The asymmetric unit of the title compound comprises of one complex cation, one half of a Cr2O7 2− anion and one half of a water molecule. The CrIII ion has a distorted octahedral coordination by four N atoms of the cyclam ligand and by two N-bonded NCS groups in cis positions; the conformation of the dichromate anion is staggered.
Keywords: crystal structure, cyclam, chromium(III) complex, thiocyanate ligand, cis-V conformation, dichromate anion, hydrogen bonding, synchrotron radiation
Abstract
The structure of the complex salt, cis-[Cr(NCS)2(cyclam)]2[Cr2O7]·H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane, C10H24N4), has been determined from synchrotron data. The asymmetric unit comprises of one [Cr(NCS)2(cyclam)]+ cation, one half of a Cr2O7 2− anion (completed by inversion symmetry) and one half of a water molecule (completed by twofold rotation symmetry). The CrIII ion is coordinated by the four cyclam N atoms and by two N atoms of cis-arranged thiocyanate anions, displaying a distorted octahedral coordination sphere. The Cr—N(cyclam) bond lengths are in the range 2.080 (2) to 2.097 (2) Å while the average Cr—N(NCS) bond length is 1.985 (4) Å. The macrocyclic cyclam moiety adopts the cis-V conformation. The bridging O atom of the dichromate anion is disordered around an inversion centre, leading to a bending of the Cr—O—Cr bridging angle [157.7 (3)°]; the anion has a staggered conformation. The crystal structure is stabilized by intermolecular hydrogen bonds involving the cyclam N—H groups and water O—H groups as donor groups, and the O atoms of the Cr2O7 2− anion and water molecules as acceptor groups, giving rise to a three-dimensional network.
Chemical context
Recently, it has been established that cyclam (1,4,8,11-tetraazacyclotetradecane, C10H24N4) derivatives and their complexes can exhibit anti-HIV effects or stimulate the activity of stem cells from bone marrow (Ronconi & Sadler, 2007 ▸; De Clercq, 2010 ▸; Ross et al., 2012 ▸). Cyclam has a moderately flexible structure and can adopt both planar (trans) and folded (cis) conformations (Poon & Pun, 1980 ▸). There are five configurational trans isomers for the macrocycle, which differ in the chirality of the sec-NH sites (Choi, 2009 ▸). The trans-I, trans-II and trans-V configurations also can fold to form cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011 ▸). The configuration of the macrocyclic ligand and the influence of the counter-anion are important factors in developing new highly effective anti-HIV drugs.
The dichromate anion is environmentally important due to its high toxicity (Yusof & Malek, 2009 ▸), and its use in industrial processing (Goyal et al., 2003 ▸). Since counter-anionic species play an important role in coordination chemistry (Martínez-Máñez & Sancenón, 2003 ▸; Fabbrizzi & Poggi, 2013 ▸), it may be possible that the [Cr(NCS)2(cyclam)]+ cation is suitable to bind specifically to an oxoanion. In this context, we report here on the synthesis of a new chromium(III)–dichromate salt, [Cr(NCS)2(cyclam)]2(Cr2O7)·H2O, (I), and its structural characterization by synchrotron single-crystal X-ray diffraction.
Structural commentary
Fig. 1 ▸ displays the molecular components of (I). The structure is another example of a [Cr(NCS)2(cyclam)]+ cation (Friesen et al., 1997 ▸; Moon et al., 2013 ▸) but with a different counter-anion. The asymmetric unit comprises of one [Cr(NCS)2(cyclam)]+ cation, one half of a Cr2O7 2− anion (completed by inversion symmetry) and one half of a water molecule (completed by twofold rotation symmetry). In the complex cation, the CrIII ion is coordinated by the N atoms of the cyclam ligand in the folded conformation. The nitrogen atoms of two NCS− ligands coordinate to the chromium atoms in a cis arrangement. The cyclam moiety adopts the cis-V (anti–anti) conformation (Subhan et al., 2011 ▸). The Cr—N(cyclam) bond lengths are in the range 2.080 (2) to 2.097 (2) Å, in good agreement with those determined in related structures, namely cis-[Cr(NCS)2(cyclam)]SCN [2.0851 (14)–2.0897 (14) Å; Moon et al., 2013 ▸], cis-[Cr(N3)2(cyclam)]ClO4 [2.069 (3)–2.103 (3) Å; Meyer et al., 1998 ▸], cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å; Choi et al., 2004a ▸], [Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.070(5–2.089 (5) Å, acac = acetylacetonate; Subhan et al., 2011 ▸] or cis-[CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 [2.075 (5)–2.096 (5) Å; Moon & Choi, 2016a ▸]. The Cr—N(cyclam) bond lengths with co-ligands in cis orientations are slightly longer than those found in trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å; Friesen et al., 1997 ▸], trans-[Cr(ONO)2(cyclam)]BF4 [2.064 (4)–2.073 (4) Å; De Leo et al., 2000 ▸], trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å; Moon & Choi, 2016b ▸] or trans-[Cr(nic-O)2(cyclam)]ClO4 [2.058 (4) – 2.064 (4) Å, nic-O = O-coordinating nicotinate; Choi, 2009 ▸]. The two Cr—N(NCS) bond lengths in (I) average to 1.985 (4) Å and are close to the values found in cis-[Cr(NCS)2(cyclam)]NCS [1.996 (15) Å; Moon et al., 2013 ▸], cis-[Cr(NCS)2(cyclam)]ClO4 [1.981 (4)–1.998 (4) Å; Friesen et al., 1997 ▸], trans-[Cr(NCS)2(cyclam)]2[ZnCl4] [1.995 (6) Å; Moon et al., 2015a ▸] or trans-[Cr(NCS)2(Me2tn)2]SCN·0.5H2O [1.983 (2)–1.990 (2) Å; Choi & Lee, 2009 ▸]. The five- and six-membered chelate rings of the cyclam ligand adopt gauche and stable chair conformations, respectively. The folded angle [96.05 (8)°] of cyclam is comparable to the values of 98.55 (2), 97.17 (5), 97.03 (2), 95.09 (9), 94.51 (2) and 92.8 (2)° in [Cr(ox)(cyclam)]ClO4, cis-[Cr(NCS)2(cyclam)]SCN, [Cr(acac)(cyclam)](ClO4)2·0.5H2O, cis-[Cr(ONO)2(cyclam)]NO2, cis-[Cr(N3)2(cyclam)]ClO4 and cis-[Cr(cyclam)Cl2]Cl, respectively (Choi et al., 2004b ▸; Moon et al., 2013 ▸; Subhan et al., 2011 ▸; Choi et al., 2004a ▸; Meyer et al., 1998 ▸; Forsellini et al., 1986 ▸, respectively).
Figure 1.
The molecular components in the structure of (I) with displacement ellipsoids drawn at the 30% probability level. Only one orientation of the disordered anion is shown; primed atoms are related by symmetry code (−x, −y + 1, −z −
). Dashed lines represent hydrogen bonds.
The two N-bound thiocyanate anions are almost linear, with N—C—S angles of 178.8 (2) and 179.0 (3)°. The bridging O atom of the Cr2O7 2− anion is positionally disordered over an inversion centre, giving rise to a bending of the Cr2B—O1B—Cr2B(−x + 1, −y + 1, −z + 1) angle [157.7 (3)°]. The Cr2O7 2− anion in (I) has a staggered conformation while a nearly eclipsed conformation is observed in ionic compounds K2Cr2O7, Rb2Cr2O7 and (C3H5N2)(NH4)[Cr2O7] (Brandon & Brown, 1968 ▸; Löfgren, 1971 ▸; Zhu, 2012 ▸). The conformation of the dichromate anion is influenced by the charge and size of the counter-cation (Moon et al., 2015b ▸; Moon & Choi, 2016 ▸). The O—Cr2B—O bond angles range from 102.3 (3) to 119.5 (2)°; the terminal Cr2B—O bond lengths vary from 1.596 (2) to 1.612 (2) Å, with a mean terminal Cr2B—O bond length of 1.604 (12) Å. The bridging Cr2B—O1B bond has a length of 1.746 (9) Å. These values are comparable to those reported for the anions in the structures of [Cr(urea)6](Cr2O7)Br·H2O (Moon et al., 2015b ▸) or [CrCl2(tn)2]2(Cr2O7) (tn = propane-1,3-diamine; Moon & Choi, 2016 ▸). A further distortion of the anion is due to its involvement in hydrogen-bonding interactions with water molecule and complex cation (see Supramolecular features).
Supramolecular features
Two O—H⋯O hydrogen bonds link the water molecule to neighboring Cr2O7 2− anions while N—H⋯O hydrogen bonds interconnect [Cr(NCS)2(cyclam)]+ cations with both the anions and water molecules (Table 1 ▸; Figs. 1 ▸ and 2 ▸) . An extensive array of these contacts generates a three-dimensional network of molecules stacked along the c-axis.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1A—H1A⋯O1W i | 0.99 | 2.15 | 3.089 (3) | 157 |
| N2A—H2A⋯O3B | 0.99 | 2.17 | 3.127 (3) | 163 |
| N3A—H3A⋯O4B ii | 0.99 | 2.10 | 2.953 (3) | 143 |
| N4A—H4A⋯O4B | 0.99 | 1.99 | 2.904 (3) | 152 |
| O1W—H1OW⋯O2B | 0.84 (1) | 2.24 (1) | 3.052 (3) | 164 (2) |
Symmetry codes: (i)
; (ii)
.
Figure 2.
The crystal packing in compound (I), viewed perpendicular to the ac plane. Dashed lines represent O—H⋯O (green) and N—-H⋯O (pink) hydrogen-bonding interactions.
Database survey
A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016 ▸) gave 17 hits for a cis-[CrL 2(C10H24N4)]+ unit.
Synthesis and crystallization
Cyclam was purchased from Stream Chemicals and used as provided. All chemicals were reagent-grade materials and used without further purification. The starting material, cis-[Cr(NCS)2(cyclam)]SCN was prepared according to a literature protocol (Ferguson & Tobe, 1970 ▸). The thiocyanate salt (0.513 g) was dissolved in 15 mL water at 347 K. The filtrate was added to 5 mL of water containing solid K2Cr2O7 (0.02 g). The resulting solution was evaporated slowly at room temperature until formation of crystals. The obtained block-like orange crystals of the dichromate salt were washed with small amounts of 2-propanol and dried in air before collecting the synchrotron data. Elemental analysis calculated for [Cr(NCS)2(C10H24N4)]2(Cr2O7)·H2O: C, 29.69; H, 5.19; N, 17.31%; found C, 29.84; H, 4.90; N, 17.28%.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.98 Å and N—H = 0.99 Å, and with U iso(H) values of 1.2U eq of the parent atoms. The hydrogen atom of the solvent water molecule was assigned based on a difference Fourier map, and the O—H distance and the H—O—H angle were restrained [0.84 (1) Å, 136 (2)°]. The bridging oxygen atom of the dichromate anion is positionally disordered around an inversion centre and consequently was refined with half-occupancy.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Cr(NCS)2(C10H24N4)]2[Cr2O7]·H2O |
| M r | 971.00 |
| Crystal system, space group | Monoclinic, C2/c |
| Temperature (K) | 243 |
| a, b, c (Å) | 16.044 (2), 16.221 (2), 15.041 (2) |
| β (°) | 93.335 (3) |
| V (Å3) | 3907.8 (9) |
| Z | 4 |
| Radiation type | Synchrotron, λ = 0.620 Å |
| μ (mm−1) | 0.92 |
| Crystal size (mm) | 0.04 × 0.03 × 0.02 |
| Data collection | |
| Diffractometer | ADSC Q210 CCD area detector |
| Absorption correction | Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997 ▸) |
| T min, T max | 0.799, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 11326, 5767, 4156 |
| R int | 0.018 |
| (sin θ/λ)max (Å−1) | 0.707 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.046, 0.148, 1.06 |
| No. of reflections | 5767 |
| No. of parameters | 244 |
| No. of restraints | 3 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 1.07, −0.73 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016020120/wm5351sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016020120/wm5351Isup2.hkl
CCDC reference: 1523266
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was supported by a grant from the 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.
supplementary crystallographic information
Crystal data
| [Cr(NCS)2(C10H24N4)]2[Cr2O7]·H2O | F(000) = 2008 |
| Mr = 971.00 | Dx = 1.650 Mg m−3 |
| Monoclinic, C2/c | Synchrotron radiation, λ = 0.620 Å |
| a = 16.044 (2) Å | Cell parameters from 51334 reflections |
| b = 16.221 (2) Å | θ = 0.4–33.6° |
| c = 15.041 (2) Å | µ = 0.92 mm−1 |
| β = 93.335 (3)° | T = 243 K |
| V = 3907.8 (9) Å3 | Block, orange |
| Z = 4 | 0.04 × 0.03 × 0.02 mm |
Data collection
| ADSC Q210 CCD area detector diffractometer | 4156 reflections with I > 2σ(I) |
| Radiation source: PLSII 2D bending magnet | Rint = 0.018 |
| ω scan | θmax = 26.0°, θmin = 1.6° |
| Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski & Minor, 1997) | h = −22→22 |
| Tmin = 0.799, Tmax = 1.000 | k = −22→22 |
| 11326 measured reflections | l = −21→21 |
| 5767 independent reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0961P)2] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.148 | (Δ/σ)max = 0.001 |
| S = 1.06 | Δρmax = 1.07 e Å−3 |
| 5767 reflections | Δρmin = −0.73 e Å−3 |
| 244 parameters | Extinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 3 restraints | Extinction coefficient: 0.0074 (7) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Cr1A | 0.21438 (2) | 0.57578 (2) | 0.25925 (2) | 0.03091 (13) | |
| S1A | 0.04950 (5) | 0.36485 (4) | 0.11771 (4) | 0.04880 (19) | |
| S2A | 0.10063 (7) | 0.74359 (5) | 0.02581 (6) | 0.0745 (3) | |
| N1A | 0.12183 (13) | 0.61482 (13) | 0.34086 (12) | 0.0382 (4) | |
| H1A | 0.079016 | 0.642089 | 0.300936 | 0.046* | |
| N2A | 0.27533 (14) | 0.68147 (13) | 0.31024 (13) | 0.0434 (5) | |
| H2A | 0.316020 | 0.664275 | 0.358709 | 0.052* | |
| N3A | 0.32354 (14) | 0.54328 (15) | 0.19902 (14) | 0.0446 (5) | |
| H3A | 0.306385 | 0.502794 | 0.152215 | 0.054* | |
| N4A | 0.25948 (13) | 0.49636 (12) | 0.35970 (12) | 0.0346 (4) | |
| H4A | 0.288918 | 0.530211 | 0.406434 | 0.041* | |
| N5A | 0.15160 (14) | 0.48029 (13) | 0.20628 (13) | 0.0413 (5) | |
| N6A | 0.17022 (15) | 0.64396 (14) | 0.15798 (14) | 0.0438 (5) | |
| C1A | 0.15574 (19) | 0.68028 (17) | 0.40197 (18) | 0.0494 (6) | |
| H1A1 | 0.188173 | 0.655601 | 0.452403 | 0.059* | |
| H1A2 | 0.110059 | 0.712466 | 0.425097 | 0.059* | |
| C2A | 0.2102 (2) | 0.73442 (17) | 0.34991 (19) | 0.0529 (7) | |
| H2A1 | 0.237031 | 0.776231 | 0.388958 | 0.063* | |
| H2A2 | 0.176737 | 0.762617 | 0.302565 | 0.063* | |
| C3A | 0.3207 (2) | 0.73028 (18) | 0.24429 (19) | 0.0538 (7) | |
| H3A1 | 0.341165 | 0.781628 | 0.272119 | 0.065* | |
| H3A2 | 0.282160 | 0.744693 | 0.193779 | 0.065* | |
| C4A | 0.39357 (19) | 0.6825 (2) | 0.2110 (2) | 0.0590 (8) | |
| H4A1 | 0.428513 | 0.663492 | 0.262585 | 0.071* | |
| H4A2 | 0.427404 | 0.720062 | 0.176952 | 0.071* | |
| C5A | 0.3701 (2) | 0.6088 (2) | 0.15325 (18) | 0.0562 (7) | |
| H5A1 | 0.335888 | 0.627816 | 0.101176 | 0.067* | |
| H5A2 | 0.421255 | 0.584763 | 0.131733 | 0.067* | |
| C6A | 0.37777 (18) | 0.49700 (19) | 0.26556 (18) | 0.0504 (6) | |
| H6A1 | 0.409094 | 0.535645 | 0.304869 | 0.061* | |
| H6A2 | 0.417792 | 0.463030 | 0.235079 | 0.061* | |
| C7A | 0.32269 (18) | 0.44260 (17) | 0.31975 (18) | 0.0461 (6) | |
| H7A1 | 0.294855 | 0.400899 | 0.281353 | 0.055* | |
| H7A2 | 0.356505 | 0.414318 | 0.366772 | 0.055* | |
| C8A | 0.19634 (16) | 0.44486 (15) | 0.40364 (16) | 0.0410 (5) | |
| H8A1 | 0.225168 | 0.408506 | 0.447454 | 0.049* | |
| H8A2 | 0.166940 | 0.410082 | 0.358709 | 0.049* | |
| C9A | 0.13381 (18) | 0.49627 (17) | 0.44937 (16) | 0.0446 (6) | |
| H9A1 | 0.164157 | 0.532275 | 0.492398 | 0.053* | |
| H9A2 | 0.098970 | 0.459365 | 0.483051 | 0.053* | |
| C10A | 0.07670 (17) | 0.54960 (17) | 0.38902 (17) | 0.0441 (6) | |
| H10A | 0.046651 | 0.514150 | 0.345211 | 0.053* | |
| H10B | 0.035225 | 0.575948 | 0.425015 | 0.053* | |
| C11A | 0.10820 (16) | 0.43251 (14) | 0.16879 (14) | 0.0354 (5) | |
| C12A | 0.14135 (15) | 0.68562 (15) | 0.10176 (15) | 0.0376 (5) | |
| Cr2B | 0.43256 (3) | 0.58043 (3) | 0.52084 (3) | 0.04068 (14) | |
| O1B1 | 0.5133 (5) | 0.5087 (6) | 0.5160 (6) | 0.0703 (17) | 0.25 |
| O1B2 | 0.5133 (5) | 0.5087 (6) | 0.5160 (6) | 0.0703 (17) | 0.25 |
| O2B | 0.46377 (19) | 0.62450 (18) | 0.61164 (14) | 0.0817 (8) | |
| O3B | 0.43108 (16) | 0.64288 (14) | 0.43819 (14) | 0.0686 (6) | |
| O4B | 0.33924 (14) | 0.54580 (18) | 0.52960 (14) | 0.0737 (7) | |
| O1W | 0.500000 | 0.75939 (19) | 0.750000 | 0.0587 (8) | |
| H1OW | 0.483 (2) | 0.7293 (10) | 0.7074 (11) | 0.088* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cr1A | 0.0380 (2) | 0.0291 (2) | 0.02458 (18) | −0.00533 (14) | −0.00667 (13) | 0.00188 (12) |
| S1A | 0.0635 (4) | 0.0365 (3) | 0.0439 (3) | −0.0122 (3) | −0.0183 (3) | −0.0014 (3) |
| S2A | 0.1159 (8) | 0.0473 (4) | 0.0554 (5) | 0.0173 (5) | −0.0380 (5) | 0.0057 (4) |
| N1A | 0.0448 (11) | 0.0365 (11) | 0.0325 (9) | −0.0010 (9) | −0.0040 (8) | 0.0010 (8) |
| N2A | 0.0535 (12) | 0.0377 (11) | 0.0372 (10) | −0.0140 (9) | −0.0116 (9) | 0.0014 (9) |
| N3A | 0.0447 (12) | 0.0561 (13) | 0.0328 (10) | −0.0070 (10) | 0.0005 (8) | 0.0015 (9) |
| N4A | 0.0430 (10) | 0.0318 (9) | 0.0282 (8) | −0.0009 (8) | −0.0035 (7) | 0.0029 (7) |
| N5A | 0.0519 (12) | 0.0368 (11) | 0.0337 (9) | −0.0103 (9) | −0.0092 (8) | −0.0011 (8) |
| N6A | 0.0552 (13) | 0.0402 (12) | 0.0343 (10) | −0.0057 (9) | −0.0104 (9) | 0.0065 (8) |
| C1A | 0.0675 (18) | 0.0390 (13) | 0.0409 (13) | −0.0006 (12) | −0.0021 (12) | −0.0068 (11) |
| C2A | 0.075 (2) | 0.0344 (13) | 0.0481 (14) | −0.0057 (13) | −0.0049 (13) | −0.0066 (11) |
| C3A | 0.0632 (18) | 0.0456 (15) | 0.0511 (15) | −0.0241 (13) | −0.0085 (13) | 0.0059 (12) |
| C4A | 0.0543 (17) | 0.071 (2) | 0.0515 (15) | −0.0223 (15) | −0.0041 (13) | 0.0133 (14) |
| C5A | 0.0542 (16) | 0.072 (2) | 0.0432 (14) | −0.0119 (15) | 0.0063 (12) | 0.0119 (14) |
| C6A | 0.0456 (14) | 0.0634 (17) | 0.0422 (13) | 0.0067 (13) | 0.0018 (11) | 0.0010 (13) |
| C7A | 0.0494 (14) | 0.0466 (14) | 0.0418 (13) | 0.0099 (12) | −0.0011 (11) | 0.0019 (11) |
| C8A | 0.0526 (14) | 0.0347 (12) | 0.0351 (11) | −0.0056 (10) | −0.0029 (10) | 0.0099 (9) |
| C9A | 0.0524 (15) | 0.0485 (14) | 0.0329 (11) | −0.0050 (12) | 0.0027 (10) | 0.0081 (10) |
| C10A | 0.0446 (13) | 0.0479 (14) | 0.0397 (12) | −0.0025 (11) | 0.0004 (10) | 0.0054 (11) |
| C11A | 0.0472 (13) | 0.0308 (11) | 0.0273 (10) | −0.0001 (9) | −0.0068 (9) | 0.0033 (8) |
| C12A | 0.0463 (13) | 0.0354 (12) | 0.0300 (10) | −0.0024 (10) | −0.0068 (9) | −0.0036 (9) |
| Cr2B | 0.0457 (2) | 0.0434 (3) | 0.0319 (2) | 0.00024 (17) | −0.00628 (16) | 0.00294 (15) |
| O1B1 | 0.060 (5) | 0.063 (4) | 0.087 (6) | 0.014 (3) | 0.000 (3) | −0.009 (4) |
| O1B2 | 0.060 (5) | 0.063 (4) | 0.087 (6) | 0.014 (3) | 0.000 (3) | −0.009 (4) |
| O2B | 0.107 (2) | 0.0956 (19) | 0.0407 (11) | −0.0337 (16) | −0.0147 (12) | −0.0019 (12) |
| O3B | 0.0960 (18) | 0.0621 (14) | 0.0461 (11) | 0.0021 (13) | −0.0096 (11) | 0.0156 (10) |
| O4B | 0.0511 (12) | 0.122 (2) | 0.0466 (11) | −0.0224 (13) | −0.0071 (9) | −0.0004 (13) |
| O1W | 0.076 (2) | 0.0548 (17) | 0.0435 (15) | 0.000 | −0.0078 (14) | 0.000 |
Geometric parameters (Å, º)
| Cr1A—N6A | 1.980 (2) | C3A—H3A2 | 0.9800 |
| Cr1A—N5A | 1.989 (2) | C4A—C5A | 1.512 (4) |
| Cr1A—N1A | 2.080 (2) | C4A—H4A1 | 0.9800 |
| Cr1A—N4A | 2.0829 (19) | C4A—H4A2 | 0.9800 |
| Cr1A—N3A | 2.086 (2) | C5A—H5A1 | 0.9800 |
| Cr1A—N2A | 2.097 (2) | C5A—H5A2 | 0.9800 |
| S1A—C11A | 1.612 (2) | C6A—C7A | 1.519 (4) |
| S2A—C12A | 1.590 (2) | C6A—H6A1 | 0.9800 |
| N1A—C1A | 1.487 (3) | C6A—H6A2 | 0.9800 |
| N1A—C10A | 1.493 (3) | C7A—H7A1 | 0.9800 |
| N1A—H1A | 0.9900 | C7A—H7A2 | 0.9800 |
| N2A—C3A | 1.492 (3) | C8A—C9A | 1.502 (4) |
| N2A—C2A | 1.502 (4) | C8A—H8A1 | 0.9800 |
| N2A—H2A | 0.9900 | C8A—H8A2 | 0.9800 |
| N3A—C6A | 1.490 (3) | C9A—C10A | 1.522 (4) |
| N3A—C5A | 1.491 (4) | C9A—H9A1 | 0.9800 |
| N3A—H3A | 0.9900 | C9A—H9A2 | 0.9800 |
| N4A—C7A | 1.490 (3) | C10A—H10A | 0.9800 |
| N4A—C8A | 1.496 (3) | C10A—H10B | 0.9800 |
| N4A—H4A | 0.9900 | Cr2B—O2B | 1.596 (2) |
| N5A—C11A | 1.165 (3) | Cr2B—O3B | 1.603 (2) |
| N6A—C12A | 1.158 (3) | Cr2B—O4B | 1.612 (2) |
| C1A—C2A | 1.493 (4) | Cr2B—O1B1 | 1.746 (9) |
| C1A—H1A1 | 0.9800 | Cr2B—O1B2 | 1.746 (9) |
| C1A—H1A2 | 0.9800 | Cr2B—O1B1i | 1.791 (9) |
| C2A—H2A1 | 0.9800 | O1B1—O1B1i | 0.686 (9) |
| C2A—H2A2 | 0.9800 | O1W—H1OW | 0.839 (7) |
| C3A—C4A | 1.511 (5) | O1W—H1OWii | 0.839 (7) |
| C3A—H3A1 | 0.9800 | ||
| N6A—Cr1A—N5A | 88.66 (9) | C5A—C4A—H4A1 | 108.5 |
| N6A—Cr1A—N1A | 92.76 (9) | C3A—C4A—H4A2 | 108.5 |
| N5A—Cr1A—N1A | 96.39 (9) | C5A—C4A—H4A2 | 108.5 |
| N6A—Cr1A—N4A | 175.72 (8) | H4A1—C4A—H4A2 | 107.5 |
| N5A—Cr1A—N4A | 87.44 (8) | N3A—C5A—C4A | 114.4 (2) |
| N1A—Cr1A—N4A | 89.43 (8) | N3A—C5A—H5A1 | 108.7 |
| N6A—Cr1A—N3A | 94.53 (9) | C4A—C5A—H5A1 | 108.7 |
| N5A—Cr1A—N3A | 92.73 (9) | N3A—C5A—H5A2 | 108.7 |
| N1A—Cr1A—N3A | 168.45 (8) | C4A—C5A—H5A2 | 108.7 |
| N4A—Cr1A—N3A | 83.89 (8) | H5A1—C5A—H5A2 | 107.6 |
| N6A—Cr1A—N2A | 87.88 (8) | N3A—C6A—C7A | 108.5 (2) |
| N5A—Cr1A—N2A | 176.30 (9) | N3A—C6A—H6A1 | 110.0 |
| N1A—Cr1A—N2A | 82.47 (8) | C7A—C6A—H6A1 | 110.0 |
| N4A—Cr1A—N2A | 96.05 (8) | N3A—C6A—H6A2 | 110.0 |
| N3A—Cr1A—N2A | 88.86 (9) | C7A—C6A—H6A2 | 110.0 |
| C1A—N1A—C10A | 112.12 (19) | H6A1—C6A—H6A2 | 108.4 |
| C1A—N1A—Cr1A | 109.52 (16) | N4A—C7A—C6A | 107.9 (2) |
| C10A—N1A—Cr1A | 116.98 (17) | N4A—C7A—H7A1 | 110.1 |
| C1A—N1A—H1A | 105.8 | C6A—C7A—H7A1 | 110.1 |
| C10A—N1A—H1A | 105.8 | N4A—C7A—H7A2 | 110.1 |
| Cr1A—N1A—H1A | 105.8 | C6A—C7A—H7A2 | 110.1 |
| C3A—N2A—C2A | 109.8 (2) | H7A1—C7A—H7A2 | 108.4 |
| C3A—N2A—Cr1A | 115.22 (16) | N4A—C8A—C9A | 112.3 (2) |
| C2A—N2A—Cr1A | 107.01 (16) | N4A—C8A—H8A1 | 109.1 |
| C3A—N2A—H2A | 108.2 | C9A—C8A—H8A1 | 109.1 |
| C2A—N2A—H2A | 108.2 | N4A—C8A—H8A2 | 109.1 |
| Cr1A—N2A—H2A | 108.2 | C9A—C8A—H8A2 | 109.1 |
| C6A—N3A—C5A | 112.4 (2) | H8A1—C8A—H8A2 | 107.9 |
| C6A—N3A—Cr1A | 107.93 (15) | C8A—C9A—C10A | 116.0 (2) |
| C5A—N3A—Cr1A | 118.5 (2) | C8A—C9A—H9A1 | 108.3 |
| C6A—N3A—H3A | 105.7 | C10A—C9A—H9A1 | 108.3 |
| C5A—N3A—H3A | 105.7 | C8A—C9A—H9A2 | 108.3 |
| Cr1A—N3A—H3A | 105.7 | C10A—C9A—H9A2 | 108.3 |
| C7A—N4A—C8A | 110.21 (19) | H9A1—C9A—H9A2 | 107.4 |
| C7A—N4A—Cr1A | 106.58 (14) | N1A—C10A—C9A | 113.6 (2) |
| C8A—N4A—Cr1A | 116.75 (15) | N1A—C10A—H10A | 108.8 |
| C7A—N4A—H4A | 107.7 | C9A—C10A—H10A | 108.8 |
| C8A—N4A—H4A | 107.7 | N1A—C10A—H10B | 108.8 |
| Cr1A—N4A—H4A | 107.7 | C9A—C10A—H10B | 108.8 |
| C11A—N5A—Cr1A | 170.5 (2) | H10A—C10A—H10B | 107.7 |
| C12A—N6A—Cr1A | 176.3 (2) | N5A—C11A—S1A | 178.8 (2) |
| N1A—C1A—C2A | 107.5 (2) | N6A—C12A—S2A | 179.0 (3) |
| N1A—C1A—H1A1 | 110.2 | O2B—Cr2B—O3B | 111.73 (13) |
| C2A—C1A—H1A1 | 110.2 | O2B—Cr2B—O4B | 109.44 (13) |
| N1A—C1A—H1A2 | 110.2 | O3B—Cr2B—O4B | 108.17 (13) |
| C2A—C1A—H1A2 | 110.2 | O2B—Cr2B—O1B1 | 97.9 (2) |
| H1A1—C1A—H1A2 | 108.5 | O3B—Cr2B—O1B1 | 111.5 (4) |
| C1A—C2A—N2A | 108.3 (2) | O4B—Cr2B—O1B1 | 117.8 (3) |
| C1A—C2A—H2A1 | 110.0 | O2B—Cr2B—O1B2 | 97.9 (2) |
| N2A—C2A—H2A1 | 110.0 | O3B—Cr2B—O1B2 | 111.5 (4) |
| C1A—C2A—H2A2 | 110.0 | O4B—Cr2B—O1B2 | 117.8 (3) |
| N2A—C2A—H2A2 | 110.0 | O2B—Cr2B—O1B1i | 119.5 (2) |
| H2A1—C2A—H2A2 | 108.4 | O3B—Cr2B—O1B1i | 104.8 (4) |
| N2A—C3A—C4A | 111.4 (2) | O4B—Cr2B—O1B1i | 102.3 (3) |
| N2A—C3A—H3A1 | 109.3 | O1B1—Cr2B—O1B1i | 22.3 (3) |
| C4A—C3A—H3A1 | 109.3 | O1B2—Cr2B—O1B1i | 22.3 (3) |
| N2A—C3A—H3A2 | 109.3 | O1B1i—O1B1—Cr2B | 82.5 (15) |
| C4A—C3A—H3A2 | 109.3 | O1B1i—O1B1—Cr2Bi | 75.2 (15) |
| H3A1—C3A—H3A2 | 108.0 | Cr2B—O1B1—Cr2Bi | 157.7 (3) |
| C3A—C4A—C5A | 115.1 (2) | Cr2B—O1B2—Cr2Bi | 157.7 (3) |
| C3A—C4A—H4A1 | 108.5 | H1OW—O1W—H1OWii | 109 (2) |
| C10A—N1A—C1A—C2A | 171.4 (2) | C7A—N4A—C8A—C9A | 176.9 (2) |
| Cr1A—N1A—C1A—C2A | 39.8 (3) | Cr1A—N4A—C8A—C9A | −61.4 (2) |
| N1A—C1A—C2A—N2A | −55.7 (3) | N4A—C8A—C9A—C10A | 65.3 (3) |
| C3A—N2A—C2A—C1A | 169.5 (2) | C1A—N1A—C10A—C9A | −69.4 (3) |
| Cr1A—N2A—C2A—C1A | 43.8 (2) | Cr1A—N1A—C10A—C9A | 58.4 (3) |
| C2A—N2A—C3A—C4A | 173.1 (2) | C8A—C9A—C10A—N1A | −64.1 (3) |
| Cr1A—N2A—C3A—C4A | −66.0 (3) | O2B—Cr2B—O1B1—O1B1i | 166.3 (18) |
| N2A—C3A—C4A—C5A | 68.6 (3) | O3B—Cr2B—O1B1—O1B1i | −76.5 (19) |
| C6A—N3A—C5A—C4A | −72.0 (3) | O4B—Cr2B—O1B1—O1B1i | 49 (2) |
| Cr1A—N3A—C5A—C4A | 55.0 (3) | O2B—Cr2B—O1B1—Cr2Bi | 166.3 (18) |
| C3A—C4A—C5A—N3A | −62.5 (4) | O3B—Cr2B—O1B1—Cr2Bi | −76.5 (19) |
| C5A—N3A—C6A—C7A | 170.2 (2) | O4B—Cr2B—O1B1—Cr2Bi | 49 (2) |
| Cr1A—N3A—C6A—C7A | 37.7 (3) | O1B1i—Cr2B—O1B1—Cr2Bi | 0.004 (6) |
| C8A—N4A—C7A—C6A | 172.4 (2) | O2B—Cr2B—O1B2—Cr2Bi | 166.3 (18) |
| Cr1A—N4A—C7A—C6A | 44.8 (2) | O3B—Cr2B—O1B2—Cr2Bi | −76.5 (19) |
| N3A—C6A—C7A—N4A | −55.9 (3) | O4B—Cr2B—O1B2—Cr2Bi | 49 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+3/2.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1A—H1A···O1Wiii | 0.99 | 2.15 | 3.089 (3) | 157 |
| N2A—H2A···O3B | 0.99 | 2.17 | 3.127 (3) | 163 |
| N3A—H3A···O4Biv | 0.99 | 2.10 | 2.953 (3) | 143 |
| N4A—H4A···O4B | 0.99 | 1.99 | 2.904 (3) | 152 |
| O1W—H1OW···O2B | 0.84 (1) | 2.24 (1) | 3.052 (3) | 164 (2) |
Symmetry codes: (iii) −x+1/2, −y+3/2, −z+1; (iv) x, −y+1, z−1/2.
References
- Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941.
- Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.
- Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.
- Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240. [DOI] [PubMed]
- Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.
- De Clercq, E. (2010). J. Med. Chem. 53, 1438–1450. [DOI] [PubMed]
- De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950.
- Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699. [DOI] [PubMed]
- Ferguson, J. & Tobe, M. L. (1970). Inorg. Chim. Acta, 4, 109–112.
- Forsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. & Sosa, M. E. (1986). Acta Cryst. C42, 563–565.
- Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.
- Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Löfgren, P. (1971). Acta Chem. Scand. 25, 44–58.
- Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419–4476. [DOI] [PubMed]
- Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180–5188.
- Moon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 1417–1420. [DOI] [PMC free article] [PubMed]
- Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 456–459. [DOI] [PMC free article] [PubMed]
- Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. [DOI] [PMC free article] [PubMed]
- Moon, D., Ryoo, K. S. & Choi, J.-H. (2015a). Acta Cryst. E71, 540–543. [DOI] [PMC free article] [PubMed]
- Moon, D., Ryoo, K. S. & Choi, J.-H. (2016). Acta Cryst. E72, 1293–1296. [DOI] [PMC free article] [PubMed]
- Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015b). Acta Cryst. E71, 1336–1339. [DOI] [PMC free article] [PubMed]
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.
- Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.
- Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [DOI] [PubMed]
- Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024. [DOI] [PubMed]
- Zhu, R.-Q. (2012). Acta Cryst. E68, m389. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016020120/wm5351sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016020120/wm5351Isup2.hkl
CCDC reference: 1523266
Additional supporting information: crystallographic information; 3D view; checkCIF report


