (14) 0.07718 (6) 0.72334 (13) 0.0202 (3)
C32 0.39244 (15) 0.06663 (6) 0.78530 (14) 0.0236 (3)
H32 0.3346 0.0891 0.7906 0.028*
C33 0.39449 (16) 0.02369 (6) 0.83911 (14) 0.0264 (4)
H33 0.3390 0.0171 0.8821 0.032*
C34 0.47685 (18) −0.00944 (7) 0.83038 (16) 0.0333 (4)
H34 0.4779 −0.0389 0.8669 0.040*
C35 0.5581 (2) 0.00040 (7) 0.76808 (19) 0.0397 (5)
H35 0.6145 −0.0224 0.7616 0.048*
C36 0.55731 (18) 0.04345 (7) 0.71507 (17) 0.0316 (4)
H36 0.6135 0.0499 0.6728 0.038*
C38 0.17955 (14) 0.17619 (6) 0.77521 (13) 0.0191 (3)
C40 0.04170 (14) 0.14409 (6) 0.88460 (13) 0.0195 (3)
C41 −0.03251 (15) 0.16167 (6) 0.94837 (14) 0.0225 (3)
H41 −0.0313 0.1939 0.9654 0.027*
C42 −0.10781 (15) 0.13253 (6) 0.98702 (14) 0.0244 (4)
H42 −0.1569 0.1443 1.0321 0.029*
C43 −0.11000 (15) 0.08595 (6) 0.95871 (14) 0.0237 (3)
C44 −0.03983 (16) 0.06778 (6) 0.89303 (15) 0.0257 (4)
H44 −0.0438 0.0357 0.8736 0.031*
C45 0.03635 (16) 0.09711 (6) 0.85594 (14) 0.0245 (3)
H45 0.0851 0.0851 0.8108 0.029*
C5 0.54875 (15) 0.11370 (6) 0.46403 (15) 0.0261 (4)
H5 0.4672 0.1071 0.4270 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01643 (11) 0.01770 (11) 0.01733 (10) 0.00078 (7) 0.00379 (7) −0.00070 (7)
O1 0.0449 (9) 0.0264 (8) 0.0473 (8) −0.0121 (6) 0.0183 (7) 0.0012 (6)
N1 0.0257 (8) 0.0294 (9) 0.0295 (8) −0.0044 (6) 0.0058 (6) 0.0061 (6)
S1 0.0188 (2) 0.0219 (2) 0.01894 (18) −0.00284 (15) 0.00621 (14) −0.00332 (14)
Cl1 0.0282 (2) 0.01691 (19) 0.02100 (18) 0.00003 (15) 0.00450 (15) 0.00155 (14)
P1 0.0162 (2) 0.0165 (2) 0.01874 (19) 0.00010 (15) 0.00413 (15) 0.00061 (14)
C1 0.0185 (8) 0.0165 (8) 0.0230 (8) 0.0021 (6) 0.0059 (6) 0.0031 (6)
P2 0.0168 (2) 0.0162 (2) 0.01734 (19) −0.00007 (15) 0.00429 (14) −0.00065 (14)
N2 0.0227 (7) 0.0255 (8) 0.0204 (7) −0.0064 (6) 0.0075 (6) −0.0053 (6)
O2 0.0300 (7) 0.0390 (8) 0.0435 (8) −0.0004 (6) 0.0192 (6) 0.0092 (6)
C2 0.0221 (9) 0.0226 (9) 0.0285 (8) −0.0008 (7) 0.0082 (7) −0.0006 (7)
C3 0.0198 (9) 0.0265 (10) 0.0406 (10) −0.0020 (7) 0.0114 (7) 0.0005 (7)
N3 0.0241 (7) 0.0187 (7) 0.0205 (6) −0.0042 (6) 0.0092 (5) −0.0037 (5)
C4 0.0322 (10) 0.0332 (10) 0.0278 (9) 0.0032 (8) 0.0110 (7) −0.0021 (7)
C6 0.0296 (10) 0.0261 (9) 0.0395 (10) 0.0042 (8) 0.0191 (8) 0.0035 (8)
C7 0.0177 (8) 0.0185 (8) 0.0189 (7) 0.0037 (6) 0.0044 (6) 0.0020 (6)
C8 0.0216 (8) 0.0207 (8) 0.0236 (8) −0.0011 (6) 0.0062 (6) −0.0013 (6)
C9 0.0275 (9) 0.0255 (9) 0.0245 (8) 0.0007 (7) 0.0086 (7) −0.0041 (7)
C10 0.0257 (9) 0.0262 (9) 0.0238 (8) 0.0059 (7) 0.0113 (7) 0.0031 (6)
C11 0.0245 (9) 0.0200 (9) 0.0310 (9) −0.0005 (7) 0.0119 (7) 0.0026 (6)
C12 0.0219 (8) 0.0184 (8) 0.0248 (8) −0.0002 (6) 0.0069 (6) −0.0016 (6)
C13 0.0173 (8) 0.0170 (8) 0.0202 (7) −0.0005 (6) 0.0010 (6) −0.0032 (6)
C14 0.0198 (8) 0.0304 (10) 0.0257 (8) 0.0027 (7) 0.0066 (6) 0.0010 (7)
C15 0.0203 (9) 0.0369 (11) 0.0318 (9) 0.0054 (8) 0.0051 (7) −0.0041 (8)
C16 0.0235 (9) 0.0243 (9) 0.0334 (9) 0.0075 (7) −0.0026 (7) −0.0058 (7)
C17 0.0297 (10) 0.0202 (9) 0.0276 (8) 0.0015 (7) 0.0011 (7) 0.0010 (7)
C18 0.0232 (9) 0.0193 (8) 0.0226 (8) −0.0003 (6) 0.0045 (6) −0.0008 (6)
C19 0.0281 (9) 0.0194 (8) 0.0198 (7) −0.0040 (7) 0.0093 (6) −0.0022 (6)
C20 0.0374 (11) 0.0218 (9) 0.0308 (9) −0.0020 (8) 0.0109 (8) 0.0008 (7)
C21 0.0648 (15) 0.0209 (9) 0.0367 (10) −0.0006 (9) 0.0198 (10) 0.0030 (8)
C22 0.0719 (16) 0.0245 (10) 0.0339 (10) −0.0199 (10) 0.0271 (10) −0.0073 (8)
C23 0.0464 (12) 0.0380 (11) 0.0286 (9) −0.0224 (9) 0.0159 (8) −0.0115 (8)
C24 0.0295 (9) 0.0308 (10) 0.0231 (8) −0.0096 (8) 0.0099 (7) −0.0050 (7)
C25 0.0141 (7) 0.0198 (8) 0.0218 (7) 0.0000 (6) 0.0035 (6) −0.0002 (6)
C26 0.0177 (8) 0.0210 (9) 0.0286 (8) 0.0005 (6) 0.0047 (6) −0.0003 (6)
C27 0.0177 (8) 0.0219 (9) 0.0395 (10) −0.0013 (7) 0.0039 (7) −0.0043 (7)
C28 0.0202 (9) 0.0338 (10) 0.0327 (9) −0.0024 (7) 0.0061 (7) −0.0119 (8)
C29 0.0237 (9) 0.0380 (11) 0.0227 (8) −0.0008 (8) 0.0054 (7) −0.0041 (7)
C30 0.0181 (8) 0.0256 (9) 0.0248 (8) 0.0005 (7) 0.0058 (6) 0.0001 (6)
C31 0.0199 (8) 0.0171 (8) 0.0216 (7) −0.0008 (6) 0.0024 (6) 0.0002 (6)
C32 0.0221 (8) 0.0217 (9) 0.0274 (8) 0.0007 (7) 0.0077 (7) 0.0034 (6)
C33 0.0302 (9) 0.0241 (9) 0.0243 (8) −0.0057 (7) 0.0066 (7) 0.0022 (7)
C34 0.0477 (12) 0.0200 (9) 0.0321 (9) −0.0004 (8) 0.0112 (8) 0.0052 (7)
C35 0.0518 (13) 0.0247 (10) 0.0483 (12) 0.0136 (9) 0.0232 (10) 0.0101 (8)
C36 0.0371 (11) 0.0241 (9) 0.0385 (10) 0.0062 (8) 0.0188 (8) 0.0055 (7)
C38 0.0186 (8) 0.0187 (8) 0.0199 (7) 0.0017 (6) 0.0053 (6) 0.0015 (6)
C40 0.0203 (8) 0.0198 (8) 0.0180 (7) −0.0016 (6) 0.0046 (6) 0.0018 (6)
C41 0.0247 (9) 0.0197 (8) 0.0240 (8) 0.0015 (7) 0.0085 (6) 0.0006 (6)
C42 0.0235 (9) 0.0267 (9) 0.0250 (8) 0.0026 (7) 0.0099 (7) 0.0027 (6)
C43 0.0226 (9) 0.0243 (9) 0.0237 (8) −0.0029 (7) 0.0058 (6) 0.0039 (6)
C44 0.0305 (9) 0.0202 (9) 0.0266 (8) −0.0048 (7) 0.0083 (7) −0.0017 (6)
C45 0.0303 (9) 0.0214 (9) 0.0236 (8) −0.0009 (7) 0.0104 (7) −0.0030 (6)
C5 0.0212 (9) 0.0312 (10) 0.0255 (8) 0.0024 (7) 0.0059 (6) −0.0008 (7)

Geometric parameters (Å, º)

Cu1—P2 2.2602 (4) C16—H16 0.9500
Cu1—P1 2.2671 (4) C17—C18 1.395 (2)
Cu1—S1 2.3782 (4) C17—H17 0.9500
Cu1—Cl1 2.4023 (4) C18—H18 0.9500
O1—N1 1.227 (2) C19—C24 1.392 (2)
N1—O2 1.230 (2) C19—C20 1.396 (3)
N1—C43 1.471 (2) C20—C21 1.391 (3)
S1—C38 1.7031 (16) C20—H20 0.9500
P1—C1 1.8283 (16) C21—C22 1.387 (3)
P1—C31 1.8296 (16) C21—H21 0.9500
P1—C25 1.8362 (16) C22—C23 1.375 (3)
C1—C5 1.391 (2) C22—H22 0.9500
C1—C2 1.394 (2) C23—C24 1.400 (3)
P2—C19 1.8241 (17) C23—H23 0.9500
P2—C7 1.8258 (15) C24—H24 0.9500
P2—C13 1.8278 (16) C25—C30 1.389 (2)
N2—C38 1.324 (2) C25—C26 1.403 (2)
N2—H2A 0.882 (15) C26—C27 1.387 (2)
N2—H2B 0.882 (14) C26—H26 0.9500
C2—C3 1.394 (2) C27—C28 1.389 (3)
C2—H2 0.9500 C27—H27 0.9500
C3—C6 1.382 (3) C28—C29 1.386 (3)
C3—H3 0.9500 C28—H28 0.9500
N3—C38 1.3578 (19) C29—C30 1.393 (2)
N3—C40 1.403 (2) C29—H29 0.9500
N3—H3A 0.874 (14) C30—H30 0.9500
C4—C6 1.385 (3) C31—C36 1.392 (2)
C4—C5 1.387 (2) C31—C32 1.399 (2)
C4—H4 0.9500 C32—C33 1.388 (2)
C6—H6 0.9500 C32—H32 0.9500
C7—C12 1.393 (2) C33—C34 1.380 (3)
C7—C8 1.396 (2) C33—H33 0.9500
C8—C9 1.391 (2) C34—C35 1.387 (3)
C8—H8 0.9500 C34—H34 0.9500
C9—C10 1.385 (2) C35—C36 1.388 (3)
C9—H9 0.9500 C35—H35 0.9500
C10—C11 1.381 (2) C36—H36 0.9500
C10—H10 0.9500 C40—C45 1.391 (2)
C11—C12 1.394 (2) C40—C41 1.396 (2)
C11—H11 0.9500 C41—C42 1.384 (2)
C12—H12 0.9500 C41—H41 0.9500
C13—C18 1.386 (2) C42—C43 1.380 (2)
C13—C14 1.400 (2) C42—H42 0.9500
C14—C15 1.381 (3) C43—C44 1.383 (2)
C14—H14 0.9500 C44—C45 1.386 (2)
C15—C16 1.387 (3) C44—H44 0.9500
C15—H15 0.9500 C45—H45 0.9500
C16—C17 1.384 (3) C5—H5 0.9500
P2—Cu1—P1 129.119 (16) C24—C19—C20 119.30 (16)
P2—Cu1—S1 101.267 (15) C24—C19—P2 124.80 (14)
P1—Cu1—S1 110.861 (15) C20—C19—P2 115.88 (13)
P2—Cu1—Cl1 99.870 (15) C21—C20—C19 120.67 (19)
P1—Cu1—Cl1 109.823 (16) C21—C20—H20 119.7
S1—Cu1—Cl1 102.637 (15) C19—C20—H20 119.7
O1—N1—O2 123.66 (15) C22—C21—C20 119.5 (2)
O1—N1—C43 118.11 (15) C22—C21—H21 120.3
O2—N1—C43 118.21 (15) C20—C21—H21 120.3
C38—S1—Cu1 105.77 (6) C23—C22—C21 120.47 (18)
C1—P1—C31 102.01 (7) C23—C22—H22 119.8
C1—P1—C25 103.01 (7) C21—C22—H22 119.8
C31—P1—C25 103.74 (7) C22—C23—C24 120.35 (19)
C1—P1—Cu1 117.47 (5) C22—C23—H23 119.8
C31—P1—Cu1 114.17 (5) C24—C23—H23 119.8
C25—P1—Cu1 114.62 (5) C19—C24—C23 119.72 (18)
C5—C1—C2 119.14 (15) C19—C24—H24 120.1
C5—C1—P1 117.67 (12) C23—C24—H24 120.1
C2—C1—P1 123.07 (12) C30—C25—C26 119.18 (15)
C19—P2—C7 103.12 (7) C30—C25—P1 123.38 (13)
C19—P2—C13 106.11 (8) C26—C25—P1 117.34 (12)
C7—P2—C13 103.61 (7) C27—C26—C25 120.28 (16)
C19—P2—Cu1 111.81 (5) C27—C26—H26 119.9
C7—P2—Cu1 121.54 (5) C25—C26—H26 119.9
C13—P2—Cu1 109.40 (5) C26—C27—C28 120.18 (17)
C38—N2—H2A 119.8 (13) C26—C27—H27 119.9
C38—N2—H2B 116.9 (13) C28—C27—H27 119.9
H2A—N2—H2B 122.0 (18) C29—C28—C27 119.78 (16)
C1—C2—C3 120.03 (16) C29—C28—H28 120.1
C1—C2—H2 120.0 C27—C28—H28 120.1
C3—C2—H2 120.0 C28—C29—C30 120.32 (17)
C6—C3—C2 120.11 (17) C28—C29—H29 119.8
C6—C3—H3 119.9 C30—C29—H29 119.8
C2—C3—H3 119.9 C25—C30—C29 120.23 (16)
C38—N3—C40 130.96 (14) C25—C30—H30 119.9
C38—N3—H3A 112.4 (13) C29—C30—H30 119.9
C40—N3—H3A 116.6 (13) C36—C31—C32 118.63 (15)
C6—C4—C5 119.77 (17) C36—C31—P1 123.13 (13)
C6—C4—H4 120.1 C32—C31—P1 118.24 (12)
C5—C4—H4 120.1 C33—C32—C31 120.59 (16)
C3—C6—C4 120.21 (16) C33—C32—H32 119.7
C3—C6—H6 119.9 C31—C32—H32 119.7
C4—C6—H6 119.9 C34—C33—C32 120.21 (16)
C12—C7—C8 119.15 (14) C34—C33—H33 119.9
C12—C7—P2 118.20 (12) C32—C33—H33 119.9
C8—C7—P2 122.64 (12) C33—C34—C35 119.76 (17)
C9—C8—C7 120.13 (16) C33—C34—H34 120.1
C9—C8—H8 119.9 C35—C34—H34 120.1
C7—C8—H8 119.9 C34—C35—C36 120.32 (18)
C10—C9—C8 120.27 (16) C34—C35—H35 119.8
C10—C9—H9 119.9 C36—C35—H35 119.8
C8—C9—H9 119.9 C35—C36—C31 120.48 (17)
C11—C10—C9 120.01 (15) C35—C36—H36 119.8
C11—C10—H10 120.0 C31—C36—H36 119.8
C9—C10—H10 120.0 N2—C38—N3 114.81 (14)
C10—C11—C12 120.12 (16) N2—C38—S1 121.44 (12)
C10—C11—H11 119.9 N3—C38—S1 123.72 (12)
C12—C11—H11 119.9 C45—C40—C41 119.48 (15)
C7—C12—C11 120.30 (15) C45—C40—N3 124.38 (15)
C7—C12—H12 119.9 C41—C40—N3 115.95 (15)
C11—C12—H12 119.9 C42—C41—C40 120.65 (16)
C18—C13—C14 118.77 (15) C42—C41—H41 119.7
C18—C13—P2 122.95 (12) C40—C41—H41 119.7
C14—C13—P2 117.94 (12) C43—C42—C41 118.56 (15)
C15—C14—C13 120.59 (16) C43—C42—H42 120.7
C15—C14—H14 119.7 C41—C42—H42 120.7
C13—C14—H14 119.7 C42—C43—C44 122.06 (16)
C14—C15—C16 120.25 (16) C42—C43—N1 118.82 (15)
C14—C15—H15 119.9 C44—C43—N1 119.09 (16)
C16—C15—H15 119.9 C43—C44—C45 118.96 (16)
C17—C16—C15 119.76 (16) C43—C44—H44 120.5
C17—C16—H16 120.1 C45—C44—H44 120.5
C15—C16—H16 120.1 C44—C45—C40 120.24 (15)
C16—C17—C18 120.02 (16) C44—C45—H45 119.9
C16—C17—H17 120.0 C40—C45—H45 119.9
C18—C17—H17 120.0 C4—C5—C1 120.72 (16)
C13—C18—C17 120.58 (16) C4—C5—H5 119.6
C13—C18—H18 119.7 C1—C5—H5 119.6
C17—C18—H18 119.7
C31—P1—C1—C5 88.90 (14) C22—C23—C24—C19 −1.0 (3)
C25—P1—C1—C5 −163.75 (13) C1—P1—C25—C30 −107.34 (14)
Cu1—P1—C1—C5 −36.73 (15) C31—P1—C25—C30 −1.30 (16)
C31—P1—C1—C2 −87.15 (15) Cu1—P1—C25—C30 123.85 (13)
C25—P1—C1—C2 20.21 (16) C1—P1—C25—C26 76.16 (13)
Cu1—P1—C1—C2 147.23 (12) C31—P1—C25—C26 −177.80 (12)
C5—C1—C2—C3 0.3 (3) Cu1—P1—C25—C26 −52.65 (13)
P1—C1—C2—C3 176.27 (13) C30—C25—C26—C27 −0.6 (2)
C1—C2—C3—C6 −0.6 (3) P1—C25—C26—C27 176.02 (13)
C2—C3—C6—C4 0.1 (3) C25—C26—C27—C28 −0.6 (2)
C5—C4—C6—C3 0.6 (3) C26—C27—C28—C29 1.2 (3)
C19—P2—C7—C12 −163.25 (13) C27—C28—C29—C30 −0.5 (3)
C13—P2—C7—C12 86.29 (14) C26—C25—C30—C29 1.3 (2)
Cu1—P2—C7—C12 −37.05 (15) P1—C25—C30—C29 −175.13 (13)
C19—P2—C7—C8 15.84 (15) C28—C29—C30—C25 −0.8 (3)
C13—P2—C7—C8 −94.63 (14) C1—P1—C31—C36 3.32 (17)
Cu1—P2—C7—C8 142.04 (12) C25—P1—C31—C36 −103.47 (15)
C12—C7—C8—C9 0.6 (2) Cu1—P1—C31—C36 131.09 (14)
P2—C7—C8—C9 −178.45 (13) C1—P1—C31—C32 −176.22 (13)
C7—C8—C9—C10 −1.1 (3) C25—P1—C31—C32 76.99 (14)
C8—C9—C10—C11 0.3 (3) Cu1—P1—C31—C32 −48.45 (14)
C9—C10—C11—C12 1.1 (3) C36—C31—C32—C33 1.1 (3)
C8—C7—C12—C11 0.7 (2) P1—C31—C32—C33 −179.30 (13)
P2—C7—C12—C11 179.84 (13) C31—C32—C33—C34 −1.1 (3)
C10—C11—C12—C7 −1.6 (3) C32—C33—C34—C35 0.3 (3)
C19—P2—C13—C18 −127.51 (14) C33—C34—C35—C36 0.3 (3)
C7—P2—C13—C18 −19.27 (15) C34—C35—C36—C31 −0.3 (3)
Cu1—P2—C13—C18 111.71 (13) C32—C31—C36—C35 −0.5 (3)
C19—P2—C13—C14 59.38 (14) P1—C31—C36—C35 179.99 (16)
C7—P2—C13—C14 167.63 (13) C40—N3—C38—N2 −170.95 (16)
Cu1—P2—C13—C14 −61.39 (14) C40—N3—C38—S1 10.9 (3)
C18—C13—C14—C15 2.1 (3) Cu1—S1—C38—N2 6.43 (15)
P2—C13—C14—C15 175.53 (14) Cu1—S1—C38—N3 −175.53 (12)
C13—C14—C15—C16 −1.8 (3) C38—N3—C40—C45 29.7 (3)
C14—C15—C16—C17 0.3 (3) C38—N3—C40—C41 −155.33 (17)
C15—C16—C17—C18 0.7 (3) C45—C40—C41—C42 2.5 (3)
C14—C13—C18—C17 −1.1 (2) N3—C40—C41—C42 −172.74 (15)
P2—C13—C18—C17 −174.11 (13) C40—C41—C42—C43 −1.6 (3)
C16—C17—C18—C13 −0.3 (3) C41—C42—C43—C44 −0.2 (3)
C7—P2—C19—C24 −92.07 (15) C41—C42—C43—N1 177.84 (15)
C13—P2—C19—C24 16.52 (16) O1—N1—C43—C42 −172.69 (16)
Cu1—P2—C19—C24 135.72 (13) O2—N1—C43—C42 5.9 (2)
C7—P2—C19—C20 86.40 (13) O1—N1—C43—C44 5.4 (2)
C13—P2—C19—C20 −165.01 (12) O2—N1—C43—C44 −176.00 (16)
Cu1—P2—C19—C20 −45.80 (14) C42—C43—C44—C45 1.0 (3)
C24—C19—C20—C21 0.8 (3) N1—C43—C44—C45 −177.05 (15)
P2—C19—C20—C21 −177.76 (14) C43—C44—C45—C40 0.0 (3)
C19—C20—C21—C22 −1.5 (3) C41—C40—C45—C44 −1.7 (3)
C20—C21—C22—C23 1.0 (3) N3—C40—C45—C44 173.11 (16)
C21—C22—C23—C24 0.2 (3) C6—C4—C5—C1 −0.8 (3)
C20—C19—C24—C23 0.4 (2) C2—C1—C5—C4 0.4 (3)
P2—C19—C24—C23 178.87 (13) P1—C1—C5—C4 −175.79 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Cl1i 0.88 (2) 2.35 (2) 3.1974 (14) 160 (2)
N2—H2B···Cl1 0.88 (1) 2.42 (2) 3.2504 (15) 158 (2)
N3—H3A···Cl1i 0.87 (1) 2.49 (2) 3.3199 (14) 158 (2)
C9—H9···O1ii 0.95 2.57 3.303 (2) 135
C30—H30···O2iii 0.95 2.70 3.386 (2) 130

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y, −z+1; (iii) x+1, y, z.

References

  1. Bielenica, A., Stefańska, J., Stępień, K., Napiórkowska, A., Augustynowicz-Kopeć, E., Sanna, G., Madeddu, S., Boi, S., Giliberti, G., Wrzosek, M. & Struga, M. (2015). Eur. J. Med. Chem. 101, 111–125. [DOI] [PubMed]
  2. Chetana, P. R., Srinatha, B. S., Somashekar, M. N. & Policegoudra, M. N. (2016). J. Mol. Struct. 1106, 352–365.
  3. Grifasi, F., Chierotti, M. R., Garino, C., Gobetto, R., Priola, E., Diana, E. & Turci, F. (2015). Cryst. Growth Des. 15, 2929–2939.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Gunasekaran, N., Bhuvanesh, N. S. P. & KarvembuIn, R. (2017). Polyhedron, In the press.
  6. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  7. Khatri, N., Lather, V. & Madan, A. K. (2015). Chemom. Intell. Lab. Syst. 140, 13–21.
  8. Li, D., Sun, Y., Liu, S. & Hua, Z. (2006). J. Coord. Chem. 59, 403–408.
  9. Liu, P., Shu, C., Liu, L., Huang, Q. & Peng, Y. (2016). Bioorg. Med. Chem. 24, 866–1871. [DOI] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977. [DOI] [PMC free article] [PubMed]
  12. Nonius (1998). COLLECT. Nonius, Delft, The Netherlands.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Rauf, M. K., Imtiaz-ud-Din, Badshah, A., Gielen, M., Ebihara, M., de Vos, D. & Ahmed, S. (2009). J. Inorg. Biochem. 103, 1135–1144. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Xian, L., Wang, Y. & Zhang, B. (2008). Z. Kristallogr. New Cryst. Struct. 223, 411–412.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019368/wm5344sup1.cif

e-73-00041-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019368/wm5344Isup2.hkl

e-73-00041-Isup2.hkl (828KB, hkl)

CCDC reference: 1520741

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES