Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 1;73(Pt 1):72–75. doi: 10.1107/S2056989016020120

Crystal structure of bis­[cis-(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne-κ4 N)bis(thio­cyanato-κN)chrom­ium(III)] dichromate monohydrate from synchrotron X-ray diffraction data

Dohyun Moon a, Masahiro Takase b, Takashiro Akitsu b, Jong-Ha Choi c,*
PMCID: PMC5209776  PMID: 28083140

The asymmetric unit of the title compound comprises of one complex cation, one half of a Cr2O7 2− anion and one half of a water mol­ecule. The CrIII ion has a distorted octa­hedral coordination by four N atoms of the cyclam ligand and by two N-bonded NCS groups in cis positions; the conformation of the dichromate anion is staggered.

Keywords: crystal structure, cyclam, chrom­ium(III) complex, thio­cyanate ligand, cis-V conformation, dichromate anion, hydrogen bonding, synchrotron radiation

Abstract

The structure of the complex salt, cis-[Cr(NCS)2(cyclam)]2[Cr2O7]·H2O (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4), has been determined from synchrotron data. The asymmetric unit comprises of one [Cr(NCS)2(cyclam)]+ cation, one half of a Cr2O7 2− anion (completed by inversion symmetry) and one half of a water mol­ecule (completed by twofold rotation symmetry). The CrIII ion is coordinated by the four cyclam N atoms and by two N atoms of cis-arranged thio­cyanate anions, displaying a distorted octa­hedral coordination sphere. The Cr—N(cyclam) bond lengths are in the range 2.080 (2) to 2.097 (2) Å while the average Cr—N(NCS) bond length is 1.985 (4) Å. The macrocyclic cyclam moiety adopts the cis-V conformation. The bridging O atom of the dichromate anion is disordered around an inversion centre, leading to a bending of the Cr—O—Cr bridging angle [157.7 (3)°]; the anion has a staggered conformation. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the cyclam N—H groups and water O—H groups as donor groups, and the O atoms of the Cr2O7 2− anion and water mol­ecules as acceptor groups, giving rise to a three-dimensional network.

Chemical context  

Recently, it has been established that cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) derivatives and their complexes can exhibit anti-HIV effects or stimulate the activity of stem cells from bone marrow (Ronconi & Sadler, 2007; De Clercq, 2010; Ross et al., 2012). Cyclam has a moderately flexible structure and can adopt both planar (trans) and folded (cis) conformations (Poon & Pun, 1980). There are five configurational trans isomers for the macrocycle, which differ in the chirality of the sec-NH sites (Choi, 2009). The trans-I, trans-II and trans-V configurations also can fold to form cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011). The configuration of the macrocyclic ligand and the influence of the counter-anion are important factors in developing new highly effective anti-HIV drugs.

The dichromate anion is environmentally important due to its high toxicity (Yusof & Malek, 2009), and its use in industrial processing (Goyal et al., 2003). Since counter-anionic species play an important role in coordination chemistry (Martínez-Máñez & Sancenón, 2003; Fabbrizzi & Poggi, 2013), it may be possible that the [Cr(NCS)2(cyclam)]+ cation is suitable to bind specifically to an oxoanion. In this context, we report here on the synthesis of a new chromium(III)–dichromate salt, [Cr(NCS)2(cyclam)]2(Cr2O7)·H2O, (I), and its structural characterization by synchrotron single-crystal X-ray diffraction.graphic file with name e-73-00072-scheme1.jpg

Structural commentary  

Fig. 1 displays the mol­ecular components of (I). The structure is another example of a [Cr(NCS)2(cyclam)]+ cation (Friesen et al., 1997; Moon et al., 2013) but with a different counter-anion. The asymmetric unit comprises of one [Cr(NCS)2(cyclam)]+ cation, one half of a Cr2O7 2− anion (completed by inversion symmetry) and one half of a water mol­ecule (completed by twofold rotation symmetry). In the complex cation, the CrIII ion is coordinated by the N atoms of the cyclam ligand in the folded conformation. The nitro­gen atoms of two NCS ligands coordinate to the chromium atoms in a cis arrangement. The cyclam moiety adopts the cis-V (antianti) conformation (Subhan et al., 2011). The Cr—N(cyclam) bond lengths are in the range 2.080 (2) to 2.097 (2) Å, in good agreement with those determined in related structures, namely cis-[Cr(NCS)2(cyclam)]SCN [2.0851 (14)–2.0897 (14) Å; Moon et al., 2013], cis-[Cr(N3)2(cyclam)]ClO4 [2.069 (3)–2.103 (3) Å; Meyer et al., 1998], cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å; Choi et al., 2004a ], [Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.070(5–2.089 (5) Å, acac = acetyl­acetonate; Subhan et al., 2011] or cis-[CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 [2.075 (5)–2.096 (5) Å; Moon & Choi, 2016a ]. The Cr—N(cyclam) bond lengths with co-ligands in cis orientations are slightly longer than those found in trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å; Friesen et al., 1997], trans-[Cr(ONO)2(cyclam)]BF4 [2.064 (4)–2.073 (4) Å; De Leo et al., 2000], trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å; Moon & Choi, 2016b ] or trans-[Cr(nic-O)2(cyclam)]ClO4 [2.058 (4) – 2.064 (4) Å, nic-O = O-coordinating nicotinate; Choi, 2009]. The two Cr—N(NCS) bond lengths in (I) average to 1.985 (4) Å and are close to the values found in cis-[Cr(NCS)2(cyclam)]NCS [1.996 (15) Å; Moon et al., 2013], cis-[Cr(NCS)2(cyclam)]ClO4 [1.981 (4)–1.998 (4) Å; Friesen et al., 1997], trans-[Cr(NCS)2(cyclam)]2[ZnCl4] [1.995 (6) Å; Moon et al., 2015a ] or trans-[Cr(NCS)2(Me2tn)2]SCN·0.5H2O [1.983 (2)–1.990 (2) Å; Choi & Lee, 2009]. The five- and six-membered chelate rings of the cyclam ligand adopt gauche and stable chair conformations, respectively. The folded angle [96.05 (8)°] of cyclam is comparable to the values of 98.55 (2), 97.17 (5), 97.03 (2), 95.09 (9), 94.51 (2) and 92.8 (2)° in [Cr(ox)(cyclam)]ClO4, cis-[Cr(NCS)2(cyclam)]SCN, [Cr(acac)(cyclam)](ClO4)2·0.5H2O, cis-[Cr(ONO)2(cyclam)]NO2, cis-[Cr(N3)2(cyclam)]ClO4 and cis-[Cr(cyclam)Cl2]Cl, respectively (Choi et al., 2004b ; Moon et al., 2013; Subhan et al., 2011; Choi et al., 2004a ; Meyer et al., 1998; Forsellini et al., 1986, respectively).

Figure 1.

Figure 1

The mol­ecular components in the structure of (I) with displacement ellipsoids drawn at the 30% probability level. Only one orientation of the disordered anion is shown; primed atoms are related by symmetry code (−x, −y + 1, −z − Inline graphic). Dashed lines represent hydrogen bonds.

The two N-bound thio­cyanate anions are almost linear, with N—C—S angles of 178.8 (2) and 179.0 (3)°. The bridging O atom of the Cr2O7 2− anion is positionally disordered over an inversion centre, giving rise to a bending of the Cr2B—O1B—Cr2B(−x + 1, −y + 1, −z + 1) angle [157.7 (3)°]. The Cr2O7 2− anion in (I) has a staggered conformation while a nearly eclipsed conformation is observed in ionic compounds K2Cr2O7, Rb2Cr2O7 and (C3H5N2)(NH4)[Cr2O7] (Brandon & Brown, 1968; Löfgren, 1971; Zhu, 2012). The conformation of the dichromate anion is influenced by the charge and size of the counter-cation (Moon et al., 2015b ; Moon & Choi, 2016). The O—Cr2B—O bond angles range from 102.3 (3) to 119.5 (2)°; the terminal Cr2B—O bond lengths vary from 1.596 (2) to 1.612 (2) Å, with a mean terminal Cr2B—O bond length of 1.604 (12) Å. The bridging Cr2B—O1B bond has a length of 1.746 (9) Å. These values are comparable to those reported for the anions in the structures of [Cr(urea)6](Cr2O7)Br·H2O (Moon et al., 2015b ) or [CrCl2(tn)2]2(Cr2O7) (tn = propane-1,3-di­amine; Moon & Choi, 2016). A further distortion of the anion is due to its involvement in hydrogen-bonding inter­actions with water mol­ecule and complex cation (see Supra­molecular features).

Supra­molecular features  

Two O—H⋯O hydrogen bonds link the water mol­ecule to neighboring Cr2O7 2− anions while N—H⋯O hydrogen bonds inter­connect [Cr(NCS)2(cyclam)]+ cations with both the anions and water mol­ecules (Table 1; Figs. 1 and 2) . An extensive array of these contacts generates a three-dimensional network of mol­ecules stacked along the c-axis.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1W i 0.99 2.15 3.089 (3) 157
N2A—H2A⋯O3B 0.99 2.17 3.127 (3) 163
N3A—H3A⋯O4B ii 0.99 2.10 2.953 (3) 143
N4A—H4A⋯O4B 0.99 1.99 2.904 (3) 152
O1W—H1OW⋯O2B 0.84 (1) 2.24 (1) 3.052 (3) 164 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

The crystal packing in compound (I), viewed perpendicular to the ac plane. Dashed lines represent O—H⋯O (green) and N—-H⋯O (pink) hydrogen-bonding inter­actions.

Database survey  

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016) gave 17 hits for a cis-[CrL 2(C10H24N4)]+ unit.

Synthesis and crystallization  

Cyclam was purchased from Stream Chemicals and used as provided. All chemicals were reagent-grade materials and used without further purification. The starting material, cis-[Cr(NCS)2(cyclam)]SCN was prepared according to a literature protocol (Ferguson & Tobe, 1970). The thio­cyanate salt (0.513 g) was dissolved in 15 mL water at 347 K. The filtrate was added to 5 mL of water containing solid K2Cr2O7 (0.02 g). The resulting solution was evaporated slowly at room temperature until formation of crystals. The obtained block-like orange crystals of the dichromate salt were washed with small amounts of 2-propanol and dried in air before collecting the synchrotron data. Elemental analysis calculated for [Cr(NCS)2(C10H24N4)]2(Cr2O7)·H2O: C, 29.69; H, 5.19; N, 17.31%; found C, 29.84; H, 4.90; N, 17.28%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.98 Å and N—H = 0.99 Å, and with U iso(H) values of 1.2U eq of the parent atoms. The hydrogen atom of the solvent water mol­ecule was assigned based on a difference Fourier map, and the O—H distance and the H—O—H angle were restrained [0.84 (1) Å, 136 (2)°]. The bridging oxygen atom of the dichromate anion is positionally disordered around an inversion centre and consequently was refined with half-occupancy.

Table 2. Experimental details.

Crystal data
Chemical formula [Cr(NCS)2(C10H24N4)]2[Cr2O7]·H2O
M r 971.00
Crystal system, space group Monoclinic, C2/c
Temperature (K) 243
a, b, c (Å) 16.044 (2), 16.221 (2), 15.041 (2)
β (°) 93.335 (3)
V3) 3907.8 (9)
Z 4
Radiation type Synchrotron, λ = 0.620 Å
μ (mm−1) 0.92
Crystal size (mm) 0.04 × 0.03 × 0.02
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
T min, T max 0.799, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11326, 5767, 4156
R int 0.018
(sin θ/λ)max−1) 0.707
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.148, 1.06
No. of reflections 5767
No. of parameters 244
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.07, −0.73

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2014 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), DIAMOND 4 (Putz & Brandenburg, 2014), publCIF (Westrip,2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016020120/wm5351sup1.cif

e-73-00072-sup1.cif (527.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016020120/wm5351Isup2.hkl

e-73-00072-Isup2.hkl (459KB, hkl)

CCDC reference: 1523266

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from the 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

supplementary crystallographic information

Crystal data

[Cr(NCS)2(C10H24N4)]2[Cr2O7]·H2O F(000) = 2008
Mr = 971.00 Dx = 1.650 Mg m3
Monoclinic, C2/c Synchrotron radiation, λ = 0.620 Å
a = 16.044 (2) Å Cell parameters from 51334 reflections
b = 16.221 (2) Å θ = 0.4–33.6°
c = 15.041 (2) Å µ = 0.92 mm1
β = 93.335 (3)° T = 243 K
V = 3907.8 (9) Å3 Block, orange
Z = 4 0.04 × 0.03 × 0.02 mm

Data collection

ADSC Q210 CCD area detector diffractometer 4156 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnet Rint = 0.018
ω scan θmax = 26.0°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski & Minor, 1997) h = −22→22
Tmin = 0.799, Tmax = 1.000 k = −22→22
11326 measured reflections l = −21→21
5767 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0961P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148 (Δ/σ)max = 0.001
S = 1.06 Δρmax = 1.07 e Å3
5767 reflections Δρmin = −0.73 e Å3
244 parameters Extinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraints Extinction coefficient: 0.0074 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cr1A 0.21438 (2) 0.57578 (2) 0.25925 (2) 0.03091 (13)
S1A 0.04950 (5) 0.36485 (4) 0.11771 (4) 0.04880 (19)
S2A 0.10063 (7) 0.74359 (5) 0.02581 (6) 0.0745 (3)
N1A 0.12183 (13) 0.61482 (13) 0.34086 (12) 0.0382 (4)
H1A 0.079016 0.642089 0.300936 0.046*
N2A 0.27533 (14) 0.68147 (13) 0.31024 (13) 0.0434 (5)
H2A 0.316020 0.664275 0.358709 0.052*
N3A 0.32354 (14) 0.54328 (15) 0.19902 (14) 0.0446 (5)
H3A 0.306385 0.502794 0.152215 0.054*
N4A 0.25948 (13) 0.49636 (12) 0.35970 (12) 0.0346 (4)
H4A 0.288918 0.530211 0.406434 0.041*
N5A 0.15160 (14) 0.48029 (13) 0.20628 (13) 0.0413 (5)
N6A 0.17022 (15) 0.64396 (14) 0.15798 (14) 0.0438 (5)
C1A 0.15574 (19) 0.68028 (17) 0.40197 (18) 0.0494 (6)
H1A1 0.188173 0.655601 0.452403 0.059*
H1A2 0.110059 0.712466 0.425097 0.059*
C2A 0.2102 (2) 0.73442 (17) 0.34991 (19) 0.0529 (7)
H2A1 0.237031 0.776231 0.388958 0.063*
H2A2 0.176737 0.762617 0.302565 0.063*
C3A 0.3207 (2) 0.73028 (18) 0.24429 (19) 0.0538 (7)
H3A1 0.341165 0.781628 0.272119 0.065*
H3A2 0.282160 0.744693 0.193779 0.065*
C4A 0.39357 (19) 0.6825 (2) 0.2110 (2) 0.0590 (8)
H4A1 0.428513 0.663492 0.262585 0.071*
H4A2 0.427404 0.720062 0.176952 0.071*
C5A 0.3701 (2) 0.6088 (2) 0.15325 (18) 0.0562 (7)
H5A1 0.335888 0.627816 0.101176 0.067*
H5A2 0.421255 0.584763 0.131733 0.067*
C6A 0.37777 (18) 0.49700 (19) 0.26556 (18) 0.0504 (6)
H6A1 0.409094 0.535645 0.304869 0.061*
H6A2 0.417792 0.463030 0.235079 0.061*
C7A 0.32269 (18) 0.44260 (17) 0.31975 (18) 0.0461 (6)
H7A1 0.294855 0.400899 0.281353 0.055*
H7A2 0.356505 0.414318 0.366772 0.055*
C8A 0.19634 (16) 0.44486 (15) 0.40364 (16) 0.0410 (5)
H8A1 0.225168 0.408506 0.447454 0.049*
H8A2 0.166940 0.410082 0.358709 0.049*
C9A 0.13381 (18) 0.49627 (17) 0.44937 (16) 0.0446 (6)
H9A1 0.164157 0.532275 0.492398 0.053*
H9A2 0.098970 0.459365 0.483051 0.053*
C10A 0.07670 (17) 0.54960 (17) 0.38902 (17) 0.0441 (6)
H10A 0.046651 0.514150 0.345211 0.053*
H10B 0.035225 0.575948 0.425015 0.053*
C11A 0.10820 (16) 0.43251 (14) 0.16879 (14) 0.0354 (5)
C12A 0.14135 (15) 0.68562 (15) 0.10176 (15) 0.0376 (5)
Cr2B 0.43256 (3) 0.58043 (3) 0.52084 (3) 0.04068 (14)
O1B1 0.5133 (5) 0.5087 (6) 0.5160 (6) 0.0703 (17) 0.25
O1B2 0.5133 (5) 0.5087 (6) 0.5160 (6) 0.0703 (17) 0.25
O2B 0.46377 (19) 0.62450 (18) 0.61164 (14) 0.0817 (8)
O3B 0.43108 (16) 0.64288 (14) 0.43819 (14) 0.0686 (6)
O4B 0.33924 (14) 0.54580 (18) 0.52960 (14) 0.0737 (7)
O1W 0.500000 0.75939 (19) 0.750000 0.0587 (8)
H1OW 0.483 (2) 0.7293 (10) 0.7074 (11) 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr1A 0.0380 (2) 0.0291 (2) 0.02458 (18) −0.00533 (14) −0.00667 (13) 0.00188 (12)
S1A 0.0635 (4) 0.0365 (3) 0.0439 (3) −0.0122 (3) −0.0183 (3) −0.0014 (3)
S2A 0.1159 (8) 0.0473 (4) 0.0554 (5) 0.0173 (5) −0.0380 (5) 0.0057 (4)
N1A 0.0448 (11) 0.0365 (11) 0.0325 (9) −0.0010 (9) −0.0040 (8) 0.0010 (8)
N2A 0.0535 (12) 0.0377 (11) 0.0372 (10) −0.0140 (9) −0.0116 (9) 0.0014 (9)
N3A 0.0447 (12) 0.0561 (13) 0.0328 (10) −0.0070 (10) 0.0005 (8) 0.0015 (9)
N4A 0.0430 (10) 0.0318 (9) 0.0282 (8) −0.0009 (8) −0.0035 (7) 0.0029 (7)
N5A 0.0519 (12) 0.0368 (11) 0.0337 (9) −0.0103 (9) −0.0092 (8) −0.0011 (8)
N6A 0.0552 (13) 0.0402 (12) 0.0343 (10) −0.0057 (9) −0.0104 (9) 0.0065 (8)
C1A 0.0675 (18) 0.0390 (13) 0.0409 (13) −0.0006 (12) −0.0021 (12) −0.0068 (11)
C2A 0.075 (2) 0.0344 (13) 0.0481 (14) −0.0057 (13) −0.0049 (13) −0.0066 (11)
C3A 0.0632 (18) 0.0456 (15) 0.0511 (15) −0.0241 (13) −0.0085 (13) 0.0059 (12)
C4A 0.0543 (17) 0.071 (2) 0.0515 (15) −0.0223 (15) −0.0041 (13) 0.0133 (14)
C5A 0.0542 (16) 0.072 (2) 0.0432 (14) −0.0119 (15) 0.0063 (12) 0.0119 (14)
C6A 0.0456 (14) 0.0634 (17) 0.0422 (13) 0.0067 (13) 0.0018 (11) 0.0010 (13)
C7A 0.0494 (14) 0.0466 (14) 0.0418 (13) 0.0099 (12) −0.0011 (11) 0.0019 (11)
C8A 0.0526 (14) 0.0347 (12) 0.0351 (11) −0.0056 (10) −0.0029 (10) 0.0099 (9)
C9A 0.0524 (15) 0.0485 (14) 0.0329 (11) −0.0050 (12) 0.0027 (10) 0.0081 (10)
C10A 0.0446 (13) 0.0479 (14) 0.0397 (12) −0.0025 (11) 0.0004 (10) 0.0054 (11)
C11A 0.0472 (13) 0.0308 (11) 0.0273 (10) −0.0001 (9) −0.0068 (9) 0.0033 (8)
C12A 0.0463 (13) 0.0354 (12) 0.0300 (10) −0.0024 (10) −0.0068 (9) −0.0036 (9)
Cr2B 0.0457 (2) 0.0434 (3) 0.0319 (2) 0.00024 (17) −0.00628 (16) 0.00294 (15)
O1B1 0.060 (5) 0.063 (4) 0.087 (6) 0.014 (3) 0.000 (3) −0.009 (4)
O1B2 0.060 (5) 0.063 (4) 0.087 (6) 0.014 (3) 0.000 (3) −0.009 (4)
O2B 0.107 (2) 0.0956 (19) 0.0407 (11) −0.0337 (16) −0.0147 (12) −0.0019 (12)
O3B 0.0960 (18) 0.0621 (14) 0.0461 (11) 0.0021 (13) −0.0096 (11) 0.0156 (10)
O4B 0.0511 (12) 0.122 (2) 0.0466 (11) −0.0224 (13) −0.0071 (9) −0.0004 (13)
O1W 0.076 (2) 0.0548 (17) 0.0435 (15) 0.000 −0.0078 (14) 0.000

Geometric parameters (Å, º)

Cr1A—N6A 1.980 (2) C3A—H3A2 0.9800
Cr1A—N5A 1.989 (2) C4A—C5A 1.512 (4)
Cr1A—N1A 2.080 (2) C4A—H4A1 0.9800
Cr1A—N4A 2.0829 (19) C4A—H4A2 0.9800
Cr1A—N3A 2.086 (2) C5A—H5A1 0.9800
Cr1A—N2A 2.097 (2) C5A—H5A2 0.9800
S1A—C11A 1.612 (2) C6A—C7A 1.519 (4)
S2A—C12A 1.590 (2) C6A—H6A1 0.9800
N1A—C1A 1.487 (3) C6A—H6A2 0.9800
N1A—C10A 1.493 (3) C7A—H7A1 0.9800
N1A—H1A 0.9900 C7A—H7A2 0.9800
N2A—C3A 1.492 (3) C8A—C9A 1.502 (4)
N2A—C2A 1.502 (4) C8A—H8A1 0.9800
N2A—H2A 0.9900 C8A—H8A2 0.9800
N3A—C6A 1.490 (3) C9A—C10A 1.522 (4)
N3A—C5A 1.491 (4) C9A—H9A1 0.9800
N3A—H3A 0.9900 C9A—H9A2 0.9800
N4A—C7A 1.490 (3) C10A—H10A 0.9800
N4A—C8A 1.496 (3) C10A—H10B 0.9800
N4A—H4A 0.9900 Cr2B—O2B 1.596 (2)
N5A—C11A 1.165 (3) Cr2B—O3B 1.603 (2)
N6A—C12A 1.158 (3) Cr2B—O4B 1.612 (2)
C1A—C2A 1.493 (4) Cr2B—O1B1 1.746 (9)
C1A—H1A1 0.9800 Cr2B—O1B2 1.746 (9)
C1A—H1A2 0.9800 Cr2B—O1B1i 1.791 (9)
C2A—H2A1 0.9800 O1B1—O1B1i 0.686 (9)
C2A—H2A2 0.9800 O1W—H1OW 0.839 (7)
C3A—C4A 1.511 (5) O1W—H1OWii 0.839 (7)
C3A—H3A1 0.9800
N6A—Cr1A—N5A 88.66 (9) C5A—C4A—H4A1 108.5
N6A—Cr1A—N1A 92.76 (9) C3A—C4A—H4A2 108.5
N5A—Cr1A—N1A 96.39 (9) C5A—C4A—H4A2 108.5
N6A—Cr1A—N4A 175.72 (8) H4A1—C4A—H4A2 107.5
N5A—Cr1A—N4A 87.44 (8) N3A—C5A—C4A 114.4 (2)
N1A—Cr1A—N4A 89.43 (8) N3A—C5A—H5A1 108.7
N6A—Cr1A—N3A 94.53 (9) C4A—C5A—H5A1 108.7
N5A—Cr1A—N3A 92.73 (9) N3A—C5A—H5A2 108.7
N1A—Cr1A—N3A 168.45 (8) C4A—C5A—H5A2 108.7
N4A—Cr1A—N3A 83.89 (8) H5A1—C5A—H5A2 107.6
N6A—Cr1A—N2A 87.88 (8) N3A—C6A—C7A 108.5 (2)
N5A—Cr1A—N2A 176.30 (9) N3A—C6A—H6A1 110.0
N1A—Cr1A—N2A 82.47 (8) C7A—C6A—H6A1 110.0
N4A—Cr1A—N2A 96.05 (8) N3A—C6A—H6A2 110.0
N3A—Cr1A—N2A 88.86 (9) C7A—C6A—H6A2 110.0
C1A—N1A—C10A 112.12 (19) H6A1—C6A—H6A2 108.4
C1A—N1A—Cr1A 109.52 (16) N4A—C7A—C6A 107.9 (2)
C10A—N1A—Cr1A 116.98 (17) N4A—C7A—H7A1 110.1
C1A—N1A—H1A 105.8 C6A—C7A—H7A1 110.1
C10A—N1A—H1A 105.8 N4A—C7A—H7A2 110.1
Cr1A—N1A—H1A 105.8 C6A—C7A—H7A2 110.1
C3A—N2A—C2A 109.8 (2) H7A1—C7A—H7A2 108.4
C3A—N2A—Cr1A 115.22 (16) N4A—C8A—C9A 112.3 (2)
C2A—N2A—Cr1A 107.01 (16) N4A—C8A—H8A1 109.1
C3A—N2A—H2A 108.2 C9A—C8A—H8A1 109.1
C2A—N2A—H2A 108.2 N4A—C8A—H8A2 109.1
Cr1A—N2A—H2A 108.2 C9A—C8A—H8A2 109.1
C6A—N3A—C5A 112.4 (2) H8A1—C8A—H8A2 107.9
C6A—N3A—Cr1A 107.93 (15) C8A—C9A—C10A 116.0 (2)
C5A—N3A—Cr1A 118.5 (2) C8A—C9A—H9A1 108.3
C6A—N3A—H3A 105.7 C10A—C9A—H9A1 108.3
C5A—N3A—H3A 105.7 C8A—C9A—H9A2 108.3
Cr1A—N3A—H3A 105.7 C10A—C9A—H9A2 108.3
C7A—N4A—C8A 110.21 (19) H9A1—C9A—H9A2 107.4
C7A—N4A—Cr1A 106.58 (14) N1A—C10A—C9A 113.6 (2)
C8A—N4A—Cr1A 116.75 (15) N1A—C10A—H10A 108.8
C7A—N4A—H4A 107.7 C9A—C10A—H10A 108.8
C8A—N4A—H4A 107.7 N1A—C10A—H10B 108.8
Cr1A—N4A—H4A 107.7 C9A—C10A—H10B 108.8
C11A—N5A—Cr1A 170.5 (2) H10A—C10A—H10B 107.7
C12A—N6A—Cr1A 176.3 (2) N5A—C11A—S1A 178.8 (2)
N1A—C1A—C2A 107.5 (2) N6A—C12A—S2A 179.0 (3)
N1A—C1A—H1A1 110.2 O2B—Cr2B—O3B 111.73 (13)
C2A—C1A—H1A1 110.2 O2B—Cr2B—O4B 109.44 (13)
N1A—C1A—H1A2 110.2 O3B—Cr2B—O4B 108.17 (13)
C2A—C1A—H1A2 110.2 O2B—Cr2B—O1B1 97.9 (2)
H1A1—C1A—H1A2 108.5 O3B—Cr2B—O1B1 111.5 (4)
C1A—C2A—N2A 108.3 (2) O4B—Cr2B—O1B1 117.8 (3)
C1A—C2A—H2A1 110.0 O2B—Cr2B—O1B2 97.9 (2)
N2A—C2A—H2A1 110.0 O3B—Cr2B—O1B2 111.5 (4)
C1A—C2A—H2A2 110.0 O4B—Cr2B—O1B2 117.8 (3)
N2A—C2A—H2A2 110.0 O2B—Cr2B—O1B1i 119.5 (2)
H2A1—C2A—H2A2 108.4 O3B—Cr2B—O1B1i 104.8 (4)
N2A—C3A—C4A 111.4 (2) O4B—Cr2B—O1B1i 102.3 (3)
N2A—C3A—H3A1 109.3 O1B1—Cr2B—O1B1i 22.3 (3)
C4A—C3A—H3A1 109.3 O1B2—Cr2B—O1B1i 22.3 (3)
N2A—C3A—H3A2 109.3 O1B1i—O1B1—Cr2B 82.5 (15)
C4A—C3A—H3A2 109.3 O1B1i—O1B1—Cr2Bi 75.2 (15)
H3A1—C3A—H3A2 108.0 Cr2B—O1B1—Cr2Bi 157.7 (3)
C3A—C4A—C5A 115.1 (2) Cr2B—O1B2—Cr2Bi 157.7 (3)
C3A—C4A—H4A1 108.5 H1OW—O1W—H1OWii 109 (2)
C10A—N1A—C1A—C2A 171.4 (2) C7A—N4A—C8A—C9A 176.9 (2)
Cr1A—N1A—C1A—C2A 39.8 (3) Cr1A—N4A—C8A—C9A −61.4 (2)
N1A—C1A—C2A—N2A −55.7 (3) N4A—C8A—C9A—C10A 65.3 (3)
C3A—N2A—C2A—C1A 169.5 (2) C1A—N1A—C10A—C9A −69.4 (3)
Cr1A—N2A—C2A—C1A 43.8 (2) Cr1A—N1A—C10A—C9A 58.4 (3)
C2A—N2A—C3A—C4A 173.1 (2) C8A—C9A—C10A—N1A −64.1 (3)
Cr1A—N2A—C3A—C4A −66.0 (3) O2B—Cr2B—O1B1—O1B1i 166.3 (18)
N2A—C3A—C4A—C5A 68.6 (3) O3B—Cr2B—O1B1—O1B1i −76.5 (19)
C6A—N3A—C5A—C4A −72.0 (3) O4B—Cr2B—O1B1—O1B1i 49 (2)
Cr1A—N3A—C5A—C4A 55.0 (3) O2B—Cr2B—O1B1—Cr2Bi 166.3 (18)
C3A—C4A—C5A—N3A −62.5 (4) O3B—Cr2B—O1B1—Cr2Bi −76.5 (19)
C5A—N3A—C6A—C7A 170.2 (2) O4B—Cr2B—O1B1—Cr2Bi 49 (2)
Cr1A—N3A—C6A—C7A 37.7 (3) O1B1i—Cr2B—O1B1—Cr2Bi 0.004 (6)
C8A—N4A—C7A—C6A 172.4 (2) O2B—Cr2B—O1B2—Cr2Bi 166.3 (18)
Cr1A—N4A—C7A—C6A 44.8 (2) O3B—Cr2B—O1B2—Cr2Bi −76.5 (19)
N3A—C6A—C7A—N4A −55.9 (3) O4B—Cr2B—O1B2—Cr2Bi 49 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O1Wiii 0.99 2.15 3.089 (3) 157
N2A—H2A···O3B 0.99 2.17 3.127 (3) 163
N3A—H3A···O4Biv 0.99 2.10 2.953 (3) 143
N4A—H4A···O4B 0.99 1.99 2.904 (3) 152
O1W—H1OW···O2B 0.84 (1) 2.24 (1) 3.052 (3) 164 (2)

Symmetry codes: (iii) −x+1/2, −y+3/2, −z+1; (iv) x, −y+1, z−1/2.

References

  1. Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941.
  2. Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.
  3. Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.
  4. Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240. [DOI] [PubMed]
  5. Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.
  6. De Clercq, E. (2010). J. Med. Chem. 53, 1438–1450. [DOI] [PubMed]
  7. De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950.
  8. Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699. [DOI] [PubMed]
  9. Ferguson, J. & Tobe, M. L. (1970). Inorg. Chim. Acta, 4, 109–112.
  10. Forsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. & Sosa, M. E. (1986). Acta Cryst. C42, 563–565.
  11. Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.
  12. Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319.
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Löfgren, P. (1971). Acta Chem. Scand. 25, 44–58.
  15. Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419–4476. [DOI] [PubMed]
  16. Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180–5188.
  17. Moon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 1417–1420. [DOI] [PMC free article] [PubMed]
  18. Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 456–459. [DOI] [PMC free article] [PubMed]
  19. Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. [DOI] [PMC free article] [PubMed]
  20. Moon, D., Ryoo, K. S. & Choi, J.-H. (2015a). Acta Cryst. E71, 540–543. [DOI] [PMC free article] [PubMed]
  21. Moon, D., Ryoo, K. S. & Choi, J.-H. (2016). Acta Cryst. E72, 1293–1296. [DOI] [PMC free article] [PubMed]
  22. Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015b). Acta Cryst. E71, 1336–1339. [DOI] [PMC free article] [PubMed]
  23. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  24. Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.
  25. Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  26. Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.
  27. Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. [DOI] [PubMed]
  28. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  29. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  30. Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [DOI] [PubMed]
  31. Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.
  32. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  33. Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024. [DOI] [PubMed]
  34. Zhu, R.-Q. (2012). Acta Cryst. E68, m389. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016020120/wm5351sup1.cif

e-73-00072-sup1.cif (527.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016020120/wm5351Isup2.hkl

e-73-00072-Isup2.hkl (459KB, hkl)

CCDC reference: 1523266

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES