Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Feb 1;91(3):1183–1187. doi: 10.1073/pnas.91.3.1183

Oxidative susceptibility of low density lipoprotein subfractions is related to their ubiquinol-10 and alpha-tocopherol content.

D L Tribble 1, J J van den Berg 1, P A Motchnik 1, B N Ames 1, D M Lewis 1, A Chait 1, R M Krauss 1
PMCID: PMC521478  PMID: 8302851

Abstract

The conjugated polyene fatty acid parinaric acid (PnA) undergoes a stoichiometric loss in fluorescence upon oxidation and can be used to directly monitor peroxidative stress within lipid environments. We evaluated the course of potentially atherogenic oxidative changes in low density lipoproteins (LDL) by monitoring the oxidation of PnA following its incorporation into buoyant (p = 1.026-1.032 g/ml) and dense (p = 1.040-1.054 g/ml) LDL subfractions. Copper-induced oxidation of LDL-associated PnA exhibited an initial lag phase followed by an increased rate of loss until depletion. Increased PnA oxidation occurred immediately after the antioxidants ubiquinol-10 and alpha-tocopherol were consumed but before there were marked elevations in conjugated dienes. Despite differences in sensitivity to early oxidation events, PnA oxidation and conjugated diene lag times were correlated (r = 0.582; P = 0.03), and both indicated a greater susceptibility of dense than buoyant LDL in accordance with previous reports. The greater susceptibility of PnA in dense LDL was attributed to reduced levels of ubiquinol-10 and alpha-tocopherol, which were approximately 50% lower than in buoyant LDL (mol of antioxidant/mol of LDL) and together accounted for 80% of the variation in PnA oxidation lag times. These results suggest that PnA is a useful probe of LDL oxidative susceptibility and may be superior to conjugated dienes for monitoring the initial stages of LDL lipid peroxidation. Differences in oxidative susceptibility among LDL density subfractions are detected by the PnA assay and are due in large part to differences in their antioxidant content.

Full text

PDF
1183

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin M. A., Breslow J. L., Hennekens C. H., Buring J. E., Willett W. C., Krauss R. M. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA. 1988 Oct 7;260(13):1917–1921. [PubMed] [Google Scholar]
  2. Aviram M. Modified forms of low density lipoprotein affect platelet aggregation in vitro. Thromb Res. 1989 Mar 15;53(6):561–567. doi: 10.1016/0049-3848(89)90145-x. [DOI] [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. Berliner J. A., Territo M. C., Sevanian A., Ramin S., Kim J. A., Bamshad B., Esterson M., Fogelman A. M. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990 Apr;85(4):1260–1266. doi: 10.1172/JCI114562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowry V. W., Ingold K. U., Stocker R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem J. 1992 Dec 1;288(Pt 2):341–344. doi: 10.1042/bj2880341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bowry V. W., Stanley K. K., Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10316–10320. doi: 10.1073/pnas.89.21.10316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chait A., Brazg R. L., Tribble D. L., Krauss R. M. Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am J Med. 1993 Apr;94(4):350–356. doi: 10.1016/0002-9343(93)90144-e. [DOI] [PubMed] [Google Scholar]
  8. Dejager S., Bruckert E., Chapman M. J. Dense low density lipoprotein subspecies with diminished oxidative resistance predominate in combined hyperlipidemia. J Lipid Res. 1993 Feb;34(2):295–308. [PubMed] [Google Scholar]
  9. Edlund P. O. Determination of coenzyme Q10, alpha-tocopherol and cholesterol in biological samples by coupled-column liquid chromatography with coulometric and ultraviolet detection. J Chromatogr. 1988 Mar 4;425(1):87–97. doi: 10.1016/0378-4347(88)80009-4. [DOI] [PubMed] [Google Scholar]
  10. Esterbauer H., Dieber-Rotheneder M., Striegl G., Waeg G. Role of vitamin E in preventing the oxidation of low-density lipoprotein. Am J Clin Nutr. 1991 Jan;53(1 Suppl):314S–321S. doi: 10.1093/ajcn/53.1.314S. [DOI] [PubMed] [Google Scholar]
  11. Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992 Oct;13(4):341–390. doi: 10.1016/0891-5849(92)90181-f. [DOI] [PubMed] [Google Scholar]
  12. Esterbauer H., Jürgens G., Quehenberger O., Koller E. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res. 1987 May;28(5):495–509. [PubMed] [Google Scholar]
  13. Esterbauer H., Striegl G., Puhl H., Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun. 1989;6(1):67–75. doi: 10.3109/10715768909073429. [DOI] [PubMed] [Google Scholar]
  14. Fong L. G., Parthasarathy S., Witztum J. L., Steinberg D. Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. J Lipid Res. 1987 Dec;28(12):1466–1477. [PubMed] [Google Scholar]
  15. Fox P. L., Chisolm G. M., DiCorleto P. E. Lipoprotein-mediated inhibition of endothelial cell production of platelet-derived growth factor-like protein depends on free radical lipid peroxidation. J Biol Chem. 1987 May 5;262(13):6046–6054. [PubMed] [Google Scholar]
  16. Frei B., Kim M. C., Ames B. N. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4879–4883. doi: 10.1073/pnas.87.12.4879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Henriksen T., Evensen S. A., Carlander B. Injury to human endothelial cells in culture induced by low density lipoproteins. Scand J Clin Lab Invest. 1979 Jun;39(4):361–368. doi: 10.3109/00365517909106120. [DOI] [PubMed] [Google Scholar]
  18. Hessler J. R., Robertson A. L., Jr, Chisolm G. M., 3rd LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis. 1979 Mar;32(3):213–229. doi: 10.1016/0021-9150(79)90166-7. [DOI] [PubMed] [Google Scholar]
  19. Hindriks F. R., Wolthers B. G., Groen A. The determination of total cholesterol in serum by gas-liquid chromatography compared with two other methods. Clin Chim Acta. 1977 Feb 1;74(3):207–215. doi: 10.1016/0009-8981(77)90287-x. [DOI] [PubMed] [Google Scholar]
  20. Jessup W., Rankin S. M., De Whalley C. V., Hoult J. R., Scott J., Leake D. S. Alpha-tocopherol consumption during low-density-lipoprotein oxidation. Biochem J. 1990 Jan 15;265(2):399–405. doi: 10.1042/bj2650399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krauss R. M., Burke D. J. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res. 1982 Jan;23(1):97–104. [PubMed] [Google Scholar]
  22. Kuypers F. A., van den Berg J. J., Schalkwijk C., Roelofsen B., Op den Kamp J. A. Parinaric acid as a sensitive fluorescent probe for the determination of lipid peroxidation. Biochim Biophys Acta. 1987 Sep 25;921(2):266–274. doi: 10.1016/0005-2760(87)90027-0. [DOI] [PubMed] [Google Scholar]
  23. Laranjinha J. A., Almeida L. M., Madeira V. M. Lipid peroxidation and its inhibition in low density lipoproteins: quenching of cis-parinaric acid fluorescence. Arch Biochem Biophys. 1992 Aug 15;297(1):147–154. doi: 10.1016/0003-9861(92)90653-e. [DOI] [PubMed] [Google Scholar]
  24. Liao F., Berliner J. A., Mehrabian M., Navab M., Demer L. L., Lusis A. J., Fogelman A. M. Minimally modified low density lipoprotein is biologically active in vivo in mice. J Clin Invest. 1991 Jun;87(6):2253–2257. doi: 10.1172/JCI115261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  26. Mohr D., Bowry V. W., Stocker R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta. 1992 Jun 26;1126(3):247–254. doi: 10.1016/0005-2760(92)90237-p. [DOI] [PubMed] [Google Scholar]
  27. Musliner T. A., Krauss R. M. Lipoprotein subspecies and risk of coronary disease. Clin Chem. 1988;34(8B):B78–B83. [PubMed] [Google Scholar]
  28. Quinn M. T., Parthasarathy S., Fong L. G., Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A. 1987 May;84(9):2995–2998. doi: 10.1073/pnas.84.9.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Quinn M. T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2805–2809. doi: 10.1073/pnas.85.8.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rajavashisth T. B., Andalibi A., Territo M. C., Berliner J. A., Navab M., Fogelman A. M., Lusis A. J. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990 Mar 15;344(6263):254–257. doi: 10.1038/344254a0. [DOI] [PubMed] [Google Scholar]
  31. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  32. Steinbrecher U. P. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem. 1987 Mar 15;262(8):3603–3608. [PubMed] [Google Scholar]
  33. Steinbrecher U. P., Witztum J. L., Parthasarathy S., Steinberg D. Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism. Arteriosclerosis. 1987 Mar-Apr;7(2):135–143. doi: 10.1161/01.atv.7.2.135. [DOI] [PubMed] [Google Scholar]
  34. Stocker R., Bowry V. W., Frei B. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1646–1650. doi: 10.1073/pnas.88.5.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thomas C. E., Jackson R. L. Lipid hydroperoxide involvement in copper-dependent and independent oxidation of low density lipoproteins. J Pharmacol Exp Ther. 1991 Mar;256(3):1182–1188. [PubMed] [Google Scholar]
  36. Tribble D. L., Holl L. G., Wood P. D., Krauss R. M. Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis. 1992 Apr;93(3):189–199. doi: 10.1016/0021-9150(92)90255-f. [DOI] [PubMed] [Google Scholar]
  37. Van den Berg J. J., Kuypers F. A., Qju J. H., Chiu D., Lubin B., Roelofsen B., Op den Kamp J. A. The use of cis-parinaric acid to determine lipid peroxidation in human erythrocyte membranes. Comparison of normal and sickle erythrocyte membranes. Biochim Biophys Acta. 1988 Sep 15;944(1):29–39. doi: 10.1016/0005-2736(88)90313-6. [DOI] [PubMed] [Google Scholar]
  38. de Graaf J., Hak-Lemmers H. L., Hectors M. P., Demacker P. N., Hendriks J. C., Stalenhoef A. F. Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb. 1991 Mar-Apr;11(2):298–306. doi: 10.1161/01.atv.11.2.298. [DOI] [PubMed] [Google Scholar]
  39. van den Berg J. J., Kuypers F. A., Roelofsen B., Op den Kamp J. A. The cooperative action of vitamins E and C in the protection against peroxidation of parinaric acid in human erythrocyte membranes. Chem Phys Lipids. 1990 Mar;53(4):309–320. doi: 10.1016/0009-3084(90)90028-p. [DOI] [PubMed] [Google Scholar]
  40. van den Berg J. J., Op den Kamp J. A., Lubin B. H., Roelofsen B., Kuypers F. A. Kinetics and site specificity of hydroperoxide-induced oxidative damage in red blood cells. Free Radic Biol Med. 1992;12(6):487–498. doi: 10.1016/0891-5849(92)90102-m. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES