Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 1;73(Pt 1):63–67. doi: 10.1107/S2056989016019939

Crystal structures of bis­[(9S,13S,14S)-3-meth­oxy-17-methyl­morphinanium] tetra­chlorido­cobaltate and tetra­chlorido­cuprate

Eric Gauchat a, Alexander Y Nazarenko a,*
PMCID: PMC5209774  PMID: 28083138

In the crystal structures of title compounds, two identical protonated dextromethorphan cations are connected to tetra­chlorido­cobaltate (or tetra­chlorido­cuprate) anions via strong N—H⋯Cl hydrogen bonds, forming neutral ion associates

Keywords: crystal structure, dextromethorphan, tetra­chlorido­cobaltate, tetra­chlorido­cuprate, N—H⋯Cl hydrogen bonds

Abstract

(9S,13S,14S)-3-Meth­oxy-17-methyl­morphinan (dextromethorphan) forms two isostructural salts with (a) tetra­chlorido­cobaltate, namely bis­[(9S,13S,14S)-3-meth­oxy-17-methyl­morphinanium] tetra­chlorido­cobaltate, (C18H26NO)2[CoCl4], and (b) tetra­chlorido­cuprate, namely bis­[(9S,13S,14S)-3-meth­oxy-17-methyl­morphinanium] tetra­chlorido­cuprate, (C18H26NO)2[CuCl4]. The distorted tetra­hedral anions are located on twofold rotational axes. The dextromethorphan cation can be described as being composed of two ring systems, a tetra­hydro­naphthalene system A+B and a deca­hydro­isoquinolinium subunit C+D, that are nearly perpendicular to one another: the angle between mean planes of the A+B and C+D moieties is 78.8 (1)° for (a) and 79.0 (1)° for (b). Two symmetry-related cations of protonated dextromethorphan are connected to the tetra­chlorido­cobaltate (or tetra­chlorido­cuprate) anions via strong N—H⋯Cl hydrogen bonds, forming neutral ion associates. These associates are packed in the (001) plane with no strong attractive bonding between them. Both compounds are attractive crystalline forms for unambiguous identification of the dextromethorphan and, presumably, of its optical isomer, levomethorphan.

Chemical context  

Seemingly innocuous and common over-the-counter drugs have a wide range of uses to treat illness and relieve pain, but they can also lead to long-term abuse and fatalities. Dextromethorphan (systematic name (9S,13S,14S)-3-meth­oxy-17-methyl­morphinan) is a member of the Morphinan class of naturally occurring and semi-synthetic psychoactive drugs, chemically similar to morphine, codeine and oxycodone, and differing from these only by a few functional groups. It is commonly found in many cold and cough medicines. In high concentrations, dextromethorphan has effects similar to phencyclidine and ketamine, a dissociative anesthetic, which is known to induce visual hallucinations and a heightened sense of perceptual awareness (Bruera & Portenoy, 2010). The similarity to well-known substances of abuse that are highly controlled makes dextromethorphan an attractive target for recreational ingestion and purification from over-the-counter products.

Cobalt(II) compounds have been employed in color tests for alkaloid detection: e.g., the Scott reagent (Cole, 2003). However, color reactions are usually not very specific and may lead to numerous false positives. To complicate the issue, levomethorphan, an optical isomer of dextromethorphan, is a strong opiate drug and is restricted like morphine in the US and many other countries. Therefore, usual NMR and MS identification may be insufficient for clear identification of dextromethorphan and levomethorphan.

We suggest that easy-to-grow crystals of alkaloid metal complexes may provide a suitable analytical approach for unambiguous identification. As a part of this study, we report the crystal structures of two such compounds here.graphic file with name e-73-00063-scheme1.jpg

Structural commentary  

The protonated dextromethorphan cations are nearly identical (Figs. 1–3 ). In both cases, protonation as well as inter­action with the tetra­chlorido­cobaltate or tetra­chlorido­cuprate anions does not affect the geometry of the methorphan ring system (Fig. 4), leaving the shape of the organic mol­ecule intact. The derived mol­ecular dimensions within both structures are unexceptional and consistent with those known for similar mol­ecules (Gylbert & Carlström, 1977).

Figure 1.

Figure 1

The numbering scheme of the dextromethorphan tetra­chlorido­cobaltate complex (a) with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

The numbering scheme of the dextromethorphan tetra­chlorido­cuprate complex (b) with displacement ellipsoids drawn at the 50% probability level.

Figure 3.

Figure 3

Overlay of the dextromethorphan tetra­chlorido­cobaltate (green) and tetra­chlorido­cuprate (red) complexes.

Figure 4.

Figure 4

Overlay of the protonated dextromethorphan cation (a) and the dextromethorphan mol­ecule (refcode XAPTAK01).

There are four six-membered rings in a dextromethorphan mol­ecule. The aromatic ring A is practically planar with deviations less than 0.01 Å in all cases. The cyclo­hexene ring B can be described as a half-chair shifted towards an envelope conformation: atoms C10, C11, C12 and C13 are adjacent to the aromatic ring and therefore almost planar while C9 and C14 deviate from this plane in opposite directions: C9 − 0.191 (6) Å (a) and −0.173 (8) Å (b); C14 + 0.553 (5) Å (a) and +0.562 (8) Å (b). This half-chair conformation is known (Ibberson et al., 2008) for the unsubstituted cyclo­hexene mol­ecule in the solid state.

The cyclo­hexane C and piperidine B rings both have chair conformations. These two rings are nearly coplanar, with the angles between their mean planes being 7.8 (1)° (a) and 8.2 (2)° (b). As a result, the dextromethorphan cation can be described as two ring systems A+B and C+D, being nearly perpendicular to each other: the angle between the mean planes of the A+B and C+D moieties is 78.8 (1)° for (a) and 79.0 (1)° for (b).

The tetra­chlorido­cobaltate and tetra­chlorido­cuprate anions both have a distorted tetra­hedral geometry. In the cobalt complex, the Cl1—Co1—Cl2 angle is flattened to 116.59 (3)°, while in the copper analogue the Cl2—Cu1—Cl1 angle is 129.04 (4)°. The larger deviation from tetra­hedral geometry in the copper(II) compound is possibly due to the Jahn–Teller effect, as packing effects should be similar in both compounds.

Supra­molecular features  

The tetra­chlorido­cobaltate and tetra­chlorido­cuprate anions are located on twofold rotational axes. Two identical protonated dextromethorphan cations are connected to tetra­chlorido­cobaltate (or tetra­chlorido­cuprate) anions via strong N—H⋯Cl hydrogen bonds (Tables 1 and 2), thus forming neutral ion associates (Fig. 5). These associates are packed into layers in the (001) plane (Fig. 6) with no strong attractive bonding between them. Methyl groups adjacent to the protonated nitro­gen atoms separate the tetra­chlorido­metalate anions, thus reducing electrostatic repulsion between them. Close packing and electrostatic inter­action with anion results in several short C—H⋯Cl contacts (Tables 1 and 2).

Table 1. Hydrogen-bond geometry (Å, °) for (a) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.93 (4) 2.26 (4) 3.145 (2) 158 (4)
C10—H10B⋯Cl2i 0.97 (3) 2.71 (2) 3.609 (3) 153 (1)
C17—H17B⋯Cl2ii 0.98 (3) 2.75 (3) 3.615 (4) 148 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (b) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.81 (6) 2.46 (6) 3.207 (4) 154 (5)
C10—H10A⋯Cl2i 0.99 2.83 3.754 (5) 156
C17—H17B⋯Cl2ii 0.98 2.68 3.590 (5) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 5.

Figure 5

Two dextromethorphan cations forming an ion associate with the tetra­chlorido­cobaltate dianion. Hydrogen bonds are drawn as dashed lines.

Figure 6.

Figure 6

Packing diagram of the ion associates in structure (a), viewed along [010].

The layers assemble in the 3D crystal (Fig. 6) via weak inter­molecular forces: the only specific inter-layer contact is C15—H15B⋯O1 with C⋯O distances too long to be considered a strong hydrogen bond [3.473 (4) (a) and 3.507 (6) Å (b)].

Database survey  

There are three reported dextromethorphan structures deposited in the Cambridge Structural Database (CSD Version 5.37; Groom et al., 2016). Of these structures, two report structures of the neutral mol­ecule (refcodes XAPTAK and XAPTAK01), one of which (Swamy et al., 2005) refers to a room-temperature measurement and the other (Scheins et al., 2007) a high-quality charge-density investigation performed at 20 K.

A protonated form is also known in a form of the bromide salt (refcode DEXORP), in which one solvate water mol­ecule is connected to a protonated nitro­gen atom via a hydrogen bond (Gylbert & Carlström, 1977).

Synthesis and crystallization  

Dextromethorphan was isolated during the analysis of a proprietary cough syrup using a standard Pharmacopoeia procedure (WHO, 2016). GC–MS assay of the hexane solution shows dextromethorphan to be a main component, with a small admixture of menthol.

Dextromethorphan was positively identified using NMR and FTIR spectra. Slow evaporation of a hexane solution at 274 K yields crystals which were also identified as dextromethorphan (refcode XAPTAK; Swamy et al., 2005). Around 20 mg of the solid residue was treated with two drops of concentrated HCl and an excess of cobalt(II) chloride or copper(II) chloride. Overnight standing in a refrigerator yielded crystals of the title compounds. The colors of the resulting solids were characteristic with the tetra­chlorido­cobaltate(II) salt being blue and the tetra­chlorido­cuprate(II) salt yellow. The bright colors of the crystals make them easy to separate from possible crystalline impurities. We expect that levomethorphan would yield similar crystals with the opposite chirality.

Crystals suitable for X-ray investigation (Fig. 7) were cut from larger blocks before mounting on Mitigen loops.

Figure 7.

Figure 7

Crystals of the dextromethorphan tetra­chlorido­cobaltate (blue,left corner) and tetra­chlorido­cuprate (yellow) salts. The diagonal image sizes are ∼ 0.6 and 3 mm, respectively.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. In (a), the hydrogen atom H1 of the protonated amine was refined in an isotropic approximation; idealized methyl groups refined as rotating groups with stretchable bonds and U iso = 1.5U iso(C); all other hydrogen atoms were refined with riding coordinates and stretchable bonds with U iso = 1.2U iso(C). In (b), the hydrogen atom were treated in an similar fashion.

Table 3. Experimental details.

  (a) (b)
Crystal data
Chemical formula (C18H26NO)2[CoCl4] (C18H26NO)[CuCl4]
M r 745.52 750.13
Crystal system, space group Monoclinic, C2 Monoclinic, C2
Temperature (K) 173 173
a, b, c (Å) 13.8447 (6), 9.2316 (4), 14.7018 (6) 13.8066 (16), 9.2934 (12), 14.651 (3)
β (°) 99.605 (2) 99.318 (6)
V3) 1852.68 (14) 1855.1 (5)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.79 0.91
Crystal size (mm) 0.48 × 0.26 × 0.14 0.45 × 0.3 × 0.15
 
Data collection
Diffractometer Bruker PHOTON-100 CMOS Bruker PHOTON-100 CMOS
Absorption correction Multi-scan (SADABS, Bruker, 2015) Multi-scan (SADABS, Bruker, 2015)
T min, T max 0.761, 0.979 0.714, 0.933
No. of measured, independent and observed [I > 2σ(I)] reflections 43153, 4803, 4183 31097, 4243, 3521
R int 0.061 0.047
(sin θ/λ)max−1) 0.677 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.083, 1.04 0.039, 0.100, 1.08
No. of reflections 4803 4243
No. of parameters 224 209
No. of restraints 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.26 0.51, −0.33
Absolute structure Flack x determined using 1711 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 1463 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.000 (7) −0.005 (6)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) a, b. DOI: 10.1107/S2056989016019939/sj5517sup1.cif

e-73-00063-sup1.cif (2.4MB, cif)

Structure factors: contains datablock(s) a. DOI: 10.1107/S2056989016019939/sj5517asup2.hkl

e-73-00063-asup2.hkl (382.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016019939/sj5517asup4.cdx

Structure factors: contains datablock(s) b. DOI: 10.1107/S2056989016019939/sj5517bsup3.hkl

e-73-00063-bsup3.hkl (338.2KB, hkl)

CCDC references: 1522812, 1522811

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the State University of New York for acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

supplementary crystallographic information

(a) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocobaltate . Crystal data

(C18H26NO)2[CoCl4] F(000) = 786
Mr = 745.52 Dx = 1.336 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
a = 13.8447 (6) Å Cell parameters from 9174 reflections
b = 9.2316 (4) Å θ = 2.9–28.3°
c = 14.7018 (6) Å µ = 0.79 mm1
β = 99.605 (2)° T = 173 K
V = 1852.68 (14) Å3 Plate, blue
Z = 2 0.48 × 0.26 × 0.14 mm

(a) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocobaltate . Data collection

Bruker PHOTON-100 CMOS diffractometer 4183 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.061
φ and ω scans θmax = 28.8°, θmin = 2.8°
Absorption correction: multi-scan (SADABS, Bruker, 2015) h = −18→18
Tmin = 0.761, Tmax = 0.979 k = −12→12
43153 measured reflections l = −19→19
4803 independent reflections

(a) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocobaltate . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.4319P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.50 e Å3
4803 reflections Δρmin = −0.26 e Å3
224 parameters Absolute structure: Flack x determined using 1711 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.000 (7)

(a) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocobaltate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(a) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocobaltate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.16362 (18) 0.6052 (3) 0.55317 (15) 0.0489 (6)
N1 0.25197 (17) 0.4294 (2) 0.12297 (15) 0.0277 (5)
C3 0.1767 (2) 0.6210 (3) 0.4633 (2) 0.0363 (7)
C4 0.2614 (2) 0.5804 (3) 0.43052 (18) 0.0302 (5)
H4 0.316 (2) 0.5398 (15) 0.4727 (15) 0.036*
C12 0.26809 (18) 0.5975 (3) 0.33709 (17) 0.0257 (5)
C11 0.1890 (2) 0.6534 (3) 0.27670 (18) 0.0295 (6)
C1 0.1055 (2) 0.6958 (4) 0.3114 (2) 0.0429 (7)
H1A 0.055 (2) 0.7347 (18) 0.2728 (17) 0.051*
C2 0.0990 (2) 0.6796 (5) 0.4031 (2) 0.0467 (8)
H2 0.037 (3) 0.7107 (14) 0.4268 (10) 0.056*
C18 0.2367 (3) 0.5315 (4) 0.6139 (2) 0.0544 (10)
H18A 0.2440 (18) 0.436 (3) 0.5914 (14) 0.082*
H18B 0.2184 (13) 0.526 (3) 0.6733 (18) 0.082*
H18C 0.2970 (18) 0.582 (2) 0.6180 (18) 0.082*
C10 0.1886 (2) 0.6676 (3) 0.17396 (18) 0.0320 (6)
H10A 0.1270 (16) 0.6305 (10) 0.1415 (9) 0.038*
H10B 0.1917 (2) 0.770 (3) 0.1590 (4) 0.038*
C9 0.2708 (2) 0.5904 (3) 0.13877 (18) 0.0277 (5)
H9 0.2785 (4) 0.6312 (16) 0.084 (2) 0.033*
C14 0.3669 (2) 0.6068 (3) 0.20608 (18) 0.0291 (5)
H14 0.4161 (19) 0.554 (2) 0.1814 (9) 0.035*
C8 0.3998 (3) 0.7643 (4) 0.2153 (2) 0.0424 (7)
H8A 0.3525 (15) 0.8185 (17) 0.2353 (6) 0.051*
H8B 0.4083 (3) 0.7987 (12) 0.1591 (17) 0.051*
C7 0.4956 (3) 0.7790 (5) 0.2833 (2) 0.0519 (9)
H7A 0.5481 (18) 0.7293 (17) 0.2587 (9) 0.062*
H7B 0.5132 (7) 0.881 (3) 0.2911 (3) 0.062*
C6 0.4853 (2) 0.7140 (5) 0.3763 (2) 0.0458 (8)
H6A 0.4353 (13) 0.7693 (15) 0.4036 (8) 0.055*
H6B 0.5490 (17) 0.7216 (5) 0.4192 (12) 0.055*
C5 0.4548 (2) 0.5556 (4) 0.36542 (19) 0.0374 (7)
H5A 0.4490 (2) 0.5175 (12) 0.4233 (17) 0.045*
H5B 0.5036 (14) 0.5032 (16) 0.3426 (6) 0.045*
C13 0.35654 (19) 0.5369 (3) 0.29939 (17) 0.0267 (5)
C15 0.33688 (19) 0.3737 (4) 0.28147 (16) 0.0297 (5)
H15A 0.3903 (14) 0.3325 (11) 0.2615 (5) 0.036*
H15B 0.3292 (3) 0.3292 (12) 0.3359 (14) 0.036*
C16 0.2462 (2) 0.3475 (3) 0.20999 (18) 0.0302 (6)
H16A 0.2401 (3) 0.248 (3) 0.1968 (4) 0.036*
H16B 0.1903 (15) 0.3772 (8) 0.2337 (7) 0.036*
C17 0.1662 (2) 0.3993 (4) 0.0495 (2) 0.0412 (7)
H17A 0.1063 (15) 0.427 (3) 0.0712 (9) 0.062*
H17B 0.1640 (12) 0.296 (3) 0.0350 (13) 0.062*
H17C 0.1725 (10) 0.455 (3) −0.0055 (16) 0.062*
Co1 0.5000 0.37707 (5) 0.0000 0.02972 (14)
Cl1 0.41931 (5) 0.22074 (7) 0.08249 (4) 0.03266 (16)
Cl2 0.61476 (7) 0.52069 (9) 0.08226 (7) 0.0570 (3)
H1 0.306 (3) 0.389 (5) 0.102 (2) 0.045 (9)*

(a) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocobaltate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0563 (15) 0.0602 (15) 0.0369 (11) 0.0015 (13) 0.0271 (10) −0.0068 (11)
N1 0.0275 (11) 0.0271 (11) 0.0289 (11) 0.0014 (9) 0.0057 (9) −0.0015 (8)
C3 0.0418 (16) 0.0377 (16) 0.0331 (14) −0.0024 (13) 0.0173 (12) −0.0085 (12)
C4 0.0307 (13) 0.0330 (14) 0.0279 (12) 0.0019 (12) 0.0083 (10) −0.0013 (11)
C12 0.0254 (12) 0.0264 (12) 0.0267 (11) 0.0021 (11) 0.0079 (9) −0.0019 (10)
C11 0.0274 (13) 0.0308 (14) 0.0306 (13) 0.0074 (11) 0.0054 (10) −0.0041 (10)
C1 0.0319 (15) 0.0512 (19) 0.0450 (16) 0.0152 (14) 0.0048 (13) −0.0101 (15)
C2 0.0362 (16) 0.060 (2) 0.0474 (17) 0.0076 (15) 0.0187 (14) −0.0163 (16)
C18 0.083 (3) 0.049 (2) 0.0373 (17) 0.000 (2) 0.0278 (18) 0.0019 (15)
C10 0.0346 (14) 0.0312 (13) 0.0286 (12) 0.0069 (12) 0.0009 (11) 0.0000 (10)
C9 0.0344 (14) 0.0254 (12) 0.0236 (11) −0.0031 (11) 0.0054 (10) 0.0037 (10)
C14 0.0279 (13) 0.0341 (14) 0.0271 (12) −0.0018 (11) 0.0097 (10) 0.0007 (11)
C8 0.0501 (19) 0.0430 (18) 0.0353 (15) −0.0152 (15) 0.0104 (13) −0.0005 (13)
C7 0.0452 (19) 0.062 (2) 0.0488 (19) −0.0242 (17) 0.0089 (15) −0.0114 (17)
C6 0.0308 (15) 0.065 (2) 0.0392 (15) −0.0089 (16) −0.0003 (12) −0.0110 (16)
C5 0.0239 (13) 0.057 (2) 0.0296 (13) 0.0048 (13) 0.0008 (11) −0.0016 (13)
C13 0.0215 (12) 0.0371 (15) 0.0220 (11) 0.0024 (11) 0.0053 (9) 0.0004 (10)
C15 0.0332 (13) 0.0313 (13) 0.0259 (11) 0.0103 (13) 0.0089 (10) 0.0048 (12)
C16 0.0345 (14) 0.0242 (14) 0.0335 (13) −0.0016 (11) 0.0108 (11) 0.0024 (10)
C17 0.0424 (16) 0.0376 (18) 0.0391 (15) −0.0017 (14) −0.0062 (12) −0.0043 (13)
Co1 0.0263 (3) 0.0280 (3) 0.0351 (3) 0.000 0.0058 (2) 0.000
Cl1 0.0312 (3) 0.0354 (3) 0.0342 (3) −0.0025 (3) 0.0137 (3) −0.0038 (3)
Cl2 0.0577 (5) 0.0342 (4) 0.0711 (6) −0.0164 (4) −0.0130 (4) 0.0022 (4)

(a) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocobaltate . Geometric parameters (Å, º)

O1—C3 1.372 (3) C14—C13 1.544 (4)
O1—C18 1.408 (5) C8—H8A 0.91 (3)
N1—C9 1.520 (3) C8—H8B 0.91 (3)
N1—C16 1.500 (3) C8—C7 1.527 (5)
N1—C17 1.491 (3) C7—H7A 0.98 (3)
N1—H1 0.93 (4) C7—H7B 0.98 (3)
C3—C4 1.391 (4) C7—C6 1.521 (5)
C3—C2 1.384 (5) C6—H6A 1.00 (3)
C4—H4 0.97 (3) C6—H6B 1.00 (3)
C4—C12 1.401 (3) C6—C5 1.523 (6)
C12—C11 1.389 (4) C5—H5A 0.94 (3)
C12—C13 1.532 (3) C5—H5B 0.94 (3)
C11—C1 1.396 (4) C5—C13 1.543 (4)
C11—C10 1.515 (4) C13—C15 1.546 (4)
C1—H1A 0.90 (4) C15—H15A 0.92 (2)
C1—C2 1.375 (5) C15—H15B 0.92 (2)
C2—H2 1.02 (4) C15—C16 1.516 (4)
C18—H18A 0.95 (3) C16—H16A 0.94 (2)
C18—H18B 0.95 (3) C16—H16B 0.94 (2)
C18—H18C 0.95 (3) C17—H17A 0.97 (2)
C10—H10A 0.97 (2) C17—H17B 0.97 (2)
C10—H10B 0.97 (2) C17—H17C 0.97 (2)
C10—C9 1.506 (4) Co1—Cl1i 2.2920 (7)
C9—H9 0.91 (3) Co1—Cl1 2.2921 (7)
C9—C14 1.527 (4) Co1—Cl2i 2.2592 (8)
C14—H14 0.96 (4) Co1—Cl2 2.2591 (8)
C14—C8 1.523 (4)
C3—O1—C18 117.8 (3) H8A—C8—H8B 108.0
C9—N1—H1 109 (3) C7—C8—H8A 109.5
C16—N1—C9 113.3 (2) C7—C8—H8B 109.5
C16—N1—H1 104 (2) C8—C7—H7A 109.5
C17—N1—C9 112.9 (2) C8—C7—H7B 109.5
C17—N1—C16 112.0 (2) H7A—C7—H7B 108.1
C17—N1—H1 106 (2) C6—C7—C8 110.6 (3)
O1—C3—C4 124.0 (3) C6—C7—H7A 109.5
O1—C3—C2 116.3 (3) C6—C7—H7B 109.5
C2—C3—C4 119.7 (3) C7—C6—H6A 109.6
C3—C4—H4 119.8 C7—C6—H6B 109.6
C3—C4—C12 120.4 (3) C7—C6—C5 110.5 (3)
C12—C4—H4 119.8 H6A—C6—H6B 108.1
C4—C12—C13 120.1 (2) C5—C6—H6A 109.6
C11—C12—C4 119.6 (2) C5—C6—H6B 109.6
C11—C12—C13 119.8 (2) C6—C5—H5A 109.2
C12—C11—C1 118.9 (3) C6—C5—H5B 109.2
C12—C11—C10 122.7 (2) C6—C5—C13 111.9 (3)
C1—C11—C10 118.3 (3) H5A—C5—H5B 107.9
C11—C1—H1A 119.3 C13—C5—H5A 109.2
C2—C1—C11 121.4 (3) C13—C5—H5B 109.2
C2—C1—H1A 119.3 C12—C13—C14 111.5 (2)
C3—C2—H2 120.1 C12—C13—C5 113.9 (2)
C1—C2—C3 119.9 (3) C12—C13—C15 106.8 (2)
C1—C2—H2 120.1 C14—C13—C15 107.2 (2)
O1—C18—H18A 109.5 C5—C13—C14 108.0 (2)
O1—C18—H18B 109.5 C5—C13—C15 109.1 (2)
O1—C18—H18C 109.5 C13—C15—H15A 109.2
H18A—C18—H18B 109.5 C13—C15—H15B 109.2
H18A—C18—H18C 109.5 H15A—C15—H15B 107.9
H18B—C18—H18C 109.5 C16—C15—C13 112.1 (2)
C11—C10—H10A 108.5 C16—C15—H15A 109.2
C11—C10—H10B 108.5 C16—C15—H15B 109.2
H10A—C10—H10B 107.5 N1—C16—C15 110.8 (2)
C9—C10—C11 115.1 (2) N1—C16—H16A 109.5
C9—C10—H10A 108.5 N1—C16—H16B 109.5
C9—C10—H10B 108.5 C15—C16—H16A 109.5
N1—C9—H9 108.3 C15—C16—H16B 109.5
N1—C9—C14 107.7 (2) H16A—C16—H16B 108.1
C10—C9—N1 113.3 (2) N1—C17—H17A 109.5
C10—C9—H9 108.3 N1—C17—H17B 109.5
C10—C9—C14 110.9 (2) N1—C17—H17C 109.5
C14—C9—H9 108.3 H17A—C17—H17B 109.5
C9—C14—H14 107.5 H17A—C17—H17C 109.5
C9—C14—C13 109.5 (2) H17B—C17—H17C 109.5
C8—C14—C9 111.5 (2) Cl1i—Co1—Cl1 101.95 (4)
C8—C14—H14 107.5 Cl2i—Co1—Cl1 106.94 (3)
C8—C14—C13 113.0 (2) Cl2—Co1—Cl1i 106.94 (3)
C13—C14—H14 107.5 Cl2—Co1—Cl1 116.59 (3)
C14—C8—H8A 109.5 Cl2i—Co1—Cl1i 116.59 (3)
C14—C8—H8B 109.5 Cl2—Co1—Cl2i 108.13 (5)
C14—C8—C7 110.9 (3)
O1—C3—C4—C12 178.7 (3) C10—C9—C14—C13 61.9 (3)
O1—C3—C2—C1 −178.5 (3) C9—N1—C16—C15 −54.1 (3)
N1—C9—C14—C8 171.6 (2) C9—C14—C8—C7 179.6 (2)
N1—C9—C14—C13 −62.6 (3) C9—C14—C13—C12 −54.0 (3)
C3—C4—C12—C11 −1.0 (4) C9—C14—C13—C5 −180.0 (2)
C3—C4—C12—C13 −173.0 (3) C9—C14—C13—C15 62.5 (3)
C4—C3—C2—C1 0.7 (5) C14—C8—C7—C6 −55.7 (4)
C4—C12—C11—C1 2.2 (4) C14—C13—C15—C16 −57.8 (3)
C4—C12—C11—C10 −176.6 (3) C8—C14—C13—C12 71.0 (3)
C4—C12—C13—C14 −162.0 (2) C8—C14—C13—C5 −55.0 (3)
C4—C12—C13—C5 −39.4 (4) C8—C14—C13—C15 −172.5 (2)
C4—C12—C13—C15 81.2 (3) C8—C7—C6—C5 57.4 (4)
C12—C11—C1—C2 −1.9 (5) C7—C6—C5—C13 −59.0 (4)
C12—C11—C10—C9 11.7 (4) C6—C5—C13—C12 −68.1 (3)
C12—C13—C15—C16 61.8 (3) C6—C5—C13—C14 56.4 (3)
C11—C12—C13—C14 26.0 (4) C6—C5—C13—C15 172.6 (2)
C11—C12—C13—C5 148.6 (3) C5—C13—C15—C16 −174.6 (2)
C11—C12—C13—C15 −90.8 (3) C13—C12—C11—C1 174.2 (3)
C11—C1—C2—C3 0.4 (6) C13—C12—C11—C10 −4.6 (4)
C11—C10—C9—N1 81.1 (3) C13—C14—C8—C7 55.7 (3)
C11—C10—C9—C14 −40.1 (3) C13—C15—C16—N1 53.7 (3)
C1—C11—C10—C9 −167.1 (3) C16—N1—C9—C10 −64.7 (3)
C2—C3—C4—C12 −0.4 (5) C16—N1—C9—C14 58.4 (3)
C18—O1—C3—C4 −6.0 (5) C17—N1—C9—C10 63.9 (3)
C18—O1—C3—C2 173.2 (3) C17—N1—C9—C14 −173.0 (2)
C10—C11—C1—C2 176.9 (3) C17—N1—C16—C15 176.9 (2)
C10—C9—C14—C8 −63.9 (3)

Symmetry code: (i) −x+1, y, −z.

(a) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocobaltate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1 0.93 (4) 2.26 (4) 3.145 (2) 158 (4)
C10—H10B···Cl2ii 0.97 (3) 2.71 (2) 3.609 (3) 153 (1)
C17—H17B···Cl2iii 0.98 (3) 2.75 (3) 3.615 (4) 148 (1)

Symmetry codes: (ii) x−1/2, y+1/2, z; (iii) x−1/2, y−1/2, z.

(b) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocuprate . Crystal data

(C18H26NO)[CuCl4] F(000) = 790
Mr = 750.13 Dx = 1.343 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
a = 13.8066 (16) Å Cell parameters from 1064 reflections
b = 9.2934 (12) Å θ = 3.1–24.8°
c = 14.651 (3) Å µ = 0.91 mm1
β = 99.318 (6)° T = 173 K
V = 1855.1 (5) Å3 Plate, yellow
Z = 2 0.45 × 0.3 × 0.15 mm

(b) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocuprate . Data collection

Bruker PHOTON-100 CMOS diffractometer 3521 reflections with I > 2σ(I)
Radiation source: sealedtube Rint = 0.047
φ and ω scans θmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS, Bruker, 2015) h = −17→17
Tmin = 0.714, Tmax = 0.933 k = −12→12
31097 measured reflections l = −19→19
4243 independent reflections

(b) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocuprate . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0512P)2 + 1.3109P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.51 e Å3
4243 reflections Δρmin = −0.33 e Å3
209 parameters Absolute structure: Flack x determined using 1463 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.005 (6)

(b) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocuprate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(b) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocuprate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1671 (3) 0.6033 (4) 0.5575 (2) 0.0560 (9)
N1 0.2499 (3) 0.4329 (4) 0.1218 (2) 0.0329 (8)
H1 0.296 (4) 0.402 (6) 0.100 (4) 0.049*
C1 0.1031 (3) 0.6887 (6) 0.3155 (4) 0.0497 (12)
H1A 0.0477 0.7261 0.2756 0.060*
C2 0.0989 (4) 0.6737 (7) 0.4073 (4) 0.0535 (13)
H2 0.0413 0.7018 0.4304 0.064*
C3 0.1774 (3) 0.6181 (5) 0.4669 (3) 0.0400 (10)
C4 0.2621 (3) 0.5790 (5) 0.4319 (3) 0.0340 (9)
H4 0.3167 0.5404 0.4723 0.041*
C5 0.4546 (3) 0.5603 (6) 0.3624 (3) 0.0456 (12)
H5A 0.4499 0.5191 0.4239 0.055*
H5B 0.5064 0.5072 0.3369 0.055*
C6 0.4833 (4) 0.7196 (7) 0.3735 (3) 0.0562 (14)
H6A 0.4333 0.7725 0.4016 0.067*
H6B 0.5471 0.7288 0.4150 0.067*
C7 0.4911 (4) 0.7841 (7) 0.2798 (4) 0.0639 (16)
H7A 0.5438 0.7347 0.2535 0.077*
H7B 0.5085 0.8872 0.2873 0.077*
C8 0.3941 (4) 0.7686 (6) 0.2138 (3) 0.0506 (13)
H8A 0.3426 0.8246 0.2376 0.061*
H8B 0.4014 0.8078 0.1524 0.061*
C9 0.2665 (3) 0.5938 (4) 0.1385 (3) 0.0325 (9)
H9 0.2729 0.6402 0.0781 0.039*
C10 0.1834 (3) 0.6653 (5) 0.1759 (3) 0.0374 (9)
H10A 0.1834 0.7690 0.1604 0.045*
H10B 0.1208 0.6242 0.1441 0.045*
C11 0.1865 (3) 0.6506 (4) 0.2785 (3) 0.0335 (9)
C12 0.2669 (3) 0.5965 (4) 0.3383 (3) 0.0287 (8)
C13 0.3559 (3) 0.5401 (5) 0.2980 (3) 0.0313 (9)
C14 0.3634 (3) 0.6116 (5) 0.2038 (3) 0.0340 (9)
H14 0.4149 0.5590 0.1763 0.041*
C15 0.3388 (3) 0.3775 (5) 0.2790 (3) 0.0364 (9)
H15A 0.3966 0.3365 0.2562 0.044*
H15B 0.3322 0.3283 0.3376 0.044*
C16 0.2482 (3) 0.3492 (5) 0.2089 (3) 0.0349 (9)
H16A 0.2440 0.2451 0.1943 0.042*
H16B 0.1893 0.3761 0.2356 0.042*
C17 0.1634 (4) 0.4004 (5) 0.0501 (3) 0.0492 (12)
H17A 0.1031 0.4261 0.0736 0.074*
H17B 0.1625 0.2975 0.0355 0.074*
H17C 0.1676 0.4562 −0.0058 0.074*
C18 0.2410 (5) 0.5329 (7) 0.6180 (4) 0.0624 (16)
H18A 0.2501 0.4356 0.5950 0.094*
H18B 0.2222 0.5270 0.6796 0.094*
H18C 0.3026 0.5868 0.6218 0.094*
Cu1 0.5000 0.36997 (7) 0.0000 0.0369 (2)
Cl1 0.41472 (7) 0.21415 (11) 0.07511 (7) 0.0354 (2)
Cl2 0.62112 (11) 0.51975 (14) 0.05807 (10) 0.0632 (4)

(b) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocuprate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.068 (2) 0.066 (2) 0.043 (2) 0.0020 (19) 0.0321 (18) −0.0075 (17)
N1 0.0336 (19) 0.0322 (17) 0.0332 (19) 0.0029 (15) 0.0062 (15) −0.0022 (15)
C1 0.036 (2) 0.059 (3) 0.053 (3) 0.017 (2) 0.005 (2) −0.014 (2)
C2 0.036 (2) 0.067 (3) 0.061 (3) 0.010 (2) 0.020 (2) −0.016 (3)
C3 0.047 (3) 0.040 (2) 0.038 (2) −0.003 (2) 0.020 (2) −0.0082 (19)
C4 0.036 (2) 0.035 (2) 0.033 (2) 0.0031 (17) 0.0112 (17) −0.0017 (17)
C5 0.027 (2) 0.073 (4) 0.036 (2) 0.004 (2) −0.0010 (17) −0.002 (2)
C6 0.036 (2) 0.087 (4) 0.044 (3) −0.013 (3) 0.000 (2) −0.011 (3)
C7 0.052 (3) 0.075 (4) 0.064 (4) −0.034 (3) 0.011 (3) −0.012 (3)
C8 0.059 (3) 0.055 (3) 0.038 (3) −0.023 (2) 0.008 (2) 0.001 (2)
C9 0.039 (2) 0.031 (2) 0.027 (2) −0.0030 (17) 0.0024 (16) 0.0040 (16)
C10 0.039 (2) 0.034 (2) 0.036 (2) 0.0091 (18) −0.0027 (18) −0.0012 (18)
C11 0.027 (2) 0.032 (2) 0.042 (2) 0.0062 (16) 0.0047 (17) −0.0049 (18)
C12 0.0298 (19) 0.0282 (19) 0.030 (2) 0.0030 (16) 0.0097 (16) −0.0006 (16)
C13 0.0249 (19) 0.043 (2) 0.027 (2) 0.0045 (17) 0.0049 (15) 0.0007 (18)
C14 0.033 (2) 0.041 (2) 0.029 (2) −0.0017 (18) 0.0101 (17) 0.0025 (18)
C15 0.041 (2) 0.036 (2) 0.034 (2) 0.015 (2) 0.0109 (16) 0.004 (2)
C16 0.039 (2) 0.028 (2) 0.039 (2) 0.0003 (17) 0.0110 (17) 0.0042 (18)
C17 0.052 (3) 0.041 (3) 0.049 (3) −0.002 (2) −0.008 (2) −0.008 (2)
C18 0.099 (5) 0.054 (3) 0.041 (3) 0.002 (3) 0.033 (3) 0.006 (3)
Cu1 0.0381 (4) 0.0337 (4) 0.0402 (4) 0.000 0.0105 (3) 0.000
Cl1 0.0329 (5) 0.0376 (5) 0.0381 (5) −0.0018 (4) 0.0126 (4) −0.0028 (4)
Cl2 0.0780 (10) 0.0484 (7) 0.0639 (8) −0.0284 (7) 0.0131 (7) −0.0041 (6)

(b) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocuprate . Geometric parameters (Å, º)

O1—C3 1.366 (5) C9—H9 1.0000
O1—C18 1.401 (7) C9—C10 1.504 (6)
N1—H1 0.81 (5) C9—C14 1.523 (6)
N1—C9 1.526 (5) C10—H10A 0.9900
N1—C16 1.499 (5) C10—H10B 0.9900
N1—C17 1.487 (6) C10—C11 1.503 (6)
C1—H1A 0.9500 C11—C12 1.392 (6)
C1—C2 1.363 (7) C12—C13 1.539 (5)
C1—C11 1.395 (6) C13—C14 1.551 (6)
C2—H2 0.9500 C13—C15 1.548 (7)
C2—C3 1.377 (7) C14—H14 1.0000
C3—C4 1.398 (6) C15—H15A 0.9900
C4—H4 0.9500 C15—H15B 0.9900
C4—C12 1.394 (6) C15—C16 1.507 (6)
C5—H5A 0.9900 C16—H16A 0.9900
C5—H5B 0.9900 C16—H16B 0.9900
C5—C6 1.535 (9) C17—H17A 0.9800
C5—C13 1.538 (6) C17—H17B 0.9800
C6—H6A 0.9900 C17—H17C 0.9800
C6—H6B 0.9900 C18—H18A 0.9800
C6—C7 1.517 (8) C18—H18B 0.9800
C7—H7A 0.9900 C18—H18C 0.9800
C7—H7B 0.9900 Cu1—Cl1i 2.2615 (11)
C7—C8 1.526 (7) Cu1—Cl1 2.2614 (11)
C8—H8A 0.9900 Cu1—Cl2 2.2354 (13)
C8—H8B 0.9900 Cu1—Cl2i 2.2354 (13)
C8—C14 1.519 (6)
C3—O1—C18 118.8 (4) C11—C10—C9 115.1 (3)
C9—N1—H1 108 (4) C11—C10—H10A 108.5
C16—N1—H1 106 (4) C11—C10—H10B 108.5
C16—N1—C9 113.3 (3) C1—C11—C10 118.2 (4)
C17—N1—H1 104 (4) C12—C11—C1 118.1 (4)
C17—N1—C9 113.3 (3) C12—C11—C10 123.6 (4)
C17—N1—C16 112.0 (3) C4—C12—C13 120.4 (3)
C2—C1—H1A 119.1 C11—C12—C4 120.1 (4)
C2—C1—C11 121.8 (4) C11—C12—C13 119.1 (4)
C11—C1—H1A 119.1 C5—C13—C12 114.0 (3)
C1—C2—H2 119.7 C5—C13—C14 108.3 (3)
C1—C2—C3 120.6 (4) C5—C13—C15 108.9 (4)
C3—C2—H2 119.7 C12—C13—C14 111.6 (3)
O1—C3—C2 117.3 (4) C12—C13—C15 107.0 (3)
O1—C3—C4 123.7 (4) C15—C13—C14 106.8 (3)
C2—C3—C4 119.0 (4) C8—C14—C9 111.6 (4)
C3—C4—H4 119.8 C8—C14—C13 112.5 (4)
C12—C4—C3 120.4 (4) C8—C14—H14 107.7
C12—C4—H4 119.8 C9—C14—C13 109.5 (3)
H5A—C5—H5B 107.9 C9—C14—H14 107.7
C6—C5—H5A 109.3 C13—C14—H14 107.7
C6—C5—H5B 109.3 C13—C15—H15A 109.1
C6—C5—C13 111.7 (4) C13—C15—H15B 109.1
C13—C5—H5A 109.3 H15A—C15—H15B 107.9
C13—C5—H5B 109.3 C16—C15—C13 112.3 (3)
C5—C6—H6A 109.7 C16—C15—H15A 109.1
C5—C6—H6B 109.7 C16—C15—H15B 109.1
H6A—C6—H6B 108.2 N1—C16—C15 111.4 (3)
C7—C6—C5 109.9 (4) N1—C16—H16A 109.4
C7—C6—H6A 109.7 N1—C16—H16B 109.4
C7—C6—H6B 109.7 C15—C16—H16A 109.4
C6—C7—H7A 109.5 C15—C16—H16B 109.4
C6—C7—H7B 109.5 H16A—C16—H16B 108.0
C6—C7—C8 110.7 (4) N1—C17—H17A 109.5
H7A—C7—H7B 108.1 N1—C17—H17B 109.5
C8—C7—H7A 109.5 N1—C17—H17C 109.5
C8—C7—H7B 109.5 H17A—C17—H17B 109.5
C7—C8—H8A 109.5 H17A—C17—H17C 109.5
C7—C8—H8B 109.5 H17B—C17—H17C 109.5
H8A—C8—H8B 108.1 O1—C18—H18A 109.5
C14—C8—C7 110.8 (5) O1—C18—H18B 109.5
C14—C8—H8A 109.5 O1—C18—H18C 109.5
C14—C8—H8B 109.5 H18A—C18—H18B 109.5
N1—C9—H9 108.3 H18A—C18—H18C 109.5
C10—C9—N1 112.8 (3) H18B—C18—H18C 109.5
C10—C9—H9 108.3 Cl1—Cu1—Cl1i 100.36 (6)
C10—C9—C14 111.6 (3) Cl2—Cu1—Cl1i 99.65 (5)
C14—C9—N1 107.5 (3) Cl2i—Cu1—Cl1 99.65 (5)
C14—C9—H9 108.3 Cl2i—Cu1—Cl1i 129.04 (4)
C9—C10—H10A 108.5 Cl2—Cu1—Cl1 129.04 (4)
C9—C10—H10B 108.5 Cl2i—Cu1—Cl2 102.97 (9)
H10A—C10—H10B 107.5
O1—C3—C4—C12 179.5 (4) C9—C10—C11—C1 −167.6 (4)
N1—C9—C10—C11 82.2 (4) C9—C10—C11—C12 10.2 (6)
N1—C9—C14—C8 171.7 (3) C10—C9—C14—C8 −64.1 (5)
N1—C9—C14—C13 −63.0 (4) C10—C9—C14—C13 61.2 (5)
C1—C2—C3—O1 −178.6 (5) C10—C11—C12—C4 −176.6 (4)
C1—C2—C3—C4 0.9 (8) C10—C11—C12—C13 −3.6 (6)
C1—C11—C12—C4 1.2 (6) C11—C1—C2—C3 −0.8 (9)
C1—C11—C12—C13 174.2 (4) C11—C12—C13—C5 148.6 (4)
C2—C1—C11—C10 177.7 (5) C11—C12—C13—C14 25.5 (5)
C2—C1—C11—C12 −0.2 (7) C11—C12—C13—C15 −91.0 (4)
C2—C3—C4—C12 0.1 (7) C12—C13—C14—C8 71.2 (5)
C3—C4—C12—C11 −1.2 (6) C12—C13—C14—C9 −53.6 (5)
C3—C4—C12—C13 −174.1 (4) C12—C13—C15—C16 61.9 (4)
C4—C12—C13—C5 −38.4 (6) C13—C5—C6—C7 −59.2 (6)
C4—C12—C13—C14 −161.5 (4) C13—C15—C16—N1 53.3 (4)
C4—C12—C13—C15 82.0 (4) C14—C9—C10—C11 −39.0 (5)
C5—C6—C7—C8 58.2 (6) C14—C13—C15—C16 −57.7 (4)
C5—C13—C14—C8 −55.1 (5) C15—C13—C14—C8 −172.2 (4)
C5—C13—C14—C9 −179.8 (4) C15—C13—C14—C9 63.1 (4)
C5—C13—C15—C16 −174.4 (3) C16—N1—C9—C10 −65.5 (4)
C6—C5—C13—C12 −68.5 (5) C16—N1—C9—C14 58.0 (4)
C6—C5—C13—C14 56.3 (5) C17—N1—C9—C10 63.5 (5)
C6—C5—C13—C15 172.1 (4) C17—N1—C9—C14 −173.1 (3)
C6—C7—C8—C14 −57.0 (6) C17—N1—C16—C15 177.1 (4)
C7—C8—C14—C9 179.7 (4) C18—O1—C3—C2 173.1 (5)
C7—C8—C14—C13 56.1 (5) C18—O1—C3—C4 −6.3 (7)
C9—N1—C16—C15 −53.3 (5)

Symmetry code: (i) −x+1, y, −z.

(b) Bis[(9S,13S,14S)-3-methoxy-17-methylmorphinanium] tetrachloridocuprate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1 0.81 (6) 2.46 (6) 3.207 (4) 154 (5)
C10—H10A···Cl2ii 0.99 2.83 3.754 (5) 156
C17—H17B···Cl2iii 0.98 2.68 3.590 (5) 156

Symmetry codes: (ii) x−1/2, y+1/2, z; (iii) x−1/2, y−1/2, z.

References

  1. Bruera, E. D. & Portenoy, R. K. (2010). Editors. Cancer Pain. Cambridge University Press.
  2. Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cole, M. D. (2003). In The analysis of controlled substances. Hoboken: Wiley & Sons.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gylbert, L. & Carlström, D. (1977). Acta Cryst. B33, 2833–2837.
  8. Ibberson, R. M., Telling, M. T. F. & Parsons, S. (2008). Cryst. Growth Des. 8, 512–518.
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Scheins, S., Messerschmidt, M., Morgenroth, W., Paulmann, C. & Luger, P. (2007). J. Phys. Chem. A, 111, 5499–5508. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  13. Swamy, G. Y. S. K., Ravikumar, K. & Bhujanga Rao, A. K. S. (2005). Acta Cryst. E61, o2071–o2073.
  14. WHO (2016). The International Pharmacopoeia, 6th ed. (electronic resource) http://apps.who.int/phint/2016/index.html#p/home

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) a, b. DOI: 10.1107/S2056989016019939/sj5517sup1.cif

e-73-00063-sup1.cif (2.4MB, cif)

Structure factors: contains datablock(s) a. DOI: 10.1107/S2056989016019939/sj5517asup2.hkl

e-73-00063-asup2.hkl (382.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016019939/sj5517asup4.cdx

Structure factors: contains datablock(s) b. DOI: 10.1107/S2056989016019939/sj5517bsup3.hkl

e-73-00063-bsup3.hkl (338.2KB, hkl)

CCDC references: 1522812, 1522811

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES