Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 1;73(Pt 1):81–84. doi: 10.1107/S2056989016019927

Crystal structure and absolute configuration of (3aR,3′aR,7aS,7′aS)-2,2,2′,2′-tetra­methyl-3a,6,7,7a,3′a,6′,7′,7′a-octa­hydro-4,4′-bi[1,3-benzodioxol­yl], obtained from a Pd-catalyzed homocoupling reaction

Mario A Macías a, Enrique Pandolfi b, Valeria Schapiro b, Gustavo P Silveira c, Guilherme D Vilela c, Leopoldo Suescun d,*
PMCID: PMC5209778  PMID: 28083142

The crystal structure of a homocoupled compound with absolute configuration 3aR,3′aR,7aS,7′aS was determined. The mol­ecule contains two similar moieties composed of two fused rings. Its supra­molecular structure is controlled mainly by C—H⋯O inter­actions.

Keywords: crystal structure; absolute configuration; homocoupling reaction; palladium-catalyzed; 1,3-benzodioxol­yl

Abstract

The absolute configuration, i.e. (3aR,3′aR,7aS,7′aS), of the title compound, C18H26O4, synthesized via a palladium-catalyzed homocoupling reaction, was determined on the basis of the synthetic pathway and was confirmed by X-ray diffraction. The homocoupled mol­ecule is formed by two chemically identical moieties built up from two five- and six-membered fused rings. The supra­molecular assembly is controlled mainly by C—H⋯O inter­actions that lead to the formation of hydrogen-bonded chains of mol­ecules along the [001] direction, while weak dipolar inter­actions and van der Waals forces hold the chains together in the crystal structure.

Chemical context  

Over the last few years, we have focused our efforts on the synthesis of vinyl­sulfimines as precursors in γ-lactamization reactions to generate asymmetric pyrrolidone derivatives which are of inter­est in medicinal chemistry (Silveira et al., 2012, 2014; Silveira & Marino, 2013; Pereira et al., 2015). Encouraged by our previous experience in functionalizing halo-cyclo­hexa­diendiols (Heguaburu et al., 2008; Labora et al., 2010; Heguaburu et al., 2010; Labora et al., 2008), we synthesized a vinylic sulfide (mol­ecule 3 in Fig. 1) from protected iodo-cyclo­hexenediol (mol­ecule 1 in Fig. 1). This latter compound was obtained firstly by regioselective reduction of iodo­cyclo­hexa­dienediol derived from the biotransformation of iodo­benzene (González et al., 1997). The obtained compound was treated with lithium iso­propyl­thiol­ate in the presence of 5% of Pd (PPh3)4 as catalyst to obtain the vinyl sulfide in 85% yield. Surprisingly, one of the attempts to perform this reaction proceeded to afford traces of the homocoupled product (mol­ecule 2 in Fig. 1). Considering this finding, we decided to prepare this new compound via a palladium-catalyzed homocoupling reaction of the vinylic iodide (mol­ecule 1 in Fig. 1), mediated by indium, according to the Lee protocol (Lee et al., 2005). Herein, we report this new synthetic method and the crystal structure of the title compound.graphic file with name e-73-00081-scheme1.jpg

Figure 1.

Figure 1

Synthetic pathway showing the formation of the homocoupled compound C18H26O4.

Structural commentary  

The absolute configuration of the title compound (Fig. 2) was determined to be 3aR,3′aR,7aS,7′aS by considering the synthetic pathway and confirmed by X-ray diffraction on the basis of the anomalous dispersion of light atoms only. The mol­ecule is built up from two chemically identical moieties (called A and B), each one composed of two fused rings and connected through the C4A—C4B bond. The six-membered rings (C3AA/AB, C7AA/AB, C7A/B, C6A/B, C5A/B, C4A/B) adopt an envelope conformation with atoms C7A/B (located para to C4A/B) as the flap [puckering parameters are Q = 0.403 (2) Å, θ = 49.2 (3)°, φ = 108.2 (4)° and Q = 0.490 (2) Å, θ = 58.5 (2)°, φ = 114.9 (3)°, respectively]. The five-membered rings (O1A/B, C2A/B, O3A/B, C3AA/AB, C7AA/AB) adopt a twisted conformation [puckering parameters Q(2) = 0.3285 (17) Å, φ(2) = 115.6 (3)° and Q(2) = 0.3268 (18) Å, φ(2) = 101.4 (3)°, respectively]). In fragment A, the flap of the envelope is oriented away from the five-membered ring while in fragment B, both C7 and the five-membered ring are on the same side of the plane of the envelope, making them conformationally different. The dihedral angle between the least-square planes through the six-membered rings is 43.15 (9)° while the dihedral angles between the five and six-membered rings are 69.31 (10) and 76.95 (10)° in A and B, respectively, leaving the two five-membered rings on opposite sides of the C4A—C4B bond and almost in the same plane, normal to the bis­ector plane of both six-membered rings.

Figure 2.

Figure 2

The mol­ecular structure of the title compound, showing anisotropic displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, weak C22A—H22F⋯O3B i [symmetry code: (i) x, y, z − 1] inter­actions link the mol­ecules in chains running along [001], see Fig. 3 and Table 1. In the [100] and [010] directions, only weak dipolar inter­actions or van der Waals forces act between neighboring chains to stabilize the three-dimensional array of the crystal structure.

Figure 3.

Figure 3

The crystal structure of the title compound, showing the C—H⋯O hydrogen-bonding inter­actions (dotted lines) along the [001] direction.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C22A—H22F⋯O3B i 0.96 2.56 3.510 (3) 171

Symmetry code: (i) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (CSD Version 5.36 with one update; Groom et al., 2016) using as a criterion the existence of mol­ecular structures composed of two similar fragments of fused five and six-membered rings gave no results. However, a search for similar systems considering only the six-membered ring resulted in four hits, viz. two different crystal structures for (5,5′-diphenyl-1,1′-bi(cyclo­hex-1-en-1-yl)-4,4′-di­yl)di­methanol in space groups P1 and P Inline graphic, (S,S)-2,2′-bis­(di­phenyl­phosphino­yl)bi(cyclo­hex-1-ene) and (3S,6R)-3-isopropyl-2-[(3R,6S)-6-isopropyl-3-methyl-1-cyclo­hexen­yl]-6-methyl­cyclo­hexene; none of which is composed of fused rings. These results demonstrate the rarity of this sort of mol­ecule. While there are no reports about such systems, the structure of (3aS,4S,5R,7aR)-2,2,7-trimethyl-3a,4,5,7a-tetra­hydro-1,3-benzo­dioxole-4,5-diol was published recently (Macías et al., 2015). In this case, the conformation of the fused rings keeps a level of similarity with the structural assembly of the title compound.

Synthesis and crystallization  

A mixture of the vinylic iodide (mol­ecule 1 in Fig. 1.) (140 mg, 0.5 mmol), Pd(PPh3)4 (10% wt., 14.4 mg, 0.025 mmol), indium (28.7 mg, 0.25 mmol), and lithium chloride (31.8 mg, 0.75 mmol) in dry THF (2 mL) was stirred at reflux for 4 h under a nitro­gen atmosphere. The reaction mixture was quenched with NaHCO3 (sat. aq.). The aqueous layer was extracted with ethyl acetate (3 × 20 mL), and the combined organic phases were washed with brine, dried with Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexa­nes/ethyl acetate 95:5) to give the desired homocoupled product (43.5 mg, 57%).

Crystals suitable for X-ray crystallographic analysis were obtained by dissolving the title compound in the minimum volume of ethyl acetate, adding hexa­nes until the solution became slightly turbid, and slowly evaporating the solvent at room temperature. 1H NMR (400 MHz, CDCl3) δ: 6.16 (t, J = 4.2 Hz, 2H), 4.72 (d, J = 5.6 Hz, 2H), 4.33–4.29 (m, 2H), 2.36–2.27 (m, 2H), 2.09–2.00 (m, 2H), 1.87–1.71 (m, 4H), 1.40 (s, 6H); 1.39 (s, 6H). All spectroscopic and analytical data were in full agreement with the literature (Boyd et al., 2011).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C were placed in calculated positions (C—H = 0.93–0.98 Å) and included as riding contributions with isotropic displacement parameters set to 1.2–1.5 times the U eq of the parent atom.

Table 2. Experimental details.

Crystal data
Chemical formula C18H26O4
M r 306.39
Crystal system, space group Monoclinic, P21
Temperature (K) 298
a, b, c (Å) 6.2927 (7), 17.9903 (19), 7.2991 (8)
β (°) 95.216 (4)
V3) 822.89 (16)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.69
Crystal size (mm) 0.40 × 0.35 × 0.30
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.687, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 27011, 3232, 3135
R int 0.026
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.071, 1.08
No. of reflections 3232
No. of parameters 204
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.10
Absolute structure Flack x determined using 1475 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.04 (4)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS2014 (Sheldrick, 2008, 2015), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019927/rz5201sup1.cif

e-73-00081-sup1.cif (794.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019927/rz5201Isup2.hkl

e-73-00081-Isup2.hkl (258KB, hkl)

CCDC reference: 1522804

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to thank CAPES/UDELAR (project No. 049/2013) for financial support. GPS and GDV acknowledge CAPES Science Without Borders – Special Visiting Researcher grant No. 096–2013. The authors also wish to thank ANII (EQC_2012_07), CSIC and the Facultad de Química for funds to purchase the diffractometer.

supplementary crystallographic information

Crystal data

C18H26O4 F(000) = 332
Mr = 306.39 Dx = 1.237 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
a = 6.2927 (7) Å Cell parameters from 9685 reflections
b = 17.9903 (19) Å θ = 4.9–72.4°
c = 7.2991 (8) Å µ = 0.69 mm1
β = 95.216 (4)° T = 298 K
V = 822.89 (16) Å3 Parallelepiped, yellow
Z = 2 0.40 × 0.35 × 0.30 mm

Data collection

Bruker D8 Venture/Photon 100 CMOS diffractometer 3232 independent reflections
Radiation source: Cu Incoatec microsource 3135 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1 Rint = 0.026
φ and ω scans θmax = 72.4°, θmin = 4.9°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −7→7
Tmin = 0.687, Tmax = 0.754 k = −21→22
27011 measured reflections l = −9→9

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.0652P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.13 e Å3
3232 reflections Δρmin = −0.10 e Å3
204 parameters Extinction correction: SHELXL, Fc* = kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0184 (15)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack x determined using 1475 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.04 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C7A 0.6166 (3) 1.13949 (11) 0.8000 (3) 0.0486 (4)
H7AA 0.5916 1.1910 0.7652 0.058*
H7AB 0.6639 1.1382 0.9302 0.058*
C6B 0.5034 (4) 0.77162 (12) 0.6693 (3) 0.0621 (6)
H6BA 0.5554 0.7523 0.5577 0.074*
H6BB 0.3603 0.7526 0.6774 0.074*
C2A 0.8127 (3) 1.05458 (10) 0.4052 (2) 0.0451 (4)
C7B 0.6472 (4) 0.74545 (11) 0.8343 (3) 0.0553 (5)
H7BA 0.5835 0.7580 0.9464 0.066*
H7BB 0.6625 0.6919 0.8297 0.066*
C22A 0.6299 (3) 1.01769 (13) 0.2920 (3) 0.0580 (5)
H22D 0.5609 1.0532 0.2084 0.087*
H22E 0.5291 0.9991 0.3719 0.087*
H22F 0.6832 0.9773 0.2235 0.087*
C2B 1.0094 (3) 0.83055 (10) 1.1168 (3) 0.0480 (4)
C21A 0.9882 (4) 1.07986 (15) 0.2908 (3) 0.0674 (6)
H21D 1.0446 1.0377 0.2306 0.101*
H21E 1.1000 1.1030 0.3691 0.101*
H21F 0.9314 1.1149 0.2000 0.101*
C21B 1.2355 (4) 0.85972 (14) 1.1342 (4) 0.0659 (6)
H21A 1.2803 0.8687 1.0139 0.099*
H21B 1.3284 0.8237 1.1970 0.099*
H21C 1.2417 0.9053 1.2029 0.099*
C22B 0.9298 (5) 0.81210 (16) 1.2994 (3) 0.0716 (7)
H22A 0.7901 0.7905 1.2800 0.107*
H22B 0.9231 0.8567 1.3710 0.107*
H22C 1.0254 0.7774 1.3637 0.107*
C6A 0.4092 (3) 1.09664 (11) 0.7669 (3) 0.0548 (5)
H6AA 0.3159 1.1102 0.8602 0.066*
H6AB 0.3389 1.1105 0.6481 0.066*
C5B 0.4969 (3) 0.85505 (11) 0.6607 (3) 0.0491 (4)
H5B 0.3814 0.8774 0.5935 0.059*
C5A 0.4430 (3) 1.01436 (10) 0.7714 (3) 0.0452 (4)
H5A 0.3277 0.9845 0.7940 0.054*
C4B 0.6466 (3) 0.89895 (9) 0.7434 (2) 0.0363 (3)
C4A 0.6263 (2) 0.98093 (9) 0.7455 (2) 0.0354 (4)
C3AB 0.8491 (3) 0.86610 (9) 0.8348 (2) 0.0370 (4)
H3AB 0.9718 0.8867 0.7785 0.044*
O3B 0.8671 (2) 0.88358 (7) 1.02685 (17) 0.0462 (3)
C3AA 0.8247 (2) 1.02504 (9) 0.7153 (2) 0.0355 (3)
H3AA 0.9338 1.0159 0.8173 0.043*
O3A 0.90773 (18) 1.00550 (6) 0.54514 (17) 0.0426 (3)
C7AB 0.8628 (3) 0.78135 (10) 0.8361 (2) 0.0452 (4)
H7B 0.9330 0.7645 0.7290 0.054*
O1B 0.9974 (3) 0.76615 (7) 1.0002 (2) 0.0601 (4)
C7AA 0.7894 (3) 1.10842 (9) 0.6933 (3) 0.0423 (4)
H7A 0.9235 1.1349 0.7263 0.051*
O1A 0.7303 (3) 1.11563 (8) 0.50051 (18) 0.0580 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C7A 0.0564 (11) 0.0367 (9) 0.0508 (10) 0.0081 (8) −0.0048 (8) −0.0077 (8)
C6B 0.0703 (14) 0.0432 (11) 0.0720 (14) −0.0180 (10) 0.0032 (11) −0.0097 (10)
C2A 0.0536 (10) 0.0381 (9) 0.0439 (9) 0.0048 (8) 0.0056 (8) 0.0063 (7)
C7B 0.0742 (13) 0.0309 (9) 0.0634 (12) −0.0063 (8) 0.0210 (10) 0.0003 (8)
C22A 0.0607 (11) 0.0618 (13) 0.0506 (11) 0.0013 (10) −0.0001 (9) −0.0027 (9)
C2B 0.0613 (11) 0.0383 (9) 0.0438 (9) 0.0127 (8) 0.0026 (8) 0.0052 (7)
C21A 0.0667 (14) 0.0740 (15) 0.0628 (13) −0.0058 (11) 0.0129 (10) 0.0236 (11)
C21B 0.0605 (13) 0.0570 (13) 0.0785 (15) 0.0122 (10) −0.0026 (11) 0.0089 (11)
C22B 0.0899 (17) 0.0771 (17) 0.0488 (12) 0.0198 (14) 0.0117 (11) 0.0137 (11)
C6A 0.0462 (10) 0.0513 (12) 0.0652 (12) 0.0139 (8) −0.0034 (8) −0.0090 (9)
C5B 0.0524 (10) 0.0445 (10) 0.0495 (10) −0.0073 (8) −0.0002 (8) 0.0003 (8)
C5A 0.0372 (8) 0.0459 (10) 0.0521 (10) −0.0014 (7) 0.0022 (7) −0.0023 (8)
C4B 0.0419 (8) 0.0333 (8) 0.0342 (8) −0.0025 (6) 0.0060 (6) 0.0024 (6)
C4A 0.0371 (8) 0.0348 (8) 0.0334 (8) −0.0008 (6) −0.0019 (6) 0.0006 (6)
C3AB 0.0435 (8) 0.0295 (8) 0.0386 (8) 0.0007 (6) 0.0074 (6) 0.0005 (6)
O3B 0.0590 (7) 0.0379 (6) 0.0405 (6) 0.0146 (6) −0.0024 (5) −0.0036 (5)
C3AA 0.0347 (7) 0.0317 (8) 0.0391 (8) 0.0016 (6) −0.0025 (6) 0.0019 (6)
O3A 0.0453 (6) 0.0363 (6) 0.0472 (6) 0.0065 (5) 0.0097 (5) 0.0063 (5)
C7AB 0.0606 (11) 0.0331 (9) 0.0433 (9) 0.0062 (8) 0.0133 (8) −0.0010 (7)
O1B 0.0851 (9) 0.0355 (7) 0.0581 (8) 0.0181 (7) −0.0034 (7) 0.0022 (6)
C7AA 0.0477 (9) 0.0297 (8) 0.0481 (9) −0.0021 (7) −0.0038 (7) 0.0010 (7)
O1A 0.0899 (10) 0.0370 (7) 0.0464 (7) 0.0179 (7) 0.0028 (7) 0.0078 (5)

Geometric parameters (Å, º)

C7A—C7AA 1.502 (3) C21B—H21B 0.9600
C7A—C6A 1.516 (3) C21B—H21C 0.9600
C7A—H7AA 0.9700 C22B—H22A 0.9600
C7A—H7AB 0.9700 C22B—H22B 0.9600
C6B—C5B 1.503 (3) C22B—H22C 0.9600
C6B—C7B 1.514 (3) C6A—C5A 1.495 (3)
C6B—H6BA 0.9700 C6A—H6AA 0.9700
C6B—H6BB 0.9700 C6A—H6AB 0.9700
C2A—O1A 1.423 (2) C5B—C4B 1.331 (3)
C2A—O3A 1.439 (2) C5B—H5B 0.9300
C2A—C22A 1.508 (3) C5A—C4A 1.329 (2)
C2A—C21A 1.514 (3) C5A—H5A 0.9300
C7B—C7AB 1.501 (3) C4B—C4A 1.481 (2)
C7B—H7BA 0.9700 C4B—C3AB 1.505 (2)
C7B—H7BB 0.9700 C4A—C3AA 1.512 (2)
C22A—H22D 0.9600 C3AB—O3B 1.431 (2)
C22A—H22E 0.9600 C3AB—C7AB 1.527 (2)
C22A—H22F 0.9600 C3AB—H3AB 0.9800
C2B—O3B 1.427 (2) C3AA—O3A 1.434 (2)
C2B—O1B 1.435 (2) C3AA—C7AA 1.523 (2)
C2B—C22B 1.502 (3) C3AA—H3AA 0.9800
C2B—C21B 1.511 (3) C7AB—O1B 1.430 (2)
C21A—H21D 0.9600 C7AB—H7B 0.9800
C21A—H21E 0.9600 C7AA—O1A 1.428 (2)
C21A—H21F 0.9600 C7AA—H7A 0.9800
C21B—H21A 0.9600
C7AA—C7A—C6A 112.42 (16) H22A—C22B—H22B 109.5
C7AA—C7A—H7AA 109.1 C2B—C22B—H22C 109.5
C6A—C7A—H7AA 109.1 H22A—C22B—H22C 109.5
C7AA—C7A—H7AB 109.1 H22B—C22B—H22C 109.5
C6A—C7A—H7AB 109.1 C5A—C6A—C7A 112.39 (15)
H7AA—C7A—H7AB 107.9 C5A—C6A—H6AA 109.1
C5B—C6B—C7B 110.85 (17) C7A—C6A—H6AA 109.1
C5B—C6B—H6BA 109.5 C5A—C6A—H6AB 109.1
C7B—C6B—H6BA 109.5 C7A—C6A—H6AB 109.1
C5B—C6B—H6BB 109.5 H6AA—C6A—H6AB 107.9
C7B—C6B—H6BB 109.5 C4B—C5B—C6B 123.93 (18)
H6BA—C6B—H6BB 108.1 C4B—C5B—H5B 118.0
O1A—C2A—O3A 105.85 (14) C6B—C5B—H5B 118.0
O1A—C2A—C22A 108.30 (16) C4A—C5A—C6A 124.64 (17)
O3A—C2A—C22A 111.49 (15) C4A—C5A—H5A 117.7
O1A—C2A—C21A 110.76 (17) C6A—C5A—H5A 117.7
O3A—C2A—C21A 107.39 (16) C5B—C4B—C4A 122.49 (16)
C22A—C2A—C21A 112.85 (18) C5B—C4B—C3AB 120.26 (16)
C7AB—C7B—C6B 110.32 (16) C4A—C4B—C3AB 117.22 (14)
C7AB—C7B—H7BA 109.6 C5A—C4A—C4B 121.95 (15)
C6B—C7B—H7BA 109.6 C5A—C4A—C3AA 121.45 (15)
C7AB—C7B—H7BB 109.6 C4B—C4A—C3AA 116.60 (14)
C6B—C7B—H7BB 109.6 O3B—C3AB—C4B 109.67 (13)
H7BA—C7B—H7BB 108.1 O3B—C3AB—C7AB 102.38 (13)
C2A—C22A—H22D 109.5 C4B—C3AB—C7AB 116.09 (15)
C2A—C22A—H22E 109.5 O3B—C3AB—H3AB 109.5
H22D—C22A—H22E 109.5 C4B—C3AB—H3AB 109.5
C2A—C22A—H22F 109.5 C7AB—C3AB—H3AB 109.5
H22D—C22A—H22F 109.5 C2B—O3B—C3AB 107.11 (13)
H22E—C22A—H22F 109.5 O3A—C3AA—C4A 111.61 (13)
O3B—C2B—O1B 105.65 (14) O3A—C3AA—C7AA 102.20 (13)
O3B—C2B—C22B 108.06 (17) C4A—C3AA—C7AA 114.69 (14)
O1B—C2B—C22B 110.10 (19) O3A—C3AA—H3AA 109.4
O3B—C2B—C21B 110.69 (17) C4A—C3AA—H3AA 109.4
O1B—C2B—C21B 109.18 (18) C7AA—C3AA—H3AA 109.4
C22B—C2B—C21B 112.9 (2) C3AA—O3A—C2A 107.67 (12)
C2A—C21A—H21D 109.5 O1B—C7AB—C7B 113.01 (16)
C2A—C21A—H21E 109.5 O1B—C7AB—C3AB 102.98 (15)
H21D—C21A—H21E 109.5 C7B—C7AB—C3AB 112.28 (15)
C2A—C21A—H21F 109.5 O1B—C7AB—H7B 109.5
H21D—C21A—H21F 109.5 C7B—C7AB—H7B 109.5
H21E—C21A—H21F 109.5 C3AB—C7AB—H7B 109.5
C2B—C21B—H21A 109.5 C7AB—O1B—C2B 109.73 (13)
C2B—C21B—H21B 109.5 O1A—C7AA—C7A 109.95 (15)
H21A—C21B—H21B 109.5 O1A—C7AA—C3AA 102.46 (14)
C2B—C21B—H21C 109.5 C7A—C7AA—C3AA 114.67 (15)
H21A—C21B—H21C 109.5 O1A—C7AA—H7A 109.8
H21B—C21B—H21C 109.5 C7A—C7AA—H7A 109.8
C2B—C22B—H22A 109.5 C3AA—C7AA—H7A 109.8
C2B—C22B—H22B 109.5 C2A—O1A—C7AA 109.73 (13)
C5B—C6B—C7B—C7AB −52.6 (2) C7AA—C3AA—O3A—C2A −31.87 (16)
C7AA—C7A—C6A—C5A 44.4 (2) O1A—C2A—O3A—C3AA 17.72 (18)
C7B—C6B—C5B—C4B 21.4 (3) C22A—C2A—O3A—C3AA −99.84 (17)
C7A—C6A—C5A—C4A −21.2 (3) C21A—C2A—O3A—C3AA 136.07 (17)
C6B—C5B—C4B—C4A −174.59 (18) C6B—C7B—C7AB—O1B 172.70 (16)
C6B—C5B—C4B—C3AB 7.3 (3) C6B—C7B—C7AB—C3AB 56.7 (2)
C6A—C5A—C4A—C4B −177.19 (17) O3B—C3AB—C7AB—O1B −31.08 (16)
C6A—C5A—C4A—C3AA 2.4 (3) C4B—C3AB—C7AB—O1B −150.49 (15)
C5B—C4B—C4A—C5A 41.2 (3) O3B—C3AB—C7AB—C7B 90.79 (17)
C3AB—C4B—C4A—C5A −140.59 (17) C4B—C3AB—C7AB—C7B −28.6 (2)
C5B—C4B—C4A—C3AA −138.43 (17) C7B—C7AB—O1B—C2B −104.65 (19)
C3AB—C4B—C4A—C3AA 39.8 (2) C3AB—C7AB—O1B—C2B 16.7 (2)
C5B—C4B—C3AB—O3B −119.03 (18) O3B—C2B—O1B—C7AB 4.1 (2)
C4A—C4B—C3AB—O3B 62.73 (18) C22B—C2B—O1B—C7AB 120.57 (19)
C5B—C4B—C3AB—C7AB −3.7 (2) C21B—C2B—O1B—C7AB −114.94 (18)
C4A—C4B—C3AB—C7AB 178.09 (14) C6A—C7A—C7AA—O1A 63.7 (2)
O1B—C2B—O3B—C3AB −25.2 (2) C6A—C7A—C7AA—C3AA −51.0 (2)
C22B—C2B—O3B—C3AB −143.02 (19) O3A—C3AA—C7AA—O1A 33.75 (16)
C21B—C2B—O3B—C3AB 92.87 (19) C4A—C3AA—C7AA—O1A −87.19 (17)
C4B—C3AB—O3B—C2B 158.69 (15) O3A—C3AA—C7AA—C7A 152.83 (14)
C7AB—C3AB—O3B—C2B 34.88 (17) C4A—C3AA—C7AA—C7A 31.9 (2)
C5A—C4A—C3AA—O3A −122.95 (16) O3A—C2A—O1A—C7AA 5.2 (2)
C4B—C4A—C3AA—O3A 56.69 (18) C22A—C2A—O1A—C7AA 124.91 (17)
C5A—C4A—C3AA—C7AA −7.3 (2) C21A—C2A—O1A—C7AA −110.85 (19)
C4B—C4A—C3AA—C7AA 172.30 (14) C7A—C7AA—O1A—C2A −146.62 (16)
C4A—C3AA—O3A—C2A 91.17 (15) C3AA—C7AA—O1A—C2A −24.27 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C22A—H22F···O3Bi 0.96 2.56 3.510 (3) 171

Symmetry code: (i) x, y, z−1.

References

  1. Boyd, D. R., Sharma, N. D., Kaik, M., Bell, M., Berberian, M. V., McIntyre, P. B. A., Kelly, B., Hardacre, C., Stevenson, P. J. & Allen, C. C. R. (2011). Adv. Synth. Catal. 353, 2455–2465.
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. González, D., Schapiro, V., Seoane, G. & Hudlicky, T. (1997). Tetrahedron Asymmetry, 8, 975–977.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Heguaburu, V., Mandolesi Sá, M., Schapiro, V. & Pandolfi, E. (2008). Tetrahedron Lett. 49, 6787–6790.
  6. Heguaburu, V., Schapiro, V. & Pandolfi, E. (2010). Tetrahedron Lett. 51, 6921–6923.
  7. Labora, M., Heguaburu, V., Pandolfi, E. & Schapiro, V. (2008). Tetrahedron Asymmetry, 19, 893–895.
  8. Labora, M., Pandolfi, E. & Schapiro, V. (2010). Tetrahedron Asymmetry, 21, 153–155.
  9. Lee, P. H., Seomoon, D. & Lee, K. (2005). Org. Lett. 7, 343–345. [DOI] [PubMed]
  10. Macías, M. A., Suescun, L., Pandolfi, E., Schapiro, V., Tibhe, G. D. & Mombrú, Á. W. (2015). Acta Cryst. E71, 1013–1016. [DOI] [PMC free article] [PubMed]
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  13. Pereira, P. A., Noll, B. C., Oliver, A. G. & Silveira, G. P. (2015). Acta Cryst. E71, o1097–o1098. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Silveira, G. P., Bonfante de Carvallho, C. & Oliver, A. G. (2012). Acta Cryst. E68, o2048–o2048. [DOI] [PMC free article] [PubMed]
  17. Silveira, G. P., da Silva, V. F. & Oliver, A. G. (2014). Acta Cryst. E70, o1257–o1258. [DOI] [PMC free article] [PubMed]
  18. Silveira, G. P. & Marino, J. P. (2013). J. Org. Chem. 78, 3379–3383. [DOI] [PubMed]
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016019927/rz5201sup1.cif

e-73-00081-sup1.cif (794.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016019927/rz5201Isup2.hkl

e-73-00081-Isup2.hkl (258KB, hkl)

CCDC reference: 1522804

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES