Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Aug 1;88(15):6540–6544. doi: 10.1073/pnas.88.15.6540

Monomeric erythrocyte band 3 protein transports anions.

S Lindenthal 1, D Schubert 1
PMCID: PMC52122  PMID: 1862082

Abstract

The anion transport system of the human erythrocyte membrane was reconstituted in egg phosphatidylcholine membranes by using either the unmodified transport protein, band 3, or covalently crosslinked band 3 dimers. Unilamellar vesicles of a diameter of 32 +/- 3 nm were then isolated from the sample by passage through a French press and subsequent gel filtration. According to sedimentation equilibrium measurements, around 85% of the vesicles were devoid of protein. The remaining 15% contained either a single band 3 monomer or, when crosslinked band 3 protein was used, a single band 3 dimer. Vesicles containing either single monomers or single dimers showed a rapid, inhibitor-sensitive sulfate efflux, and the turnover numbers of band 3 for the inhibitor-sensitive flux component were identical in both systems. This shows that monomeric band 3 protein is able to transport anions and that dimerization of the protein does not change its transport activity.

Full text

PDF
6540

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boodhoo A., Reithmeier R. A. Characterization of matrix-bound Band 3, the anion transport protein from human erythrocyte membranes. J Biol Chem. 1984 Jan 25;259(2):785–790. [PubMed] [Google Scholar]
  2. Dorst H. J., Schubert D. Self-association of band-protein from human erythrocyte membranes in aqueous solutions. Hoppe Seylers Z Physiol Chem. 1979 Nov;360(11):1605–1618. doi: 10.1515/bchm2.1979.360.2.1605. [DOI] [PubMed] [Google Scholar]
  3. Jennings M. L. Oligomeric structure and the anion transport function of human erythrocyte band 3 protein. J Membr Biol. 1984;80(2):105–117. doi: 10.1007/BF01868768. [DOI] [PubMed] [Google Scholar]
  4. Klingenberg M. Membrane protein oligomeric structure and transport function. Nature. 1981 Apr 9;290(5806):449–454. doi: 10.1038/290449a0. [DOI] [PubMed] [Google Scholar]
  5. Lindenthal S., Scheuring U., Ruf H., Kojro Z., Haase W., Petrasch P., Schubert D. Asymmetric reconstitution of the erythrocyte anion transport system in vesicles of different curvature: implications for the shape of the band 3 protein. Z Naturforsch C. 1990 Sep-Oct;45(9-10):1021–1026. doi: 10.1515/znc-1990-9-1014. [DOI] [PubMed] [Google Scholar]
  6. Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
  7. Makino S., Nakashima H. Behavior of fragmented band 3 from chymotrypsin-treated bovine erythrocyte membrane in nonionic detergent solution. J Biochem. 1982 Oct;92(4):1069–1077. doi: 10.1093/oxfordjournals.jbchem.a134022. [DOI] [PubMed] [Google Scholar]
  8. Mimms L. T., Zampighi G., Nozaki Y., Tanford C., Reynolds J. A. Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. Biochemistry. 1981 Feb 17;20(4):833–840. doi: 10.1021/bi00507a028. [DOI] [PubMed] [Google Scholar]
  9. Pappert G., Schubert D. The state of association of band 3 protein of the human erythrocyte membrane in solutions of nonionic detergents. Biochim Biophys Acta. 1983 Apr 21;730(1):32–40. doi: 10.1016/0005-2736(83)90313-9. [DOI] [PubMed] [Google Scholar]
  10. Passow H. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Biochem Pharmacol. 1986;103:61–203. doi: 10.1007/3540153330_2. [DOI] [PubMed] [Google Scholar]
  11. Reynolds J. A., Tanford C. Determination of molecular weight of the protein moiety in protein-detergent complexes without direct knowledge of detergent binding. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4467–4470. doi: 10.1073/pnas.73.12.4467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Scheuring U., Grieshaber G., Kollewe K., Kojro Z., Ruf H., Grell E., Haase W., Schubert D. Reconstitution of the erythrocyte anion transport system: recent progress. Biomed Biochim Acta. 1987;46(2-3):S46–S50. [PubMed] [Google Scholar]
  13. Scheuring U., Kollewe K., Haase W., Schubert D. A new method for the reconstitution of the anion transport system of the human erythrocyte membrane. J Membr Biol. 1986;90(2):123–135. doi: 10.1007/BF01869930. [DOI] [PubMed] [Google Scholar]
  14. Scheuring U., Lindenthal S., Grieshaber G., Haase W., Schubert D. The turnover number for band 3-mediated sulfate transport in phosphatidylcholine bilayers. FEBS Lett. 1988 Jan 18;227(1):32–34. doi: 10.1016/0014-5793(88)81407-8. [DOI] [PubMed] [Google Scholar]
  15. Solomon A. K., Chasan B., Dix J. A., Lukacovic M. F., Toon M. R., Verkman A. S. The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann N Y Acad Sci. 1983;414:97–124. doi: 10.1111/j.1749-6632.1983.tb31678.x. [DOI] [PubMed] [Google Scholar]
  16. Tanford C., Reynolds J. A. Characterization of membrane proteins in detergent solutions. Biochim Biophys Acta. 1976 Oct 26;457(2):133–170. doi: 10.1016/0304-4157(76)90009-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES