Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 1;73(Pt 1):45–47. doi: 10.1107/S2056989016019538

Crystal structure of 2-oxo-2H-chromen-3-yl 4-chloro­benzoate and Hirshfeld surface analysis

Eric Ziki a,*, Siaka Sosso b, Frédérica Mansilla-Koblavi a, Abdoulaye Djandé b, Rita Kakou-Yao a
PMCID: PMC5209769  PMID: 28083133

In the title compound, C16H9ClO4, the dihedral angle between the coumarin ring system [maximum deviation = 0.023 (1) Å] and the benzene ring is 73.95 (8)°.

Keywords: crystal structure, chromane, hydrogen bond, π–π inter­actions, quantum-chemical calculations, Hirshfeld surface analysis

Abstract

In the title compound, C16H9ClO4 the dihedral angle between the coumarin ring system [maximum deviation = 0.023 (1) Å] and the benzene ring is 73.95 (8)°. In the crystal, π–π inter­actions link the dimers into a three-dimensional framework. A quantum chemical calculation is in generally good agreement with the observed structure, although the calculated dihedral angle between the ring systems (85.7%) is somewhat larger than the observed value [73.95 (8)°]. Hirshfeld surface analysis has been used to confirm and qu­antify the supra­molecular inter­actions.

Chemical context  

Coumarin and its derivatives are widely recognized for their multiple biological activities, including anti­cancer (Lacy et al., 2004; Kostova, 2005), anti-inflammatory (Todeschini et al., 1998), anti­viral (Borges et al., 2005), anti-malarial (Agarwal et al., 2005) and anti­coagulant (Maurer et al., 1998) properties. As part of our studies in this area, we now describe the synthesis and crystal structure of the title compound, (I).graphic file with name e-73-00045-scheme1.jpg

Structural commentary  

In compound (I) (Fig. 1), the coumarin ring system is, as expected, almost planar [maximum deviation = 0.023 (1) Å] and is oriented at an angle of 73.95 (8)° with respect to the benzene ring. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the coumarin ring: the C3—C2 [1.335 (2) Å] and C2—C1 [1.456 (2) Å] bond lengths are shorter and longer, respectively, than those excepted for a Car—Car bond. This suggests that the electronic density is preferentially located in the C2—C3 bond at the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016; Ziki et al., 2016).

Figure 1.

Figure 1

The mol­ecular structure of compound (I), with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, weak aromatic π–π stacking inter­actions (Janiak, 2000) are present [Cg1⋯Cg2(1 − x, −y, 1 − z) = 3.4781 (10) Å and Cg2⋯Cg2(1 − x, 1 − y,1 − z) = 3.5644 (11) Å, where Cg1 is the centroid of the coumarin pyran ring and Cg2 is the centroid of the coumarin benzene ring], thus forming a three-dimensional supra­molecular network. A weak C11=O4⋯Cg3(1 − x, − y, −z) (π-ring) inter­action between O4 and a symmetry-related benzene ring (C6–C11, centroid Cg3) of is also present (Fig. 2).

Figure 2.

Figure 2

Partial packing diagram for (I), showing the π–π stacking and C—O⋯π inter­actions (dashed lines). The yellow dots are ring centroids. H atoms have been omitted for clarity.

Hirshfeld surface analysis  

Crystal Explorer3.1 (Wolff et al., 2012) was used to generate the Hirshfeld surface and two-dimensional fingerprint (FP) plots (Rohl et al., 2008). The analysis of intra­molecular and inter­molecular inter­actions through the mapping of d norm is permitted by the contact distances d i and d e from the Hirshfeld surface to the nearest atom inside and outside, respectively. In compound (I), there are four O atoms and a Cl atom that can potentially act as acceptors for hydrogen bonds, but one of O atoms and the H atom of the chloro­benzoate moiety are involved in the establishment of intra­molecular hydrogen bonds. The surface mapped over d norm displays four red spots that correspond to areas of close contact between the surface and the neighbouring environment and is shown in Fig. 3. The contributions from different contacts were selected by partial analysis of the FP plots (Fig. 4). C⋯C contacts correspond to inter­molecular π–π inter­actions.

Figure 3.

Figure 3

A view of the Hirshfeld surface mapped over d norm. The contact points (red) are labelled to indicate the atoms participating in the inter­molecular inter­actions.

Figure 4.

Figure 4

Two-dimensional fingerprint plots: (a) overall, and delineated into contributions from different contacts: (b) H⋯H, (c) H⋯O/O⋯H, (d) C⋯C, (e) H⋯C/C⋯H and (f) H⋯Cl/Cl⋯H.

The greatest contribution (26.5%) is from the H⋯O/O⋯H contacts, which appear as the highlighted red spot on the side of the surface (Figs. 3 and 4c ). The red spots in the middle of the surface correspond to C⋯C contacts appearing near d e = d i ≃1.7 and 1.8 Å (Fig. 4d ). As expected in organic compounds, the H⋯H contacts are important with a 24.7% contribution to Hirshfeld surface (Fig. 4b ). There are also H⋯C/C⋯H and H⋯Cl/Cl⋯H contacts, which make contributions of 14.5 and 12.7%, respectively (Figs. 4e and 4f ).

Quantum-chemical calculations  

Quantum-chemical calculations were performed and the results compared with the experimental analysis. An ab-initio Hartree–Fock (HF) method was used with the standard 6-31G basis set using the GAUSSIAN03 software package (Frisch et al., 2004; Dennington et al., 2007) to obtain the optimized mol­ecular structure. The computational results are in good agreement with the experimental crystallographic data (see Supplementary Tables S1 and S2). The dihedral angle between the coumarin ring and the chloro­benzoate ring for the calculated structure is 85.7°, which is larger than the value of 73.95 (8)° for the observed structure.

Synthesis and crystallization  

To a solution of 4-chloro­benzoyl chloride (6.17 × 10 −3 mol ≃ 0.8 ml) in dry tetra­hydro­furan (31 ml) was introduced dried tri­ethyl­amine (3 molar equivalents ≃ 2.6 ml). While stirring strongly, 6.17 × 10 −3 mol (1 g) of chroman-2,3-dione was added in small portions over 30 min. The reaction mixture was then refluxed for 4 h and poured into a separating funnel containing 40 ml of chloro­form. The solution was acidified with dilute hydro­chloro­ric acid until the pH was 2–3. The organic layer was extracted, washed with water until neutral, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and dissolved in a minimum of di­chloro­methane by heating under agitation. Hexane was added to this hot mixture until the formation of a new precipitate started, which dissolved in the resulting mixture upon heating. Upon cooling, yellow crystals of the title compound precipitated in a yield of 70%; m.p. 478–482 K.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions (C—H = 0.93 Å) and refined using a riding-model approximation with U iso(H) = 1.2U eq(C).

Table 1. Experimental details.

Crystal data
Chemical formula C16H9ClO4
M r 300.68
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 6.7866 (4), 7.1789 (3), 14.0981 (5)
α, β, γ (°) 94.098 (3), 93.461 (4), 106.154 (4)
V3) 655.75 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.72
Crystal size (mm) 0.12 × 0.12 × 0.08
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.737, 0.812
No. of measured, independent and observed [I > 2σ(I)] reflections 7634, 2409, 2109
R int 0.022
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.106, 1.05
No. of reflections 2409
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.49

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019538/hb7629sup1.cif

e-73-00045-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019538/hb7629Isup2.hkl

e-73-00045-Isup2.hkl (192.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016019538/hb7629Isup3.cml

CCDC reference: 1521043

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Spectropole Service of the faculty of Sciences (Aix-Marseille, France) for the use of the diffractometer.

supplementary crystallographic information

Crystal data

C16H9ClO4 Z = 2
Mr = 300.68 F(000) = 308
Triclinic, P1 Dx = 1.523 Mg m3
Hall symbol: -P 1 Melting point: 478 K
a = 6.7866 (4) Å Cu Kα radiation, λ = 1.54184 Å
b = 7.1789 (3) Å Cell parameters from 3886 reflections
c = 14.0981 (5) Å θ = 6.3–69.1°
α = 94.098 (3)° µ = 2.72 mm1
β = 93.461 (4)° T = 293 K
γ = 106.154 (4)° Prism, colourless
V = 655.75 (5) Å3 0.12 × 0.12 × 0.08 mm

Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas detector 2409 independent reflections
Radiation source: fine-focus sealed tube 2109 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
Detector resolution: 5.3048 pixels mm-1 θmax = 69.1°, θmin = 6.3°
ω scan h = −8→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −8→8
Tmin = 0.737, Tmax = 0.812 l = −17→16
7634 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.1948P] where P = (Fo2 + 2Fc2)/3
2409 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1899 (3) 0.0796 (2) 0.35706 (12) 0.0446 (4)
C2 0.3804 (3) 0.0653 (2) 0.31891 (11) 0.0422 (4)
C3 0.5634 (3) 0.1322 (2) 0.36885 (11) 0.0414 (4)
H3 0.6815 0.1187 0.3424 0.050*
C4 0.5771 (2) 0.2250 (2) 0.46354 (11) 0.0384 (3)
C5 0.7616 (3) 0.3026 (2) 0.52035 (13) 0.0475 (4)
H5 0.8848 0.2943 0.4975 0.057*
C6 0.7618 (3) 0.3918 (3) 0.61044 (14) 0.0549 (5)
H6 0.8856 0.4451 0.6475 0.066*
C7 0.5794 (3) 0.4022 (3) 0.64594 (12) 0.0534 (5)
H7 0.5813 0.4628 0.7067 0.064*
C8 0.3938 (3) 0.3229 (2) 0.59161 (12) 0.0474 (4)
H8 0.2705 0.3270 0.6158 0.057*
C9 0.3956 (2) 0.2379 (2) 0.50103 (11) 0.0390 (3)
C10 0.3047 (3) 0.0312 (3) 0.15135 (12) 0.0459 (4)
C11 0.2730 (2) −0.1155 (3) 0.06844 (12) 0.0458 (4)
C16 0.2973 (3) −0.2994 (3) 0.07788 (13) 0.0525 (4)
H16 0.3335 −0.3326 0.1377 0.063*
C15 0.2683 (3) −0.4333 (3) −0.00072 (14) 0.0599 (5)
H15 0.2832 −0.5568 0.0058 0.072*
C14 0.2170 (3) −0.3809 (4) −0.08894 (14) 0.0626 (6)
C13 0.1904 (3) −0.1999 (4) −0.10068 (13) 0.0649 (6)
H13 0.1534 −0.1680 −0.1607 0.078*
C12 0.2200 (3) −0.0667 (3) −0.02135 (13) 0.0555 (5)
H12 0.2042 0.0564 −0.0282 0.067*
Cl1 0.18104 (10) −0.55203 (13) −0.18674 (4) 0.0951 (3)
O1 0.20802 (17) 0.16486 (17) 0.44814 (8) 0.0444 (3)
O2 0.0204 (2) 0.0211 (2) 0.31579 (10) 0.0637 (4)
O3 0.3603 (2) −0.04346 (18) 0.23221 (8) 0.0516 (3)
O4 0.2900 (2) 0.1930 (2) 0.15125 (10) 0.0592 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0428 (9) 0.0444 (8) 0.0465 (9) 0.0127 (7) 0.0018 (7) 0.0042 (7)
C2 0.0515 (10) 0.0402 (8) 0.0374 (8) 0.0177 (7) 0.0038 (7) 0.0026 (6)
C3 0.0424 (9) 0.0431 (8) 0.0433 (8) 0.0176 (7) 0.0101 (7) 0.0082 (7)
C4 0.0411 (8) 0.0336 (7) 0.0420 (8) 0.0117 (6) 0.0044 (6) 0.0066 (6)
C5 0.0426 (9) 0.0461 (9) 0.0549 (10) 0.0139 (7) 0.0001 (7) 0.0097 (7)
C6 0.0597 (11) 0.0467 (9) 0.0538 (10) 0.0117 (8) −0.0144 (8) 0.0049 (8)
C7 0.0801 (13) 0.0438 (9) 0.0386 (8) 0.0230 (9) −0.0015 (8) 0.0018 (7)
C8 0.0601 (11) 0.0458 (9) 0.0420 (8) 0.0230 (8) 0.0084 (7) 0.0057 (7)
C9 0.0417 (8) 0.0346 (7) 0.0428 (8) 0.0134 (6) 0.0045 (6) 0.0069 (6)
C10 0.0369 (9) 0.0587 (10) 0.0442 (9) 0.0156 (7) 0.0051 (7) 0.0082 (7)
C11 0.0341 (8) 0.0648 (11) 0.0388 (8) 0.0140 (7) 0.0044 (6) 0.0048 (7)
C16 0.0515 (10) 0.0651 (11) 0.0407 (9) 0.0181 (8) 0.0000 (7) 0.0006 (8)
C15 0.0541 (11) 0.0709 (12) 0.0519 (10) 0.0169 (9) 0.0015 (8) −0.0073 (9)
C14 0.0401 (10) 0.0978 (16) 0.0434 (10) 0.0137 (10) 0.0043 (7) −0.0134 (10)
C13 0.0437 (10) 0.1146 (19) 0.0370 (9) 0.0235 (11) 0.0029 (7) 0.0066 (10)
C12 0.0432 (10) 0.0826 (13) 0.0446 (9) 0.0217 (9) 0.0061 (7) 0.0141 (9)
Cl1 0.0754 (4) 0.1412 (6) 0.0550 (3) 0.0214 (4) 0.0009 (3) −0.0395 (4)
O1 0.0383 (6) 0.0504 (6) 0.0464 (6) 0.0160 (5) 0.0069 (5) 0.0012 (5)
O2 0.0439 (7) 0.0792 (9) 0.0619 (8) 0.0120 (6) −0.0056 (6) −0.0029 (7)
O3 0.0686 (8) 0.0544 (7) 0.0369 (6) 0.0280 (6) 0.0000 (5) −0.0007 (5)
O4 0.0689 (9) 0.0586 (8) 0.0561 (8) 0.0273 (7) 0.0046 (6) 0.0092 (6)

Geometric parameters (Å, º)

C1—O2 1.206 (2) C8—H8 0.9300
C1—O1 1.366 (2) C9—O1 1.382 (2)
C1—C2 1.456 (2) C10—O4 1.193 (2)
C2—C3 1.335 (2) C10—O3 1.370 (2)
C2—O3 1.3809 (19) C10—C11 1.479 (2)
C3—C4 1.435 (2) C11—C16 1.390 (3)
C3—H3 0.9300 C11—C12 1.390 (2)
C4—C9 1.393 (2) C16—C15 1.381 (3)
C4—C5 1.395 (2) C16—H16 0.9300
C5—C6 1.380 (3) C15—C14 1.377 (3)
C5—H5 0.9300 C15—H15 0.9300
C6—C7 1.382 (3) C14—C13 1.381 (4)
C6—H6 0.9300 C14—Cl1 1.738 (2)
C7—C8 1.385 (3) C13—C12 1.385 (3)
C7—H7 0.9300 C13—H13 0.9300
C8—C9 1.378 (2) C12—H12 0.9300
O2—C1—O1 118.19 (16) C8—C9—C4 122.08 (16)
O2—C1—C2 125.73 (17) O1—C9—C4 120.91 (14)
O1—C1—C2 116.07 (14) O4—C10—O3 122.83 (17)
C3—C2—O3 120.59 (15) O4—C10—C11 127.29 (16)
C3—C2—C1 122.67 (15) O3—C10—C11 109.86 (15)
O3—C2—C1 116.26 (15) C16—C11—C12 119.31 (18)
C2—C3—C4 119.71 (15) C16—C11—C10 121.73 (16)
C2—C3—H3 120.1 C12—C11—C10 118.96 (18)
C4—C3—H3 120.1 C15—C16—C11 120.64 (18)
C9—C4—C5 118.11 (15) C15—C16—H16 119.7
C9—C4—C3 118.07 (15) C11—C16—H16 119.7
C5—C4—C3 123.81 (15) C14—C15—C16 118.9 (2)
C6—C5—C4 120.22 (17) C14—C15—H15 120.5
C6—C5—H5 119.9 C16—C15—H15 120.5
C4—C5—H5 119.9 C15—C14—C13 121.89 (19)
C5—C6—C7 120.47 (17) C15—C14—Cl1 118.0 (2)
C5—C6—H6 119.8 C13—C14—Cl1 120.05 (16)
C7—C6—H6 119.8 C14—C13—C12 118.72 (18)
C6—C7—C8 120.40 (17) C14—C13—H13 120.6
C6—C7—H7 119.8 C12—C13—H13 120.6
C8—C7—H7 119.8 C13—C12—C11 120.5 (2)
C9—C8—C7 118.70 (17) C13—C12—H12 119.7
C9—C8—H8 120.6 C11—C12—H12 119.7
C7—C8—H8 120.6 C1—O1—C9 122.54 (13)
C8—C9—O1 117.01 (15) C10—O3—C2 118.78 (14)
O2—C1—C2—C3 −179.51 (17) O4—C10—C11—C12 0.0 (3)
O1—C1—C2—C3 −0.5 (2) O3—C10—C11—C12 −178.60 (15)
O2—C1—C2—O3 −7.4 (3) C12—C11—C16—C15 −0.3 (3)
O1—C1—C2—O3 171.59 (13) C10—C11—C16—C15 −179.53 (16)
O3—C2—C3—C4 −172.69 (13) C11—C16—C15—C14 0.7 (3)
C1—C2—C3—C4 −0.9 (2) C16—C15—C14—C13 −1.1 (3)
C2—C3—C4—C9 1.5 (2) C16—C15—C14—Cl1 −179.94 (15)
C2—C3—C4—C5 −178.72 (15) C15—C14—C13—C12 1.1 (3)
C9—C4—C5—C6 −1.0 (2) Cl1—C14—C13—C12 179.94 (14)
C3—C4—C5—C6 179.23 (15) C14—C13—C12—C11 −0.7 (3)
C4—C5—C6—C7 1.1 (3) C16—C11—C12—C13 0.3 (3)
C5—C6—C7—C8 0.2 (3) C10—C11—C12—C13 179.57 (16)
C6—C7—C8—C9 −1.5 (3) O2—C1—O1—C9 −179.48 (15)
C7—C8—C9—O1 −178.39 (14) C2—C1—O1—C9 1.4 (2)
C7—C8—C9—C4 1.6 (2) C8—C9—O1—C1 179.09 (14)
C5—C4—C9—C8 −0.4 (2) C4—C9—O1—C1 −0.9 (2)
C3—C4—C9—C8 179.42 (14) O4—C10—O3—C2 6.6 (3)
C5—C4—C9—O1 179.60 (13) C11—C10—O3—C2 −174.68 (14)
C3—C4—C9—O1 −0.6 (2) C3—C2—O3—C10 −115.15 (18)
O4—C10—C11—C16 179.25 (18) C1—C2—O3—C10 72.60 (19)
O3—C10—C11—C16 0.6 (2)

References

  1. Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645–4650. [DOI] [PubMed]
  2. Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  3. Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916. [DOI] [PubMed]
  4. Dennington, R., Keith, T. & Millam, J. (2007). GAUSSVIEW4.1. Semichem Inc., Shawnee Mission, KS, USA.
  5. Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.
  6. Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. [DOI] [PMC free article] [PubMed]
  7. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3889.
  8. Kostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29–46. [DOI] [PubMed]
  9. Lacy, A. & O’Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811. [DOI] [PubMed]
  10. Maurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181–195. [DOI] [PubMed]
  11. Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  17. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.
  18. Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019538/hb7629sup1.cif

e-73-00045-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019538/hb7629Isup2.hkl

e-73-00045-Isup2.hkl (192.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016019538/hb7629Isup3.cml

CCDC reference: 1521043

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES