Skip to main content
Ecology and Evolution logoLink to Ecology and Evolution
. 2016 Dec 16;7(1):145–188. doi: 10.1002/ece3.2579

The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

Lawrence N Hudson 1,†,, Tim Newbold 2,3,, Sara Contu 1, Samantha L L Hill 1,2, Igor Lysenko 4, Adriana De Palma 1,4, Helen R P Phillips 1,4, Tamera I Alhusseini 5, Felicity E Bedford 6, Dominic J Bennett 4, Hollie Booth 2,7, Victoria J Burton 1,8, Charlotte W T Chng 4, Argyrios Choimes 1,4, David L P Correia 9, Julie Day 4, Susy Echeverría‐Londoño 1,4, Susan R Emerson 1, Di Gao 1, Morgan Garon 4, Michelle L K Harrison 4, Daniel J Ingram 10, Martin Jung 10, Victoria Kemp 11, Lucinda Kirkpatrick 12, Callum D Martin 13, Yuan Pan 14, Gwilym D Pask‐Hale 1, Edwin L Pynegar 15, Alexandra N Robinson 5, Katia Sanchez‐Ortiz 16, Rebecca A Senior 14, Benno I Simmons 4, Hannah J White 17, Hanbin Zhang 16, Job Aben 18,19, Stefan Abrahamczyk 20, Gilbert B Adum 21,22, Virginia Aguilar‐Barquero 23, Marcelo A Aizen 24, Belén Albertos 25, E L Alcala 26, Maria del Mar Alguacil 27, Audrey Alignier 28,29, Marc Ancrenaz 30,31, Alan N Andersen 32, Enrique Arbeláez‐Cortés 33,34, Inge Armbrecht 35, Víctor Arroyo‐Rodríguez 36, Tom Aumann 37, Jan C Axmacher 38, Badrul Azhar 39,40, Adrián B Azpiroz 41, Lander Baeten 42,43, Adama Bakayoko 44,45, András Báldi 46, John E Banks 47, Sharad K Baral 48, Jos Barlow 49,50, Barbara I P Barratt 51, Lurdes Barrico 52, Paola Bartolommei 53, Diane M Barton 51, Yves Basset 54, Péter Batáry 55, Adam J Bates 56,57, Bruno Baur 58, Erin M Bayne 59, Pedro Beja 60, Suzan Benedick 61, Åke Berg 62, Henry Bernard 63, Nicholas J Berry 64, Dinesh Bhatt 65, Jake E Bicknell 66,67, Jochen H Bihn 68, Robin J Blake 69,70, Kadiri S Bobo 71,72, Roberto Bóçon 73, Teun Boekhout 74, Katrin Böhning‐Gaese 75,76, Kevin J Bonham 77, Paulo A V Borges 78, Sérgio H Borges 79, Céline Boutin 80, Jérémy Bouyer 81,82, Cibele Bragagnolo 83, Jodi S Brandt 84, Francis Q Brearley 85, Isabel Brito 86, Vicenç Bros 87,88, Jörg Brunet 89, Grzegorz Buczkowski 90, Christopher M Buddle 91, Rob Bugter 92, Erika Buscardo 93,94,95, Jörn Buse 96, Jimmy Cabra‐García 97,98, Nilton C Cáceres 99, Nicolette L Cagle 100, María Calviño‐Cancela 101, Sydney A Cameron 102,103, Eliana M Cancello 104, Rut Caparrós 25,105, Pedro Cardoso 78,106, Dan Carpenter 107,108, Tiago F Carrijo 109, Anelena L Carvalho 79, Camila R Cassano 110, Helena Castro 52, Alejandro A Castro‐Luna 111, Cerda B Rolando 112, Alexis Cerezo 113, Kim Alan Chapman 114, Matthieu Chauvat 115, Morten Christensen 116, Francis M Clarke 117, Daniel FR Cleary 118, Giorgio Colombo 119, Stuart P Connop 120, Michael D Craig 121,122, Leopoldo Cruz‐López 123, Saul A Cunningham 124, Biagio D'Aniello 125, Neil D'Cruze 126, Pedro Giovâni da Silva 127, Martin Dallimer 128, Emmanuel Danquah 21, Ben Darvill 129, Jens Dauber 130, Adrian L V Davis 131, Jeff Dawson 132, Claudio de Sassi 133, Benoit de Thoisy 134, Olivier Deheuvels 135,136, Alain Dejean 137,138,139, Jean‐Louis Devineau 140, Tim Diekötter 141,142,143, Jignasu V Dolia 144,145, Erwin Domínguez 146, Yamileth Dominguez‐Haydar 147, Silvia Dorn 148, Isabel Draper 105, Niels Dreber 149,150, Bertrand Dumont 151, Simon G Dures 4,152, Mats Dynesius 153, Lars Edenius 154, Paul Eggleton 1, Felix Eigenbrod 155, Zoltán Elek 156,157, Martin H Entling 158, Karen J Esler 159,160, Ricardo F de Lima 161,162, Aisyah Faruk 163,164, Nina Farwig 165, Tom M Fayle 4,166,167, Antonio Felicioli 168, Annika M Felton 169, Roderick J Fensham 170,171, Ignacio C Fernandez 172, Catarina C Ferreira 173, Gentile F Ficetola 174, Cristina Fiera 175, Bruno K C Filgueiras 176, Hüseyin K Fırıncıoğlu 177, David Flaspohler 178, Andreas Floren 179, Steven J Fonte 180,181, Anne Fournier 182, Robert E Fowler 10, Markus Franzén 183, Lauchlan H Fraser 184, Gabriella M Fredriksson 185,186, Geraldo B Freire Jr 187, Tiago L M Frizzo 187, Daisuke Fukuda 188, Dario Furlani 119, René Gaigher 159, Jörg U Ganzhorn 189, Karla P García 190,191, Juan C Garcia‐R 192, Jenni G Garden 193,194,195, Ricardo Garilleti 25, Bao‐Ming Ge 196, Benoit Gendreau‐Berthiaume 197, Philippa J Gerard 198, Carla Gheler‐Costa 199, Benjamin Gilbert 200, Paolo Giordani 201, Simonetta Giordano 125, Carly Golodets 202, Laurens G L Gomes 203, Rachelle K Gould 204, Dave Goulson 10, Aaron D Gove 205,206, Laurent Granjon 207, Ingo Grass 55,165, Claudia L Gray 10,208, James Grogan 209, Weibin Gu 210, Moisès Guardiola 211, Nihara R Gunawardene 206, Alvaro G Gutierrez 212, Doris L Gutiérrez‐Lamus 213, Daniela H Haarmeyer 214, Mick E Hanley 215, Thor Hanson 216, Nor R Hashim 217, Shombe N Hassan 218, Richard G Hatfield 219, Joseph E Hawes 220, Matt W Hayward 221,222,223, Christian Hébert 224, Alvin J Helden 220, John‐André Henden 225, Philipp Henschel 226, Lionel Hernández 227, James P Herrera 228, Farina Herrmann 55, Felix Herzog 229, Diego Higuera‐Diaz 230, Branko Hilje 231, Hubert Höfer 232, Anke Hoffmann 233, Finbarr G Horgan 234,235, Elisabeth Hornung 236, Roland Horváth 237, Kristoffer Hylander 238, Paola Isaacs‐Cubides 239, Hiroaki Ishida 240, Masahiro Ishitani 241, Carmen T Jacobs 131, Víctor J Jaramillo 242, Birgit Jauker 243, F Jiménez Hernández 244, McKenzie F Johnson 100, Virat Jolli 245,246, Mats Jonsell 247, S Nur Juliani 248, Thomas S Jung 249, Vena Kapoor 250, Heike Kappes 251, Vassiliki Kati 252, Eric Katovai 253,254, Klaus Kellner 255, Michael Kessler 256, Kathryn R Kirby 257, Andrew M Kittle 258, Mairi E Knight 259, Eva Knop 260, Florian Kohler 261, Matti Koivula 262, Annette Kolb 263, Mouhamadou Kone 264,265, Ádám Kőrösi 156,266, Jochen Krauss 179, Ajith Kumar 267, Raman Kumar 268, David J Kurz 269, Alex S Kutt 270, Thibault Lachat 271,272, Victoria Lantschner 273, Francisco Lara 105, Jesse R Lasky 274, Steven C Latta 275, William F Laurance 276, Patrick Lavelle 277,278, Violette Le Féon 279, Gretchen LeBuhn 280, Jean‐Philippe Légaré 281, Valérie Lehouck 282, María V Lencinas 283, Pia E Lentini 284, Susan G Letcher 285, Qi Li 286, Simon A Litchwark 287, Nick A Littlewood 288, Yunhui Liu 289, Nancy Lo‐Man‐Hung 290, Carlos A López‐Quintero 291, Mounir Louhaichi 292,293, Gabor L Lövei 294, Manuel Esteban Lucas‐Borja 295, Victor H Luja 296, Matthew S Luskin 269, M Cristina MacSwiney G 297, Kaoru Maeto 298, Tibor Magura 299, Neil Aldrin Mallari 300,301, Louise A Malone 302, Patrick K Malonza 303, Jagoba Malumbres‐Olarte 304, Salvador Mandujano 305, Inger E Måren 306, Erika Marin‐Spiotta 307, Charles J Marsh 308, E J P Marshall 309, Eliana Martínez 310, Guillermo Martínez Pastur 283, David Moreno Mateos 311, Margaret M Mayfield 312, Vicente Mazimpaka 105, Jennifer L McCarthy 313, Kyle P McCarthy 314, Quinn S McFrederick 315, Sean McNamara 316, Nagore G Medina 105,317, Rafael Medina 318, Jose L Mena 319, Estefania Mico 320, Grzegorz Mikusinski 321, Jeffrey C Milder 322,323, James R Miller 324, Daniel R Miranda‐Esquivel 325, Melinda L Moir 284,326, Carolina L Morales 327, Mary N Muchane 328, Muchai Muchane 329, Sonja Mudri‐Stojnic 330, A Nur Munira 331, Antonio Muoñz‐Alonso 332, B F Munyekenye 333, Robin Naidoo 334, A Naithani 335,336, Michiko Nakagawa 337, Akihiro Nakamura 338,339, Yoshihiro Nakashima 340, Shoji Naoe 341, Guiomar Nates‐Parra 342, Dario A Navarrete Gutierrez 343, Luis Navarro‐Iriarte 344, Paul K Ndang'ang'a 345,346, Eike L Neuschulz 75, Jacqueline T Ngai 347, Violaine Nicolas 348, Sven G Nilsson 349, Norbertas Noreika 350,351, Olivia Norfolk 352, Jorge Ari Noriega 353, David A Norton 354, Nicole M Nöske 355, A Justin Nowakowski 356, Catherine Numa 357, Niall O'Dea 358, Patrick J O'Farrell 359,360, William Oduro 21,361, Sabine Oertli 362, Caleb Ofori‐Boateng 363,364, Christopher Omamoke Oke 365, Vicencio Oostra 366, Lynne M Osgathorpe 367, Samuel Eduardo Otavo 368, Navendu V Page 369, Juan Paritsis 370, Alejandro Parra‐H 371, Luke Parry 372,373, Guy Pe'er 183,374, Peter B Pearman 375,376, Nicolás Pelegrin 377, Raphaël Pélissier 378,379, Carlos A Peres 380, Pablo L Peri 381,382,383, Anna S Persson 349, Theodora Petanidou 384, Marcell K Peters 385, Rohan S Pethiyagoda 386, Ben Phalan 387, T Keith Philips 388, Finn C Pillsbury 389, Jimmy Pincheira‐Ulbrich 190,390, Eduardo Pineda 391, Joan Pino 211,392, Jaime Pizarro‐Araya 393, A J Plumptre 394, Santiago L Poggio 395, Natalia Politi 396, Pere Pons 397, Katja Poveda 398, Eileen F Power 399, Steven J Presley 400, Vânia Proença 401, Marino Quaranta 402, Carolina Quintero 370, Romina Rader 403, B R Ramesh 379, Martha P Ramirez‐Pinilla 404, Jai Ranganathan 405, Claus Rasmussen 406, Nicola A Redpath‐Downing 407, J Leighton Reid 408, Yana T Reis 409, José M Rey Benayas 410, Juan Carlos Rey‐Velasco 411, Chevonne Reynolds 412,413, Danilo Bandini Ribeiro 414, Miriam H Richards 415, Barbara A Richardson 416,417, Michael J Richardson 416,417, Rodrigo Macip Ríos 418, Richard Robinson 419, Carolina A Robles 420, Jörg Römbke 421,422, Luz Piedad Romero‐Duque 423, Matthias Rös 424, Loreta Rosselli 425, Stephen J Rossiter 11, Dana S Roth 426, T'ai H Roulston 427,428, Laurent Rousseau 429, André V Rubio 430, Jean‐Claude Ruel 9, Jonathan P Sadler 431, Szabolcs Sáfián 432, Romeo A Saldaña‐Vázquez 433, Katerina Sam 194,434,435, Ulrika Samnegård 238,349, Joana Santana 60, Xavier Santos 60, Jade Savage 436, Nancy A Schellhorn 437, Menno Schilthuizen 438,439, Ute Schmiedel 440, Christine B Schmitt 441,442, Nicole L Schon 443, Christof Schüepp 260, Katharina Schumann 444, Oliver Schweiger 183, Dawn M Scott 445, Kenneth A Scott 446, Jodi L Sedlock 447, Steven S Seefeldt 448, Ghazala Shahabuddin 449, Graeme Shannon 223,450, Douglas Sheil 451, Frederick H Sheldon 452,453, Eyal Shochat 454,455, Stefan J Siebert 255, Fernando A B Silva 456, Javier A Simonetti 430, Eleanor M Slade 208, Jo Smith 457, Allan H Smith‐Pardo 458,459, Navjot S Sodhi 460, Eduardo J Somarriba 112, Ramón A Sosa 461, Grimaldo Soto Quiroga 112,462, Martin‐Hugues St‐Laurent 463, Brian M Starzomski 464, Constanti Stefanescu 211,392,465, Ingolf Steffan‐Dewenter 179, Philip C Stouffer 466,467, Jane C Stout 399, Ayron M Strauch 468, Matthew J Struebig 66, Zhimin Su 469,470, Marcela Suarez‐Rubio 471, Shinji Sugiura 298, Keith S Summerville 472, Yik‐Hei Sung 473, Hari Sutrisno 474, Jens‐Christian Svenning 475, Tiit Teder 476, Caragh G Threlfall 477, Anu Tiitsaar 476, Jacqui H Todd 302, Rebecca K Tonietto 478, Ignasi Torre 465, Béla Tóthmérész 479, Teja Tscharntke 55, Edgar C Turner 480, Jason M Tylianakis 4,481, Marcio Uehara‐Prado 482, Nicolas Urbina‐Cardona 483, Denis Vallan 484, Adam J Vanbergen 485, Heraldo L Vasconcelos 486, Kiril Vassilev 487, Hans A F Verboven 488, Maria João Verdasca 489, José R Verdú 320, Carlos H Vergara 490, Pablo M Vergara 491, Jort Verhulst 492, Massimiliano Virgilio 493, Lien Van Vu 494, Edward M Waite 495, Tony R Walker 352,496, Hua‐Feng Wang 497, Yanping Wang 498, James I Watling 499, Britta Weller 189, Konstans Wells 500,501, Catrin Westphal 55, Edward D Wiafe 502, Christopher D Williams 503, Michael R Willig 504,505, John C Z Woinarski 446, Jan H D Wolf 506, Volkmar Wolters 243, Ben A Woodcock 507, Jihua Wu 508, Joseph M Wunderle Jr 509, Yuichi Yamaura 341, Satoko Yoshikura 510, Douglas W Yu 511,512, Andrey S Zaitsev 243,513, Juliane Zeidler 514, Fasheng Zou 515, Ben Collen 3, Rob M Ewers 4, Georgina M Mace 3, Drew W Purves 516, Jörn P W Scharlemann 2,10, Andy Purvis 1,4
PMCID: PMC5215197  PMID: 28070282

Abstract

The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

Keywords: data sharing, global biodiversity modeling, global change, habitat destruction, land use

1. Introduction

Many indicators are available for tracking the state of biodiversity through time, for example, in order to assess progress toward goals such as the Convention on Biological Diversity's 2010 target or the newer Aichi Biodiversity Targets (Pereira et al., 2013; Tittensor et al., 2014). Most of the available indicators are taxonomically or ecologically narrow in scope, and many are based on the global status of species (e.g., Butchart et al., 2010; Tittensor et al., 2014), because of the finality of extinction. However, using a more representative set of taxa and considering local biodiversity offers several advantages. First, average responses of species to human impacts typically vary among higher taxa and ecological guilds (Lawton et al., 1998; McKinney, 1997; Newbold et al., 2014; WWF International, 2014), meaning that indicators need to be broadly based and as representative as possible, if they are to be used as proxies for biodiversity as a whole. Second, the taxa for which most data on trends are available (typically, charismatic groups such as birds or butterflies) are not always the most important for the continued functioning of ecosystems and delivery of ecosystem services (Norris, 2012). Third, although many of the ultimate drivers behind biodiversity loss are global, the most important pressure mechanisms usually act much more locally (Brook, Ellis, Perring, Mackay, & Blomqvist, 2013). Fourth, most ecosystem services and their underpinning processes are mediated by local rather than global biodiversity (Cardinale et al., 2012; Grime, 1998): It is local rather than global functional diversity, for example, that determines how ecosystems function in a given set of conditions (Steffen et al., 2015). Finally, presence/absence and especially abundance of species at a site respond more rapidly to disturbance than extent of geographic distribution or global/national extinction risk (Balmford, Green, & Jenkins, 2003; Collen et al., 2009; Hull, Darroch, & Erwin, 2015), so local changes are likely to be detected before large global changes or extinction.

For these reasons, there is a need to model the response of local biodiversity to human pressures and, thus, to estimate biodiversity changes at local scales, but across a wide spatial domain (ideally globally) and for a wide range of taxa. We therefore need comparable high‐quality data on local biodiversity at different levels of human pressure, from many different taxa and regions. At present, spatial comparisons of how biodiversity responds to variation in pressures provide the only feasible way to collate a large, globally representative evidence base and to model responses to human impacts. Although large temporal datasets are available (e.g., Butchart et al., 2004; Collen et al., 2009; Dornelas et al., 2014; Vellend et al., 2013), they may not be sufficiently representative of anthropogenic pressures for the trends they show to be taken at face value (Gonzalez et al., 2016). Furthermore, in the absence of contemporaneous site‐specific information about pressures, it is not straightforward to use these data to model how biodiversity responds to pressures or to project changes into the future (but see Visconti et al., 2015). Spatially extensive field data of suitable quality and resolution are time‐consuming and expensive to collect. The most convenient and readily available source of suitable biodiversity data is the published literature: Thousands of published papers are based on datasets that would be of value to global modeling efforts. However, it has been rare for such papers to publish data in full, even as supporting information, meaning that many potentially valuable datasets are “dark data” (Hampton et al., 2013), effectively at risk of being lost to science if they have not been lost already.

Since 2012, the PREDICTS project has been collating data on local biodiversity at different levels of human pressure from published papers, where necessary contacting those papers’ corresponding authors to request the underlying biodiversity data, species’ identities, and precise sampling locations. We have enhanced the collated data by scoring site characteristics relating to human pressures such as the predominant land use and how intensively the land is used by humans. We also used the geographical coordinates of the sites to match them to a number of published spatially explicit datasets. The database has already been used to conduct global (e.g., Newbold et al., 2015; Newbold, Hudson, Arnell, et al., 2016), regional (De Palma et al., 2016) and national (Echeverría‐Londoño et al., 2016) analyses of the responses of local biodiversity to land use and related human pressures. The database was first described by Hudson et al. (2014) who published an interim version (March 2014) of the site‐level metadata along with a detailed description of how the database has been collated and validated. Since that time, the database has nearly doubled in size. Here, we describe the status of the database and make available the full species‐level data themselves (not just the site metadata previously released) to facilitate other research, especially into human impacts on ecological assemblages. We also include suggestions for how the database can be used.

2. Methods

We sought datasets describing the abundance or occurrence of species, or the diversity of ecological assemblages of species at multiple sites in different land uses or at different levels of other human pressures (e.g., differing levels of land‐use intensity). Data were primarily collated through subprojects on particular regions, land uses, or taxa. We also made general requests for data at conferences and through published articles (Hudson, Newbold, et al., 2013; Hudson et al., 2014; Newbold et al., 2012). Through the course of the project, searches were increasingly targeted toward under‐ or unrepresented regions, biomes, or taxa, in order to mitigate biased coverage in the literature.

To be included in the database, data were required to meet the following criteria: (1) the dataset was part of a published work, or the sampling methods were published; (2) the same sampling procedure was carried out at each site within each study (sampling effort was permitted to vary so long as it was recorded for each site); and (3) we could acquire the geographical coordinates of each sampled site. Where the author of the original publication was unable to supply the geographical coordinates, sites were georeferenced from maps in the publication (Hudson et al., 2014). Sites’ land use—primary vegetation, secondary vegetation (divided according to stage of recovery into mature, intermediate and young; or indeterminate where information on stage was unavailable), plantation forest, cropland, pasture and urban—and, within each land‐use class, intensity—minimal, light and intense—were classified from the description given in the source publication or information subsequently provided by data contributors (see Hudson et al., 2014 for full details). These land‐use categories were chosen to be as compatible as possible with those used in the harmonized land‐use scenarios for 1500–2100 (Hurtt et al., 2011) in order to facilitate spatial and temporal projections of modeled land‐use effects on biodiversity (e.g., Newbold et al., 2015). For some sites, land use and/or use intensity could not be established, so were given missing values.

The data were arranged in a hierarchical structure. The data from an individual published work, typically a published paper, constituted a “DataSource.” Where different sampling methods were used within a DataSource, for example, because different taxonomic groups were collected, and the data were made available separately, the data were divided into separate “Studies.” Data from a given DataSource were also split into multiple Studies if they covered large geographic areas (e.g., several countries), to reduce the effect of biogeographic differences within Studies. Each Study contained a set of sampled “Sites” and “Taxa”; at each Site a set of “Measurements” (typically the abundance or occurrence of a set of taxa) were taken. The provided database extracts contain, for each Site, the raw measurement values, the sampling efforts and, where relevant, the effort‐corrected abundance values (corrected across Sites within a Study by dividing the abundance measurement by sampling effort, assuming that sampled abundances increase linearly with sampling effort, after first rescaling effort values within each Study to a maximum value of one). The measurements were not corrected for different detectability (Hayward et al., 2015; MacKenzie et al., 2002).

It is important to note that the data in the database are often not exactly the same as those used in the source papers. Numbers of sites may differ because datasets provided may have been partial or included extra sites, or because we have aggregated or disaggregated data differently. Likewise, numbers of taxa may differ because of curation or because more data were provided than had been used in the source paper. Because our focus was to make these data as useful as possible for PREDICTS analyses, rather than to act as a repository for datasets from previous publications, it will often not be possible to use these data to replicate the analyses presented in the source papers.

We were limited by the rate at which we could process new data because so many datasets were contributed. This led to the development of a backlog, which we had to clear by the end of the first phase of funding for PREDICTS. During this stage of the project, in order to process all the datasets in hand within the time available, we focused our efforts on the fields shown to be most important in our models to that point (De Palma et al., 2015; Newbold et al., 2014, 2015). As a result, DataSources processed since early 2015 often lack data for some fields, including coordinate precision and maximum linear extent; details of the potentially affected fields are listed in Supporting Information.

Team members were trained in how to score datasets received, using written definitions and descriptions of fields and terms, as well as practice datasets. All data underwent basic validation checks to ensure values entered in each field were appropriate (Hudson et al., 2014). Geographical coordinates were visually inspected on a map after entry into the database, and our software automatically detected coordinates falling outside of the expected country (e.g., because latitude and longitude values were accidentally swapped). For the calculation of biodiversity metrics such as species richness, we accepted the identifications of species provided by the authors of the source publications; these were determined at the time of the original research, and so will not reflect subsequent taxonomic changes or re‐identifications. We also matched taxonomic names to the Catalogue of Life 2013 checklist (COL; Roskov et al., 2013), allowing us to validate many of the names, assess taxonomic coverage and relate measurements to species‐level datasets such as those describing ecological traits. We make available both the original species classifications and those from COL (field names are given in Supporting Information). We reviewed and corrected a number of potential error cases, such as names without a matching COL record, and names for which the higher taxonomic rank of the matching COL record was unexpected (e.g., a COL record for a true fly within a Study that examined birds). Many more validation checks were applied; a complete description is in Hudson et al. (2014).

3. Results

3.1. Geographical coverage

This release of the PREDICTS database contains 3,250,404 records, from 26,114 sampled Sites (Figure 1), collated from 480 DataSources and 666 Studies. The data represent all of the world's 14 terrestrial biomes, in approximate proportion to their contribution to global total primary productivity (Figure 2). The sampled Sites span 94 of the world's countries (including all 17 megadiverse countries; Mittermeier, Gil, & Mittermeier, 1997), 281 of the 814 terrestrial ecoregions (The Nature Conservancy 2009) and 32 of Conservation International's 35 biodiversity hotspots (Myers, Mittermeier, Mittermeier, da Fonseca, & Kent, 2000; circles on Figure 3). Although the database focuses on land use, it also includes data from regions that have so far seen relatively little land‐use change, such as some high biodiversity wilderness areas (Mittermeier et al., 2003; squares on Figure 3).

Figure 1.

Figure 1

Sampling locations. Map colors indicate biomes, taken from the Terrestrial Ecoregions of the World dataset (The Nature Conservancy, 2009), shown in a geographic (WGS84) projection. Circle radii are proportional to log10 of the number of samples at that Site. All circles have the same degree of partial transparency. Sites added to the database since Hudson et al. (2014) are shown in pink

Figure 2.

Figure 2

Coverage of biomes. The percentage of Studies (a and b), Sites (c and d), and samples (e and f) against percentages of terrestrial NPP (Net Primary Productivity, computed as in Hudson et al., 2014; a, c, and e) and terrestrial area (b, d, and f). Biome codes and colors are as in Figure 1

Figure 3.

Figure 3

Numbers of Sites against the areas of biodiversity hotspots and of high biodiversity wilderness areas (HBWAs). Hotspots are shown by circles and HBWAs by squares; symbols are colored by the predominant biogeographic realm in which they fall. Hotspots are 1 California Floristic Province, 2 Madrean Pine‐Oak Woodlands, 3 Atlantic Forest, 4 Caribbean Islands, 5 Cerrado, 6 Chilean Winter Rainfall and Valdivian Forests, 7 Mesoamerica, 8 Tropical Andes, 9 Tumbes‐Choco‐Magdalena, 10 Irano‐Anatolian, 11 Japan, 12 Mediterranean Basin, 13 Mountains of Central Asia, 14 Mountains of Southwest China, 15 Cape Floristic Region, 16 Coastal Forests of Eastern Africa, 17 Eastern Afromontane, 18 Guinean Forests of West Africa, 19 Madagascar and the Indian Ocean Islands, 20 Maputaland‐Pondoland‐Albany, 21 Succulent Karoo, 22 Himalaya, 23 Indo‐Burma, 24 Philippines, 25 Sundaland, 26 Western Ghats and Sri Lanka, 27 East Melanesian Islands, 28 Forests of East Australia, 29 New Zealand, 30 Southwest Australia, 31 Wallacea, 32 Polynesia‐Micronesia and HBWAs are 33 Amazonia, 34 Congo Forests, 35 New Guinea, 36 North American Deserts. Unrepresented are the hotspots Caucasus, Horn of Africa, New Caledonia and the HBWA Miombo‐Mopane Woodlands and Savannas

3.2. Taxonomic coverage

Records in the PREDICTS database represent 47,044 species (see Hudson et al., 2014 for how species numbers are estimated in the face of imprecise taxon names), which is over 2% of the number thought to have been formally described (Chapman, 2009)—29,737 animals, 15,545 plants, 1,759 fungi, and three protists. The taxonomic distribution of taxa in the database is in rough proportion to the numbers of described species in major taxonomic groups of animals and plants (Figure 4), and the data represent more than 1% as many species as have been described in the following groups: Amphibia, Arachnida, Archaeognatha, Ascomycota, Aves, Basidiomycota, Bryophyta, Chilopoda, Coleoptera, Collembola, Dermaptera, Diptera, Embioptera, Ferns and allies, Glomeromycota, Gymnosperms, Hemiptera, Hymenoptera, Isoptera, Lepidoptera, Magnoliophyta, Mammalia, Mantodea, Mecoptera, Neuroptera, Odonata, Onychophora, Orthoptera, Reptilia, Symphyla and Zoraptera (Figure 4). Vertebrates—and especially birds—are overrepresented owing to biases in the published literature (Figure 4), but less so than in many other data compilations (e.g., over half of the records currently in the Global Biodiversity Information Facility [GBIF] are of birds; www.gbif.org, accessed in April 2016). Most Studies in the PREDICTS database sampled at least multiple families, if not multiple orders, classes, phyla, or even kingdoms (Figure 5). However, some Studies sampled only a single family, genus, or even species (Figure 5).

Figure 4.

Figure 4

Taxonomic coverage. The numbers of species in our database against the numbers of described species within each of 59 higher taxa, as estimated by Chapman (2009), on logarithmic axes. Vertebrates are shown in red, arthropods in pink, other animals in gray, plants in green, and fungi in blue. The dashed, solid, and dotted lines indicate 10, 1, and 0.1% representation, respectively. Groups with just a single species represented (Diplura and Zoraptera) are not shown

Figure 5.

Figure 5

Number of Studies by lowest common taxonomic group. Bars show the number of Studies within each lowest common taxon (so, one Study examined the species Swietenia macrophylla, three Studies examined the species Bombus pascuorum, ten Studies examined multiple species within the genus Bombus, and so on). Colors are as in Figure 4. Numbers on the right are the primary references from which data were taken: 1 Basset et al. (2008), 2 Buscardo et al. (2008), 3 Christensen and Heilmann‐Clausen (2009), 4 Domínguez, Bahamonde, and Muñoz‐Escobar (2012), 5 López‐Quintero, Straatsma, Franco‐Molano, and Boekhout (2012), 6 Nöske et al. (2008), 7 Norton, Espie, Murray, and Murray (2006), 8 Peri, Lencinas, Martínez Pastur, Wardell‐Johnson, and Lasagno (2013), 9 Robinson and Williams (2011), 10 Barratt et al. (2005), 11 Bonham, Mesibov, and Bashford (2002), 12 Boutin, Martin, and Baril (2009), 13 Carpenter et al. (2012), 14 Gaigher and Samways (2010), 15 Ge et al. (2012), 16 Hayward (2009), 17 Leighton‐Goodall, Brown, Hammond, and Eggleton (2012), 18 Muchane et al. (2012), 19 Ngai et al. (2008), 20 Richardson, Richardson, and Soto‐Adames (2005), 21 Schon, Mackay, Minor, Yeates, and Hedley (2008), 22 Schon, Mackay, Yeates, and Minor (2010), 23 Schon, Mackay, and Minor (2011), 24 Smith (2006), 25 Smith, Potts, Woodcock, and Eggleton (2008), 26 Smith, Potts, and Eggleton (2008), 27 Todd et al. (2011), 28 Vasconcelos et al. (2009), 29 Walker, Wilson, Norbury, Monks, and Tanentzap (2014), 30 Baeten, Velghe, et al. (2010), 31 Bakayoko, Martin, Chatelain, Traore, and Gautier (2011), 32 Center for International Forestry Research (CIFOR) (2013a), 33 Center for International Forestry Research (CIFOR) (2013b), 34 Dumont et al. (2009), 35 Firincioglu, Seefeldt, Sahin, and Vural (2009), 36 Haarmeyer, Schmiedel, Dengler, and Bosing (2010), 37 Joubert, Esler, and Privett (2009), 38 Norfolk, Eichhorn, and Gilbert (2013), 39 Page, Qureshi, Rawat, and Kushalappa (2010), 40 Proença, Pereira, Guilherme, and Vicente (2010), 41 Sheil et al. (2002), 42 Wang, Lencinas, Ross Friedman, Wang, and Qiu (2011), 43 Alignier and Deconchat (2013), 44 Baeten, Hermy, Van Daele, and Verheyen (2010), 45 Barlow, Gardner, et al. (2007), 46 Barrico et al. (2012), 47 Baur et al. (2006), 48 Berry et al. (2010), 49 Boutin, Baril, and Martin (2008), 50 Bouyer et al. (2007), 51 Brearley (2011), 52 Brunet et al. (2011), 53 Calviño‐Cancela, Rubido‐Bará, and van Etten (2012), 54 Castro, Lehsten, Lavorel, and Freitas (2010), 55 de Lima, Dallimer, Atkinson, and Barlow (2013), 56 Devineau, Fournier, and Nignan (2009), 57 Fensham, Dwyer, Eyre, Fairfax, and Wang (2012), 58 Fernandez and Simonetti (2013), 59 Fredriksson, Danielsen, and Swenson (2007), 60 Gendreau‐Berthiaume, Kneeshaw, and Harvey (2012), 61 Golodets, Kigel, and Sternberg (2010), 62 Grass, Berens, Peter, and Farwig (2013), 63 Gutierrez et al. (2009), 64 Helden and Leather (2004), 65 Hernández, Delgado, Meier, and Duran (2012), 66 Hietz (2005), 67 Higuera and Wolf (2010), 68 Hylander and Nemomissa (2009), 69 Ishida, Hattori, and Takeda (2005), 70 Kati, Zografou, Tzirkalli, Chitos, and Willemse (2012), 71 Katovai, Burley, and Mayfield (2012), 72 Kessler et al. (2005), 73 Kessler et al. (2009), 74 Kolb and Diekmann (2004), 75 Krauss, Klein, Steffan‐Dewenter, and Tscharntke (2004), 76 Krauss et al. (2010), 77 Kumar and Shahabuddin (2005), 78 Letcher and Chazdon (2009), 79 Louhaichi, Salkini, and Petersen (2009), 80 Lucas‐Borja et al. (2011), 81 Måren (2011), 82 Måren, Bhattarai, and Chaudhary (2013), 83 Marin‐Spiotta, Ostertag, and Silver (2007), 84 Mayfield, Ackerly, and Daily (2006), 85 McNamara, Erskine, Lamb, Chantalangsy, and Boyle (2012), 86 Milder et al. (2010), 87 O'Connor (2005), 88 Paritsis and Aizen (2008), 89 Phalan, Onial, Balmford, and Green (2011), 90 Pincheira‐Ulbrich, Rau, and Smith‐Ramirez (2012), 91 Poggio, Chaneton, and Ghersa (2013), 92 Power and Stout (2011), 93 Power, Kelly, and Stout (2012), 94 Ramesh et al. (2010), 95 Romero‐Duque, Jaramillo, and Perez‐Jimenez (2007), 96 Schmitt, Senbeta, Denich, Preisinger, and Boehmer (2010), 97 Shannon et al. (2008), 98 Siebert (2011), 99 Vassilev, Pedashenko, Nikolov, Apostolova, and Dengler (2011), 100 Williams, Sheahan, and Gormally (2009), 101 Yamaura et al. (2012), 102 Alcala, Alcala, and Dolino (2004), 103 Bicknell and Peres (2010), 104 Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) (2010); Deheuvels, Avelino, Somarriba, and Malézieux (2012), Deheuvels et al. (2014); Rousseau, Deheuvels, Rodriguez Arias, and Somarriba (2012), 105 Craig et al. (2009), 106 Craig et al. (2012), 107 Craig, Grigg, Hobbs, and Hardy (2014), 108 Craig, Stokes, StJ. Hardy, and Hobbs (2015), 109 de Thoisy et al. (2010), 110 Endo et al. (2010), 111 Garden, McAlpine, and Possingham (2010), 112 Kurz, Nowakowski, Tingley, Donnelly, and Wilcove (2014), 113 Kutt and Woinarski (2007), 114 Kutt, Vanderduys, and O'Reagain (2012), 115 Lehouck et al. (2009), 116 Macip‐Ríos and Muñoz‐Alonso (2008), 117 McCarthy, McCarthy, Fuller, and McCarthy (2010), 118 Parry, Barlow, and Peres (2009), 119 Peres and Nascimento (2006), 120 St‐Laurent, Ferron, Hins, and Gagnon (2007), 121 Sung, Karraker, and Hau (2012), 122 Urbina‐Cardona, Olivares‐Perez, and Reynoso (2006), 123 Woinarski and Ash (2002), 124 Woinarski et al. (2009), 125 Billeter et al. (2008); Le Féon et al. (2010), 126 Borges et al. (2006), 127 Cabra‐García, Bermúdez‐Rivas, Osorio, and Chacón (2012), 128 Hanley (2011), 129 Lachat et al. (2006), 130 Cardoso et al. (2009); Meijer, Whittaker, and Borges (2011), 131 Nakamura, Proctor, and Catterall (2003), 132 Norfolk, Abdel‐Dayem, and Gilbert (2012), 133 Poveda, Martinez, Kersch‐Becker, Bonilla, and Tscharntke (2012), 134 Rousseau, Fonte, Tellez, van der Hoek, and Lavelle (2013), 135 Turner and Foster (2009), 136 Uehara‐Prado et al. (2009), 137 Waite (2012); Waite, Closs, Van Heezik, Berry, and Dickinson (2012), 138 Woodcock et al. (2007), 139 Albertos, Lara, Garilleti, and Mazimpaka (2005), 140 Draper, Lara, Albertos, Garilleti, and Mazimpaka (2006), 141 Giordano et al. (2004), 142 Hylander and Weibull (2012), 143 Medina et al. (2010), 144 Hu and Cao (2008), 145 Wu, Fu, Chen, and Chen (2002), 146 Zhang, Li, and Liang (2010), 147 Giordani et al. (2010), 148 Giordani (2012), 149 Aben, Dorenbosch, Herzog, Smolders, and Van Der Velde (2008), 150 Arbeláez‐Cortés, Rodríguez‐Correa, and Restrepo‐Chica (2011), 151 Aumann (2001), 152 Azhar et al. (2013), 153 Azman et al. (2011), 154 Azpiroz and Blake (2009), 155 Báldi, Batáry, and Erdos (2005), 156 Barlow, Mestre, Gardner, and Peres (2007), 157 Bóçon (2010), 158 Borges (2007), 159 Brandt et al. (2013), 160 Cerezo, Conde, and Poggio (2011), 161 Chapman and Reich (2007), 162 Cockle, Leonard, and Bodrati (2005), 163 Dallimer, Parnell, Bicknell, and Melo (2012), 164 Dawson et al. (2011), 165 Dures and Cumming (2010), 166 Edenius, Mikusinski, and Bergh (2011), 167 Farwig, Sajita, and Boehning‐Gaese (2008), 168 Flaspohler et al. (2010), 169 Gomes, Oostra, Nijman, Cleef, and Kappelle (2008); Oostra, Gomes, and Nijman (2008), 170 Hassan et al. (2013), 171 Ims and Henden (2012), 172 Lantschner, Rusch, and Peyrou (2008), 173 Lasky and Keitt (2010), 174 Latta, Tinoco, Astudillo, and Graham (2011), 175 Mallari et al. (2011), 176 Doulton, Marsh, Newman, Bird, and Bell (2007), 177 Marsh, Lewis, Said, and Ewers (2010), 178 Miranda, Politi, and Rivera (2010), 179 Moreno‐Mateos et al. (2011), 180 Munyekenye, Mwangi, and Gichuki (2008), 181 Naidoo (2004), 182 Naithani and Bhatt (2012), 183 Naoe, Sakai, and Masaki (2012), 184 Ndang'ang'a, Njoroge, and Githiru (2013), 185 Neuschulz, Botzat, and Farwig (2011), 186 O'Dea and Whittaker (2007), 187 Owiunji and Plumptre (1998), 188 Pearman (2002), 189 Politi, Hunter Jr. and Rivera (2012), 190 Pons and Wendenburg (2005), 191 Ranganathan, Chan, and Daily (2007), 192 Ranganathan, Daniels, Chandran, Ehrlich, and Daily (2008), 193 Reid, Harris, and Zahawi (2012), 194 Rey‐Benayas, Galvan, and Carrascal (2010), 195 Reynolds and Symes (2013), 196 Rosselli (2011), 197 Sam, Koane, Jeppy, and Novotny (2014), 198 Santana, Porto, Gordinho, Reino, and Beja (2012), 199 Shahabuddin and Kumar (2006, 2007), 200 Sheldon, Styring, and Hosner (2010), 201 Sodhi et al. (2010), 202 Soh, Sodhi, and Lim (2006), 203 Sosa, Benz, Galea, and Poggio Herrero (2010), 204 Stouffer, Johnson, Bierregaard, Richard, and Lovejoy (2011), 205 Suarez‐Rubio and Thomlinson (2009), 206 Vergara and Simonetti (2004), 207 Verhulst, Báldi, and Kleijn (2004), 208 Waite, Closs, van Heezik, and Dickinson (2013), 209 Wang, Bao, Yu, Xu, and Ding (2010), 210 Wunderle, Henriques, and Willig (2006), 211 Li, Zou, Zhang, and Sheldon (2013), 212 Bates et al. (2011), 213 Blake, Westbury, Woodcock, Sutton, and Potts (2011), 214 Blanche, Ludwig, and Cunningham (2006), 215 Cleary et al. (2004), 216 Farwig et al. (2009), 217 Franzén and Nilsson (2008), 218 Kohler, Verhulst, van Klink, and Kleijn (2008), 219 Litchwark (2013), 220 Meyer, Gaebele, and Steffan‐Dewenter (2007), 221 Jauker, Krauss, Jauker, and Steffan‐Dewenter (2013); Meyer, Jauker, and Steffan‐Dewenter (2009), 222 Mudri‐Stojnic, Andric, Jozan, and Vujic (2012), 223 Quintero, Morales, and Aizen (2010), 224 Rader, Bartomeus, Tylianakis, and Laliberte (2014), 225 Schüepp, Herrmann, Herzog, and Schmidt‐Entling (2011), 226 Summerville (2011), 227 Vergara and Badano (2009), 228 Bernard, Fjeldsa, and Mohamed (2009), 229 Cáceres, Nápoli, Casella, and Hannibal (2010), 230 Cassano, Barlow, and Pardini (2014), 231 Danquah, Oppong, and Nutsuakor (2012), 232 Garmendia, Arroyo‐Rodriguez, Estrada, Naranjo, and Stoner (2013), 233 Gheler‐Costa, Vettorazzi, Pardini, and Verdade (2012), 234 Granjon and Duplantier (2011), 235 Henschel (2008), 236 Hoffmann and Zeller (2005), 237 Kittle, Watson, Chanaka Kumara, and Nimalka Sanjeewani (2012), 238 Lantschner, Rusch, and Hayes (2012), 239 Martin, Gheler‐Costa, Lopes, Rosalino, and Verdade (2012), 240 McShea et al. (2009), 241 Mena and Medellín (2010), 242 Nakagawa, Miguchi, and Nakashizuka (2006), 243 O'Farrell, Donaldson, Hoffman, and Mader (2008), 244 Scott et al. (2006), 245 Sridhar, Raman, and Mudappa (2008), 246 Wells, Kalko, Lakim, and Pfeiffer (2007), 247 Hylander, Nilsson, and Gothner (2004), 248 Kappes, Katzschner, and Nowak (2012), 249 Oke and Chokor (2009), 250 Oke (2013), 251 Schilthuizen, Liew, Bin Elahan, and Lackman‐Ancrenaz (2005), 252 Ström, Hylander, and Dynesius (2009), 253 Torre, Bros, and Santos (2014), 254 Wronski et al. (2014), 255 Freire and Motta (2011), 256 Lo‐Man‐Hung, Gardner, Ribeiro‐Júnior, Barlow, and Bonaldo (2008), 257 Shochat, Stefanov, Whitehouse, and Faeth (2004), 258 Zaitsev, Chauvat, Pug, and Wolters (2002), 259 Walker, Crittenden, Young, and Prystina (2006), 260 Malonza and Veith (2012), 261 Alguacil, Torrecillas, Hernandez, and Roldan (2012), 262 Brito, Goss, de Carvalho, Chatagnier, and van Tuinen (2012), 263 Baral and Katzensteiner (2009), 264 Robles, Carmaran, and Lopez (2011), 265 Römbke, Schmidt, and Höfer (2009), 266 Luja, Herrando‐Perez, Gonzalez‐Solis, and Luiselli (2008), 267 Cameron et al. (2011), 268 Cunningham, Schellhorn, Marcora, and Batley (2013), 269 Fowler (2014), 270 Gould et al. (2013), 271 Lentini, Martin, Gibbons, Fischer, and Cunningham (2012), 272 Malone et al. (2010), 273 Marshall, West, and Kleijn (2006), 274 Oertli, Muller, and Dorn (2005), 275 Osgathorpe, Park, and Goulson (2012), 276 Quaranta et al. (2004), 277 Richards et al. (2011), 278 Samnegård, Persson, and Smith (2011), 279 Schüepp, Rittiner, and Entling (2012), 280 Shuler, Roulston, and Farris (2005), 281 Smith‐Pardo and Gonzalez (2007), 282 Tonietto, Fant, Ascher, Ellis, and Larkin (2011), 283 Tylianakis, Klein, and Tscharntke (2005), 284 Verboven, Brys, and Hermy (2012), 285 Barlow, Overal, Araujo, Gardner, and Peres (2007), 286 Berg, Ahrné, Öckinger, Svensson, and Söderström (2011), 287 Bobo, Waltert, Fermon, Njokagbor, and Muhlenberg (2006), 288 Cleary and Mooers (2006), 289 D'Aniello, Stanislao, Bonelli, and Balletto (2011), 290 de Sassi, Lewis, and Tylianakis (2012), 291 Dolia, Devy, Aravind, and Kumar (2008), 292 Hawes et al. (2009), 293 Ishitani, Kotze, and Niemela (2003), 294 Krauss, Steffan‐Dewenter, and Tscharntke (2003), 295 Littlewood (2008), 296 Pe'er, Maanen, Turbe, Matsinos, and Kark (2011), 297 Safian, Csontos, and Winkler (2011), 298 Summerville and Crist (2002), 299 Summerville, Conoan, and Steichen (2006), 300 Sutrisno (2010), 301 Uehara‐Prado, Brown, Spalding, and Lucci Freitas (2007), 302 Verdasca et al. (2012), 303 Vu (2005), 304 Vu (2009), 305 Banks, Sandvik, and Keesecker (2007), 306 Barratt et al. (2012), 307 Blanche and Cunningham (2005), 308 Buse, Levanony, Timm, Dayan, and Assmann (2008), 309 Elek and Lovei (2007), 310 Ewers, Thorpe, and Didham (2007), 311 Gaublomme, Hendrickx, Dhuyvetter, and Desender (2008), 312 Gray, Slade, Mann, and Lewis (2014), 313 Jonsell (2012), 314 Légaré, Hébert, and Ruel (2011), 315 Mico, Garcia‐Lopez, Brustel, Padilla, and Galante (2013), 316 Noreika (2009), 317 Numa, Verdu, Rueda, and Galante (2012), 318 Nyeko (2009), 319 Otavo, Parrado‐Rosselli, and Noriega (2013), 320 Rodrigues, Uchoa, and Ide (2013), 321 Sugiura, Tsuru, Yamaura, and Makihara (2009), 322 Verdú et al. (2007), 323 Adum, Eichhorn, Oduro, Ofori‐Boateng, and Rodel (2013), 324 de Souza, de Souza, and Morato (2008), 325 Eigenbrod, Hecnar, and Fahrig (2008), 326 Faruk, Belabut, Ahmad, Knell, and Garner (2013), 327 Furlani, Ficetola, Colombo, Ugurlucan, and De Bernardi (2009), 328 Gutierrez‐Lamus (2004), 329 Hilje and Aide (2012), 330 Isaacs‐Cubides and Urbina‐Cardona (2011), 331 Ofori‐Boateng et al. (2013), 332 Pethiyagoda and Manamendra‐Arachchi (2012), 333 Pillsbury and Miller (2008), 334 Pineda and Halffter (2004), 335 Vallan (2002), 336 Watling, Gerow, and Donnelly (2009), 337 Castro‐Luna, Sosa, and Castillo‐Campos (2007), 338 Clarke, Rostant, and Racey (2005), 339 Fukuda, Tisen, Momose, and Sakai (2009), 340 MacSwiney, Vilchis, Clarke, and Racey (2007), 341 Presley, Willig, Wunderle, Joseph, and Saldanha (2008), 342 Sedlock et al. (2008), 343 Shafie, Sah, Latip, Azman, and Khairuddin (2011), 344 Struebig, Kingston, Zubaid, Mohd‐Adnan, and Rossiter (2008), 345 Threlfall, Law, and Banks (2012), 346Willig et al. (2007), 347 Alcayaga, Pizarro‐Araya, Alfaro, and Cepeda‐Pizarro (2013), 348 Buddle and Shorthouse (2008), 349 Clark, Gerard, and Mellsop (2004), 350 Kapoor (2008), 351 Lo‐Man‐Hung et al. (2011), 352 Magura, Horvath, and Tothmeresz (2010), 353 Malumbres‐Olarte et al. (2014), 354 Paradis and Work (2011), 355 Raub, Hoefer, Scheuermann, and Brandl (2014), 356 Alberta Biodiversity Monitoring Institute (ABMI) (2013), 357 Arroyo, Iturrondobeitia, Rad, and Gonzalez‐Carcedo (2005), 358 Zaitsev, Wolters, Waldhardt, and Dauber (2006), 359 Kőrösi, Batáry, Orosz, Rédei, and Báldi (2012), 360 Littlewood, Pakeman, and Pozsgai (2012), 361 Moir, Brennan, Koch, Majer, and Fletcher (2005), 362 Carrijo, Brandao, de Oliveira, Costa, and Santos (2009), 363 Oliveira, Carrijo, and Brandão (2013), 364 Reis and Cancello (2007), 365 Zeidler, Hanrahan, and Scholes (2002), 366 D'Cruze and Kumar (2011), 367 Fabricius, Burger, and Hockey (2003), 368 Pelegrin and Bucher (2012), 369 Urbina‐Cardona, Londoño‐Murcia, and García‐Ávila (2008), 370 Chauvat, Wolters, and Dauber (2007), 371 Fiera (2008), 372 Savage, Wheeler, Moores, and Taillefer (2011), 373 Virgilio, Backeljau, Emeleme, Juakali, and De Meyer (2011), 374 Andersen, Ludwig, Lowe, and Rentz (2001), 375 Otto and Roloff (2012), 376 Zimmerman, Bell, Woodcock, Palmer, and Paloniemi (2011), 377 Hornung, Tothmeresz, Magura, and Vilisics (2007), 378 Magrini, Freitas, and Uehara‐Prado (2011), 379 Laurance and Laurance (1996), 380 Bragagnolo, Nogueira, Pinto‐da‐Rocha, and Pardini (2007), 381 Herrera, Wright, Lauterbur, Ratovonjanahary, and Taylor (2011), 382 Jung and Powell (2011), 383 Bartolommei, Mortelliti, Pezzo, and Puglisi (2013), 384 Andersen and Hoffmann (2011), 385 Armbrecht, Perfecto, and Silverman (2006), 386 Bihn, Verhaagh, Braendle, and Brandl (2008), 387 Buczkowski (2010), 388 Buczkowski and Richmond (2012), 389 Delabie et al. (2009), 390 Dominguez‐Haydar and Armbrecht (2010), 391 Fayle et al. (2010), 392 Floren, Freking, Biehl, and Linsenmair (2001), 393 Frizzo and Vasconcelos (2013), 394 Gove, Majer, and Rico‐Gray (2005), 395 Gunawardene, Majer, and Edirisinghe (2010), 396 Hashim, Akmal, Jusoh, and Nasir (2010), 397 Kone, Konate, Yeo, Kouassi, and Linsenmair (2010), 398 Maeto and Sato (2004), 399 Roth, Perfecto, and Rathcke (1994), 400 Schmidt, Fraser, Carlyle, and Bassett (2012), 401 Uehara‐Prado (2005), 402 Vasconcelos (1999), 403 Vasconcelos, Vilhena, and Caliri (2000), 404 Fierro, Cruz‐Lopez, Sanchez, Villanueva‐Gutierrez, and Vandame (2012), 405 Hanley (2005), 406 Julier and Roulston (2009), 407 Liow, Sodhi, and Elmqvist (2001), 408 Nielsen et al. (2011), 409 Parra‐H and Nates‐Parra (2007), 410 Rasmussen (2009), 411 Winfree, Griswold, and Kremen (2007), 412 da Silva (2011), 413 Davis and Philips (2005), 414 Filgueiras, Iannuzzi, and Leal (2011), 415 Gardner, Hernandez, Barlow, and Peres (2008), 416 Horgan (2009), 417 Jacobs, Scholtz, Escobar, and Davis (2010), 418 Navarrete and Halffter (2008), 419 Navarro, Roman, Gomez, and Perez (2011), 420 Noriega, Realpe, and Fagua (2007), 421 Noriega, Palacio, Monroy‐G, and Valencia (2012), 422 Rös, Escobar, and Halffter (2012), 423 Silva, Costa, Moura, and Farias (2010), 424 Slade, Mann, and Lewis (2011), 425 Gu, Zhen‐Rong, and Dun‐Xiao (2004), 426 Koivula, Hyyrylainen, and Soininen (2004), 427 Liu, Axmacher, Wang, Li, and Yu (2012), 428 Noreika and Kotze (2012), 429 Rey‐Velasco and Miranda‐Esquivel (2012), 430 Vanbergen, Woodcock, Watt, and Niemela (2005), 431 Weller and Ganzhorn (2004), 432 Aguilar‐Barquero and Jiménez‐Hernández (2009), 433 Carvalho, Ferreira, Lima, and de Carvalho (2010), 434 Svenning (1998), 435 Benedick et al. (2006), 436 Fermon, Waltert, Vane‐Wright, and Muhlenberg (2005), 437 Ribeiro and Freitas (2012), 438 Breedt, Dreber, and Kellner (2013), 439 Scott, Setterfield, Douglas, and Andersen (2010), 440 Cagle (2008), 441 Johnson, Gómez, and Pinedo‐Vasquez (2008), 442 Su, Zhang, and Qiu (2011), 443 Gottschalk, De Toni, Valente, and Hofmann (2007), 444 Axmacher et al. (2009), 445 García, Ortiz Zapata, Aguayo, and D'Elia (2013), 446 Jolli and Pandit (2011), 447 Saldaña‐Vázquez, Sosa, Hernández‐Montero, and López‐Barrera (2010), 448 Nicolas, Barriere, Tapiero, and Colyn (2009), 449 Sakchoowong, Nomura, Ogata, and Chanpaisaeng (2008), 450 García‐R, Cárdenas‐H, and Castro‐H (2007), 451 Yoshikura, Yasui, and Kamijo (2011), 452 Connop, Hill, Steer, and Shaw (2011), 453 Darvill, Knight, and Goulson (2004), 454 Diekötter, Walther‐Hellwig, Conradi, Suter, and Frankl (2006), 455 Goulson, Lye, and Darvill (2008), 456 Goulson et al. (2010), 457 Hanley et al. (2011), 458 Hatfield and LeBuhn (2007), 459 McFrederick and LeBuhn (2006), 460 Redpath, Osgathorpe, Park, and Goulson (2010), 461 Schumann, Wittig, Thiombiano, Becker, and Hahn (2011), 462 Nakashima, Inoue, and Akomo‐Okoue (2013), 463 Wiafe and Amfo‐Otu (2012), 464 Peters, Fischer, Schaab, and Kraemer (2009), 465 Peters, Lung, Schaab, and Waegele (2011), 466 Matsumoto, Itioka, Yamane, and Momose (2009), 467 Rubio and Simonetti (2011), 468 Herrmann, Westphal, Moritz, and Steffan‐Dewenter (2007), 469 Knight et al. (2009), 470 Ancrenaz, Goossens, Gimenez, Sawang, and Lackman‐Ancrenaz (2004), 471 Felton, Engstrom, Felton, and Knott (2003), 472 Knop, Ward, and Wich (2004), 473 Ewers, Bartlam, and Didham (2013), 474 Davis, Murray, Fitzpatrick, Brown, and Paxton (2010), 475 Hanson, Brunsfeld, Finegan, and Waits (2008), 476 Strauch and Eby (2012), 477 Ramos‐Robles, Gallina, and Mandujano (2013), 478 Ferreira and Alves (2005, 2009), 479 Luskin (2010), 480 Grogan et al. (2008)

3.3. Temporal coverage

We focused primarily on data sampled since 2000 because most global layers describing human pressure are collected after this year and, in particular, to facilitate use of contemporaneous Moderate‐resolution Imaging Spectroradiometer (MODIS) remotely sensed data (Justice et al., 1998; Tuck et al., 2014) in modeling. However, in filling certain taxonomic and geographic gaps, we also collated some data that were sampled before 2000 (Figure 6). Data are sparse after 2012 because of the natural time lags between data collection in the field, publication and then assimilation into the PREDICTS database (Figure 6).

Figure 6.

Figure 6

Spatiotemporal sampling coverage. Site sampling dates are shown by biome. Each Site is represented by a circle and line. Circle radii are proportional to log10 of the number of samples at that Site. Circle centers are at the midpoints of Site sampling dates; lines indicate the start and end dates of sampling. Y‐values have been jittered at the Study level. Circles and lines have the same degree of partial transparency. Biome colors and letters are as in Figure 1

3.4. Data access and structure

This 2016 release of the database—the complete dataset and also site‐level summaries—is available on the data portal of the Natural History Museum, London (doi: 10.5519/0066354) as comma‐separated variable (CSV) files and as RDS files, the latter for use with the R statistical modeling language (R Core Team 2015; RDS files were generated using R 3.3.1). A complete description of the columns in the extracts, along with a visualization of the database schema, is given in Supporting Information. This paper makes all the data in this version of the database freely available to anyone wishing to use them for any purpose. The terms of the license require that anyone publishing research based on these data should cite this paper and/or the original sources of the data used, as appropriate. The dataset at doi: 10.5519/0066354 contains bibliographic information for all DataSources in both CSV and BibTeX formats.

4. Discussion

The PREDICTS database is designed to be able to address a range of questions about how land use and related pressures have influenced the occurrence and abundance of species and the diversity of ecological assemblages. The highly structured nature of the data, with comparable surveys having been carried out at each Site within a Study, was chosen to facilitate such modeling. Table 1 identifies a range of long‐standing general questions for which the PREDICTS data may be useful, referencing early papers addressing questions of each type. It also outlines the steps required to tackle each kind of question, in conjunction with other information about the Sites and species where necessary, and refers to papers that have performed so.

Table 1.

Questions that could be answered using the PREDICTS database

Question Early example references Approach Example using PREDICTS database
Questions about taxa
Q 1. What factors influence the occurrence and/or abundance of a particular focal species? Austin, Nicholls, and Margules (1990) Filter to remove species not of interest. Merge PREDICTS data with data on any additional site‐level characteristics of interest. One possible analytical approach is to model effects of site characteristics on presence‐absence and log (abundance when present) separately, the first with binomial errors and the second with Gaussian errors, while accounting for among‐Study differences (e.g., using mixed‐effects models).
Q 2. Do changes in land‐use facilitate success of invasive species? Dukes and Mooney (1999), Theoharides and Dukes (2007) Obtain lists of invasive species for the regions of interest and model presence‐absence and/or abundance of invasives as above.
Q 3. Which ecological attributes of species make them more or less sensitive to human pressures? McKinney (1997), Davies, Margules, and Lawrence (2000), Cardillo et al. (2005) Merge PREDICTS data with species‐level data on traits of interest. Model how site and species characteristics affect presence‐absence and log (abundance when present) separately as above, accounting for Study‐level and taxon‐level differences (e.g., using mixed‐effects models). Newbold et al. (2014), De Palma et al. (2015)
Q 4. Which taxa have species that are more sensitive to human pressures, and which have less sensitive species? Lawton et al. (1998), Mace and Balmford (2000), Gibson et al. (2011) Add taxonomic group into models above as a fixed effect interacting with other fixed effects.
Q 5. Are phylogenetically distinct species particularly sensitive? Gaston and Blackburn (1997), Purvis, Agapow, Gittleman, and Mace (2000) Analyze phylogenetic distinctiveness or unique evolutionary history in the same way as ecological attributes.
Q 6. What are the relationships between geographic range size or occupancy and abundance? Brown (1984) Merge PREDICTS data with species‐level data on range sizes or occupancy. Filter to the land uses of interest (e.g., primary vegetation if the focus is on natural systems), and examine within‐Study relationship between abundance and relative range size or occupancy.
Q 7. Do suitability estimates from environmental niche models predict abundance? VanDerWal, Shoo, Johnson, and Williams (2009) Use other data on occurrences of species to fit niche models for all species in within selected Studies and thereby estimate suitability of each Site. Various modeling options are then possible depending on the precise question: for example, fit land use interacting with suitability when modeling abundance in order to test whether any correlation depends on land use.
Questions about sites
Q 8. Which land uses and other Site‐level pressures have the strongest net impact on levels of local biodiversity? Lawton et al. (1998), Gibson et al. (2011) Aggregate biodiversity data within a site to estimate relevant diversity metric (e.g., within‐sample species richness, total abundance, rarefaction‐based richness, species evenness). Merge Site‐level biodiversity data with any additional data on Site‐level characteristics of interest (e.g., from remotely sensed data) if required. Model Site‐level diversity as a function of Site characteristics while accounting for among‐Study differences (e.g., using mixed‐effects models). fig 1b,c in Newbold et al. (2015)
Q 9. How do land use and other pressures reduce compositional intactness? Scholes and Biggs (2005) Because net changes are affected by gains of non‐native species as well as losses of those originally present, modeling compositional intactness gives a more sensitive indication of human impacts. Model Site‐level abundance as a function of pressures as above, and how compositional similarity to assemblages in primary vegetation differs among land uses. Combine these models to estimate the Biodiversity Intactness Index (Scholes & Biggs, 2005)—the average abundance of a diverse set of species, relative to their abundance in an unimpacted assemblage. Newbold, Hudson, Arnell, et al. (2016)
Q 10. Do land use and related pressures influence community trait values? Garnier et al. (2007) Combine data on species’ occurrences or abundance with trait data to obtain average or community‐weighted mean trait values, which can then be modeled like the Site‐level response variables above. fig 1d in Newbold et al. (2015)
Q 11. Does the biotic response to a given pressure vary regionally? Gibson et al. (2011) Add region as a fixed effect and test for interaction with other fixed effects.
Q 12. Which characteristics of Sites (e.g., duration of human impact and rate of climate change) mean that given land‐use changes have particularly severe effects on biodiversity? Balmford (1996),Travis (2003) Merge Site‐level diversity data with Site‐level data on characteristics to be tested and assess the interaction of these variables with land use. Gray et al. (2016)
Q 13. How accurate are global land‐use data? Giri, Zhu, and Reed (2005) Use Site‐level land‐use data to calculate the receiver operating characteristic curve (i.e., sensitivity versus false‐positive rate), using the area under the curve to quantify agreement. An extension of this could be to use the PREDICTS Site‐level land use data as input into land use/land cover classification procedures, for example, by the remote sensing community, or at least use PREDICTS data to cross‐check and validate land use and land cover maps with independent PREDICTS data. Hoskins et al. (2016)
Questions above the site level
Q 14. Is beta diversity lower in human‐dominated than more natural land uses? Tylianakis et al. (2005) Estimate desired measures of similarity among Sites within studies. Model how biotic similarity among Sites depends on similarity of other attributes (including characteristics from remote sensing or Dynamic Global Ecosystem Models if required), accounting for among‐Study differences (e.g., using mixed‐effects models). Newbold, Hudson, Hill, et al. (2016)
Q 15. Are land‐sparing or land‐sharing strategies optimal for local biodiversity? Green, Cornell, Scharlemann, and Balmford (2005) Analyze species by Sites and by Study and relate back to Q. 1. The overarching question about sparing versus sharing can be addressed by looking at the individual responses of species to land‐use intensity, as measured by yield suggested by Green et al. (2005); this requires data on agricultural yields at relevant Sites in the PREDICTS database.
Other questions
Q 16. How accurate are current extent of occurrence/range maps, for example, those produced by International Union for Conservation of Nature (2016)? Cross‐check existing extents of occurrence and ranges with PREDICTS data.
Q 17. How representative are species catalogues? Query clade‐level (e.g., The Plant List, World List of Mammalian Species, Platnick's Spider Catalogue) and aggregated (e.g., Encyclopedia of Life and Catalogue of Life) lists with the Latin binomials and trinomials that were provided to PREDICTS by the data collectors. Subquestions include
  • How does coverage vary among taxonomic groups?

  • How does coverage depend on region?

  • Are there substantial differences among the aggregated services?

  • How well are synonyms and homonyms represented and resolved?

Changes in attitudes to—and the increasing ease of—data sharing have contributed to rapid growth in open compilations of structured biodiversity data and related pressure data targeted toward particular kinds of research question. Examples of data types featured in such compilations include population time series (e.g., Inchausti & Halley, 2001), assemblage time series (e.g., Dornelas et al., 2014), assemblage inventories (e.g., Thibault, Supp, Giffin, White, & Ernest, 2011), and species traits (e.g., Madin et al., 2016). Other projects have collated or are collating large compilations of structured biodiversity data, such as BIOFRAG (Pfeifer et al., 2014; habitat fragmentation), BIOTIME (The BioTIME Research Group, 2016; detailed time‐series data, still being compiled) and GLOBIO3 (Alkemade et al., 2009; pristine versus disturbed habitats, not publicly available).

The largest open compilation of biodiversity data is the Global Biodiversity Information Facility (GBIF; www.gbif.org), which aggregates mostly unstructured species occurrence data. The unstructured nature of most GBIF data limits the range of questions to which they can easily be put, although they are increasingly used in modeling species distributions (e.g., Pineda & Lobo, 2008) and habitat suitability (e.g., Ficetola, Rondinini, Bonardi, Baisero, & Padoa‐Schioppa, 2015). As of April 2016, GBIF holds over 560 million georeferenced occurrence records of around 1.5 million species, although coverage is taxonomically uneven (e.g., most records are of birds) and patchy even among the best‐recorded groups (Meyer, Kreft, Guralnick, & Jetz, 2015).

Databases of species traits continue to be collated and published, and many of them are relevant to taxa in the PREDICTS database. Recent examples include mammalian generation time (Pacifici et al., 2013), a variety of mammalian traits (Jones et al., 2009), foraging attributes of birds and mammals (Wilman et al., 2014), field metabolic rates of birds and mammals (Hudson, Isaac, & Reuman, 2013) and functional traits of vascular plants (Kattge et al., 2011). Additional databases provide more abstract concepts such as species’ threat status (International Union for Conservation of Nature, 2016) and estimates of the degrees of protection required (Convention on International Trade in Endangered Species of Wild Fauna and Flora, 2016). Relating such data with measurements in the PREDICTS database makes possible investigation into how traits mediate species’ responses to changes in land use and land‐use intensity. Examples of published analyses have examined habitat specialization and geographical range size of birds and mammals (Newbold et al., 2014), functional traits of vascular plants (Bernhardt‐Römermann et al., 2011) and a range of morphometric, physiological, and functional traits of bees (De Palma et al., 2015); see Table 1, Q. 3.

Although our targeting of data from underrepresented biomes and taxa (Hudson et al., 2014) reduces the effects of geographic and taxonomic biases in available data, the PREDICTS database nonetheless has many limitations, of which four are particularly important to note. First, our individual datasets seldom take a whole‐ecosystem perspective, being instead taxonomically or ecologically restricted; consequently, our data shed little light on how trophic webs or other interactions are affected by human pressures. Second, even within the groups sampled, our data do not provide complete inventories of the species that would be found with comprehensive sampling; thus, failure to record a species from a Site does not provide strong evidence of absence. Third, Latin binomials were not available for a sizeable fraction of the species in our DataSources, limiting the prospects for linking the observations of occurrence and abundance to other information about the species (e.g., functional traits; Kattge et al., 2011). Last, because our database was designed to test hypotheses about local‐scale variation in biodiversity, it is not particularly informative about large‐scale biodiversity patterns such as the latitudinal gradient in species richness or how pressures with a coarse spatial grain (e.g., atmospheric nitrogen deposition; Simkin et al., 2016) influence Site‐level diversity.

When using the PREDICTS database, or indeed any database, to model biodiversity responses, it is important to be aware of potential mismatches in scale between Site‐level data and pressure data such as MODIS remotely sensed data (Justice et al., 1998) and the harmonized land‐use scenarios (Hurtt et al., 2011) and also between Site‐level response variables and the scales of interest. The PREDICTS database contains some structural features that help with these issues. First, we assigned the Site‐level land use and land‐use intensity classifications based on the authors’ descriptions of the habitats so these classifications do not suffer from the problem of scale mismatch. Second, Sites are represented as precisely as possible: Sites often represent individual quadrats, traps, or other points within a broader sampling regime (such as a transect), and we recorded (as latitude and longitude) the coordinates of each Site rather than aggregating them into coarser summaries across the broader sampling regime. Third, where the relevant information was available, we also recorded the maximum extent of sampling as a linear value in meters (for 22,199 Sites, see Hudson et al. (2014) for details). Users of the database therefore have flexibility in deciding how measurements in the PREDICTS database are related to available pressure data. Possible solutions to scale mismatches between biodiversity data and pressure data would be (1) to exclude from analyses any Sites where the extent of sampling is substantially greater than the grain size of the pressure data or (2) to conduct some sort of spatial averaging of the pressure data. Novel methods have been published both for downscaling pressure data (e.g., Hoskins et al., 2016) and for upscaling local biodiversity measurements to estimate changes in gamma diversity over broader areas (e.g., Azaele et al., 2015); both approaches offer potential solutions to mismatches in scale.

The PREDICTS database continues to increase in size and currently contains a further 22 Studies with embargo dates that prevent their inclusion in this release. We intend to publish occasional updates to make these data freely available. We have also received a number of further offers of datasets that we hope to incorporate into the database and include in future releases. There are three priority categories of data that we are still seeking actively: bees from outside Western Europe; soil invertebrates and fungi; and geographic islands. The current database focuses entirely on spatial “control–impact” comparisons. A follow‐on project that has recently begun focuses instead on temporal comparisons, collating data from “before–after” and (especially) “before–after–control–impact” studies of the effects of land‐use change on terrestrial assemblages. We are therefore seeking datasets, linked to peer‐reviewed publications, of comparable species‐level surveys conducted at each sampling location, with temporal changes in land use and/or land‐use intensity. If corresponding authors of such papers wish to offer their data, please complete our online form, available at www.predicts.org.uk/pages/contribute.html. As with PREDICTS, the new project will seek to make its data freely available.

Conflict of Interest

None declared.

Supporting information

 

Acknowledgments

PREDICTS has been supported by U.K. Natural Environment Research Council grants (NE/J011193/2 and NE/L002515/1), the United Nations Environment Program World Conservation Monitoring Centre, Biotechnology and Biological Sciences Research Council grant (BB/F017324/1), a Hans Rausing PhD Scholarship and COLCIENCIAS (Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia). We thank the many researchers who generously contributed their data to the PREDICTS project; including The Nature Conservation Foundation, Ros Blanche, Zhi Ping Cao, Kristina Cockle, Emily Davis, Moisés Barbosa de Souza, Carsten F Dormann, Christo Fabricius, Colin Ferguson, Heleen Fermon, Toby Gardner, Eva Gaublomme, Marco S Gottschalk, Peter Hietz, Juan Carlos Iturrondobeitia, Daniel L Kelly, Lee Hsiang Liow, Takashi Matsumoto, William McShea, Elder F Morato, Andreas Müller, Philip Nyeko, Tim O'Connor, Clint Otto, Simon Paradis, Marino Rodrigues, Watana Sakchoowong, Hari Sridhar, Susan Walker, Rachael Winfree, Timothy T Work, Torsten Wronski, Gregory Zimmerman and all the field assistants, parataxonomists and taxonomists who collected and identified the animals, plants and fungi in the database. We thank all the many funding agencies and other organizations that have supported the original research that produced these data; these include Natural Sciences and Engineering Research Council of Canada and Tembec, the University of Miami Beyond the Book Research Scholarship, the NSF Graduate Research Fellowship and the National Science Foundation Research Experience for Undergraduates Supplemental Award. We thank Technical Solutions and Informatics staff at the Natural History Museum, London, especially Srinivas Patlola, Simon Rycroft, Ben Scott and Chris Sleep.

Hudson, L. N. , Newbold, T. , Contu, S. , Hill S. L. L., Lysenko, I. , De Palma A., … Purvis, A. (2017), The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecology and Evolution, 7: 145–188. doi: 10.1002/ece3.2579

References

  1. Aben, J. , Dorenbosch, M. , Herzog, S. K. , Smolders, A. J. P. , & Van Der Velde, G. (2008). Human disturbance affects a deciduous forest bird community in the Andean foothills of central Bolivia. Bird Conservation International, 18(4), 363–380. doi:10.1017/s0959270908007326 [Google Scholar]
  2. Adum, G. B. , Eichhorn, M. P. , Oduro, W. , Ofori‐Boateng, C. , & Rodel, M. O. (2013). Two‐stage recovery of amphibian assemblages following selective logging of tropical forests. Conservation Biology, 27(2), 354–363. doi:10.1111/cobi.12006 [DOI] [PubMed] [Google Scholar]
  3. Aguilar‐Barquero, V. , & Jiménez‐Hernández, F . (2009) Diversidad y distribución de palmas (Arecaceae) en tres fragmentos de bosque muy húmedo en Costa Rica. Revista de Biología Tropical, 57(Suppl. 1), 83–92. [Google Scholar]
  4. Alberta Biodiversity Monitoring Institute (ABMI) . (2013). The raw soil arthropods dataset and the raw trees & snags dataset from Prototype Phase (2003–2006) and Rotation 1 (2007–2012). http://www.abmi.ca
  5. Albertos, B. , Lara, F. , Garilleti, R. , & Mazimpaka, V. (2005). A survey of the epiphytic bryophyte flora in the northwest of the Iberian Peninsula. Cryptogamie, 26(3), 263–289. [Google Scholar]
  6. Alcala, E. L. , Alcala, A. C. , & Dolino, C. N. (2004). Amphibians and reptiles in tropical rainforest fragments on Negros Island, the Philippines. Environmental Conservation, 31(3), 254–261. doi:10.1017/s0376892904001407 [Google Scholar]
  7. Alcayaga, O. E. , Pizarro‐Araya, J. , Alfaro, F. M. , & Cepeda‐Pizarro, J. (2013). Spiders (Arachnida, Araneae) associated to agroecosystems in the Elqui Valley (Coquimbo Region, Chile). Revista Colombiana de Entomología, 39(1), 150–154. [Google Scholar]
  8. Alguacil, M. D. M. , Torrecillas, E. , Hernandez, G. , & Roldan, A . (2012) Changes in the diversity of soil arbuscular mycorrhizal fungi after cultivation for biofuel production in a Guantanamo (Cuba) tropical system. PLoS One, 7(4), 1–8. doi:10.1371/journal.pone.0034887 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Alignier, A. , & Deconchat, M. (2013). Patterns of forest vegetation responses to edge effect as revealed by a continuous approach. Annals of Forest Science, 70(6), 601–609. doi:10.1007/s13595‐013‐0301‐0 [Google Scholar]
  10. Alkemade, R. , van Oorschot, M. , Miles, L. , Nellemann, C. , Bakkenes, M. , & ten Brink, B. (2009). GLOBIO3: A framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems, 12(3), 374–390. doi:10.1007/s10021‐009‐9229‐5 [Google Scholar]
  11. Ancrenaz, M. , Goossens, B. , Gimenez, O. , Sawang, A. , & Lackman‐Ancrenaz, I. (2004). Determination of ape distribution and population size using ground and aerial surveys: A case study with orang‐utans in lower Kinabatangan, Sabah, Malaysia. Animal Conservation, 7, 375–385. doi:10.1017/s136794300400157x [Google Scholar]
  12. Andersen, A. N. , & Hoffmann, B. D. (2011). Conservation value of low fire frequency in tropical savannas: Ants in monsoonal northern Australia. Austral Ecology, 36(5), 497–503. doi:10.1111/j.1442‐9993.2010.02151.x [Google Scholar]
  13. Andersen, A. N. , Ludwig, J. A. , Lowe, L. M. , & Rentz, D. C. F. (2001). Grasshopper biodiversity and bioindicators in Australian tropical savannas: Responses to disturbance in Kakadu National Park. Austral Ecology, 26(3), 213–222. doi:10.1046/j.1442‐9993.2001.01106.x [Google Scholar]
  14. Arbeláez‐Cortés, E. , Rodríguez‐Correa, H. A. , & Restrepo‐Chica, M. (2011). Mixed bird flocks: Patterns of activity and species composition in a region of the Central Andes of Colombia. Revista Mexicana de Biodiversidad, 82(2), 639–651. [Google Scholar]
  15. Armbrecht, I. , Perfecto, I. , & Silverman, E. (2006). Limitation of nesting resources for ants in Colombian forests and coffee plantations. Ecological Entomology, 31(5), 403–410. doi:10.1111/j.1365‐2311.2006.00802.x [Google Scholar]
  16. Arroyo, J. , Iturrondobeitia, J. C. , Rad, C. , & Gonzalez‐Carcedo, S. (2005). Oribatid mite (Acari) community structure in steppic habitats of Burgos Province, central northern Spain. Journal of Natural History, 39(39), 3453–3470. doi:10.1080/00222930500240346 [Google Scholar]
  17. Aumann, T. (2001). The structure of raptor assemblages in riparian environments in the south‐west of the Northern Territory, Australia. Emu, 101(4), 293–304. doi:10.1071/mu00072 [Google Scholar]
  18. Austin, M. P. , Nicholls, A. O. , & Margules, C. R. (1990). Measurement of the realized qualitative niche: Environmental niches of five Eucalyptus species. Ecological Monographs, 60(2), 161–177. doi:10.2307/1943043 [Google Scholar]
  19. Axmacher, J. , Brehm, G. , Hemp, A. , Tunte, H. , Lyaruu, H. , Muller‐Hohenstein, K. , & Fiedler, K. (2009). Determinants of diversity in afrotropical herbivorous insects (Lepidoptera: Geometridae): Plant diversity, vegetation structure or abiotic factors? Journal of Biogeography, 36(2), 337–349. doi:10.1111/j.1365‐2699.2008.01997.x [Google Scholar]
  20. Azaele, S. , Maritan, A. , Cornell, S. J. , Suweis, S. , Banavar, J. R. , Gabriel, D. , & Kunin, W. E. (2015). Towards a unified descriptive theory for spatial ecology: Predicting biodiversity patterns across spatial scales. Methods in Ecology and Evolution, 6(3), 324–332. doi:10.1111/2041‐210X.12319 [Google Scholar]
  21. Azhar, B. , Lindenmayer, D. B. , Wood, J. , Fischer, J. , Manning, A. , McElhinny, C. , & Zakaria, M. (2013). The influence of agricultural system, stand structural complexity and landscape context on foraging birds in oil palm landscapes. Ibis, 155(2), 297–312. doi:10.1111/ibi.12025 [Google Scholar]
  22. Azman, N. M. , Latip, N. S. A. , Sah, S. A. M. , Akil, M. A. M. M. , Shafie, N. J. , & Khairuddin, N. L. (2011). Avian diversity and feeding guilds in a secondary forest, an oil palm plantation and a paddy field in Riparian areas of the Kerian River Basin, Perak, Malaysia. Tropical Life Sciences Research, 22(2), 45–64. [PMC free article] [PubMed] [Google Scholar]
  23. Azpiroz, A. B. , & Blake, J. G. (2009). Avian assemblages in altered and natural grasslands in the northern Campos of Uruguay. Condor, 111(1), 21–35. doi:10.1525/cond.2009.080111 [Google Scholar]
  24. Baeten, L. , Hermy, M. , Van Daele, S. , & Verheyen, K. (2010). Unexpected understorey community development after 30 years in ancient and post‐agricultural forests. Journal of Ecology, 98(6), 1447–1453. doi:10.1111/j.1365‐2745.2010.01711.x [Google Scholar]
  25. Baeten, L. , Velghe, D. , Vanhellemont, M. , De Frenne, P. , Hermy, M. , & Verheyen, K. (2010). Early trajectories of spontaneous vegetation recovery after intensive agricultural land use. Restoration Ecology, 18, 379–386. doi:10.1111/j.1526‐100x.2009.00627.x [Google Scholar]
  26. Bakayoko, A. , Martin, P. , Chatelain, C. , Traore, D. , & Gautier, L. (2011). Diversity, family dominance, life forms and ecological strategies of forest fragments compared to continuous forest in southwestern Côte d'Ivoire. Candollea, 66(2), 255–262. doi:10.15553/c2011v662a2 [Google Scholar]
  27. Báldi, A. , Batáry, P. , & Erdős, S . (2005) Effects of grazing intensity on bird assemblages and populations of Hungarian grasslands. Agriculture Ecosystems & Environment, 108(3), 251–263. doi: 10.1016/j.agee.2005.02.006 [Google Scholar]
  28. Balmford, A . (1996) Extinction filters and current resilience: The significance of past selection pressures for conservation biology. Trends in Ecology & Evolution, 11 (5), 193–196. doi:10.1016/0169‐5347(96)10026‐4 [DOI] [PubMed] [Google Scholar]
  29. Balmford, A. , Green, R. E. , & Jenkins, M. (2003). Measuring the changing state of nature. Trends in Ecology & Evolution, 18(7), 326–330. doi:10.1016/S0169‐5347(03)00067‐3 [Google Scholar]
  30. Banks, J. E. , Sandvik, P. , & Keesecker, L. (2007). Beetle (Coleoptera) and spider (Araneae) diversity in a mosaic of farmland, edge, and tropical forest habitats in western Costa Rica. Pan‐Pacific Entomologist, 83(2), 152–160. doi:10.3956/0031‐0603‐83.2.152 [Google Scholar]
  31. Baral, S. K. , & Katzensteiner, K. (2009). Diversity of vascular plant communities along a disturbance gradient in a central mid‐hill community forest of Nepal. Banko Janakari, 19(1), 3–7. doi:10.3126/banko.v19i1.2176 [Google Scholar]
  32. Barlow, J. , Gardner, T. A. , Araujo, I. S. , Avila‐Pires, T. C. , Bonaldo, A. B. , Costa, J. E. , … Peres, C. A. (2007). Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18555–18560. doi:10.1073/pnas.0703333104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Barlow, J. , Mestre, L. A. M. , Gardner, T. A. , & Peres, C. A. (2007). The value of primary, secondary and plantation forests for Amazonian birds. Biological Conservation, 136(2), 212–231. doi:10.1016/j.biocon.2006.11.021 [Google Scholar]
  34. Barlow, J. , Overal, W. L. , Araujo, I. S. , Gardner, T. A. , & Peres, C. A. (2007). The value of primary, secondary and plantation forests for fruit‐feeding butterflies in the Brazilian Amazon. Journal of Applied Ecology, 44(5), 1001–1012. doi:10.1111/j.1365‐2664.2007.01347.x [Google Scholar]
  35. Barratt, B. I. P. , Ferguson, C. M. , Logan, R. A. S. , Barton, D. , Bell, N. L. , Sarathchandra, S. U. , & Townsend, R. J. (2005). Biodiversity of indigenous tussock grassland sites in Otago, Canterbury and the central North Island of New Zealand I. The macro‐invertebrate fauna. Journal of the Royal Society of New Zealand, 35(3), 287–301. doi:10.1080/03014223.2005.9517785 [Google Scholar]
  36. Barratt, B. I. P. , Worner, S. P. , Affeld, K. , Ferguson, C. M. , Barton, D. M. , Bell, N. L. , & Townsend, R. J. (2012). Biodiversity of indigenous tussock grassland sites in Otago, Canterbury and the central North Island of New Zealand VI. Coleoptera biodiversity, community structure, exotic species invasion, and the effect of disturbance by agricultural development. Journal of the Royal Society of New Zealand, 42(4), 217–239. doi:10.1080/03036758.2011.559664 [Google Scholar]
  37. Barrico, L. , Azul, A. M. , Morais, M. C. , Coutinho, A. P. , Freitas, H. , & Castro, P. (2012). Biodiversity in urban ecosystems: Plants and macromycetes as indicators for conservation planning in the city of Coimbra (Portugal). Landscape and Urban Planning, 106(1), 88–102. doi:10.1016/j.landurbplan.2012.02.011 [Google Scholar]
  38. Bartolommei, P. , Mortelliti, A. , Pezzo, F. , & Puglisi, L. (2013). Distribution of nocturnal birds (Strigiformes and Caprimulgidae) in relation to land‐use types, extent and configuration in agricultural landscapes of Central Italy. Rendiconti Lincei‐Scienze Fisiche E Naturali, 24(1), 13–21. doi:10.1007/s12210‐012‐0211‐3 [Google Scholar]
  39. Basset, Y. , Missa, O. , Alonso, A. , Miller, S. E. , Curletti, G. , De Meyer, M. , … Wagner, T. (2008). Changes in arthropod assemblages along a wide gradient of disturbance in Gabon. Conservation Biology, 22(6), 1552–1563. doi:10.1111/j.1523‐1739.2008.01017.x [DOI] [PubMed] [Google Scholar]
  40. Bates, A. J. , Sadler, J. P. , Fairbrass, A. J. , Falk, S. J. , Hale, J. D. , & Matthews, T. J. (2011). Changing bee and hovery pollinator assemblages along an urban‐rural gradient. PLoS One, 6(8), doi:10.1371/journal.pone.0023459 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Baur, B. , Cremene, C. , Groza, G. , Rakosy, L. , Schileyko, A. A. , Baur, A. , … Erhardt, A. (2006). Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biological Conservation, 132(2), 261–273. doi:10.1016/j.biocon.2006.04.018 [Google Scholar]
  42. Benedick, S. , Hill, J. K. , Mustaffa, N. , Chey, V. K. , Maryati, M. , Searle, J. B. , … Hamer, K. C. (2006). Impacts of rain forest fragmentation on butterflies in northern Borneo: Species richness, turnover and the value of small fragments. Journal of Applied Ecology, 43(5), 967–977. doi:10.1111/j.1365‐2664.2006.01209.x [Google Scholar]
  43. Berg, Å. , Ahrné, K. , Öckinger, E. , Svensson, R. , & Söderström, B. (2011). Butterfly distribution and abundance is affected by variation in the Swedish forest‐farmland landscape. Biological Conservation, 144(12), 2819–2831. doi:10.1016/j.biocon.2011.07.035 [Google Scholar]
  44. Bernard, H. , Fjeldsa, J. , & Mohamed, M. (2009). A case study on the effects of disturbance and conversion of tropical lowland rain forest on the non‐volant small mammals in north Borneo: Management implications. Mammal Study, 34(2), 85–96. doi:10.3106/041.034.0204 [Google Scholar]
  45. Bernhardt‐Römermann, M. , Gray, A. , Vanbergen, A. J. , Bergès, L. , Bohner, A. , Brooker, R. W. , … Stadler, J. (2011). Functional traits and local environment predict vegetation responses to disturbance: A pan‐European multi‐site experiment. Journal of Ecology, 99(3), 777–787. doi:10.1111/j.1365‐2745.2011.01794.x [Google Scholar]
  46. Berry, N. J. , Phillips, O. L. , Lewis, S. L. , Hill, J. K. , Edwards, D. P. , Tawatao, N. B. , … Hamer, K. C. (2010). The high value of logged tropical forests: Lessons from northern Borneo. Biodiversity and Conservation, 19(4), 985–997. doi:10.1007/s10531‐010‐9779‐z [Google Scholar]
  47. Bicknell, J. , & Peres, C. A. (2010). Vertebrate population responses to reduced‐impact logging in a neotropical forest. Forest Ecology and Management, 259(12), 2267–2275. doi:10.1016/j.foreco.2010.02.027 [Google Scholar]
  48. Bihn, J. H. , Verhaagh, M. , Braendle, M. , & Brandl, R. (2008). Do secondary forests act as refuges for old growth forest animals? Recovery of ant diversity in the Atlantic forest of Brazil. Biological Conservation, 141(3), 733–743. doi:10.1016/j.biocon.2007.12.028 [Google Scholar]
  49. Billeter, R. , Liira, J. , Bailey, D. , Bugter, R. , Arens, P. , Augenstein, I. , … Edwards, P. J. (2008). Indicators for biodiversity in agricultural landscapes: A pan‐European study. Journal of Applied Ecology, 45(1), 141–150. doi:10.1111/j.1365‐2664.2007.01393.x [Google Scholar]
  50. Blake, R. J. , Westbury, D. B. , Woodcock, B. A. , Sutton, P. , & Potts, S. G. (2011). Enhancing habitat to help the plight of the bumblebee. Pest Management Science, 67(4), 377–379. doi:10.1002/ps.2136 [DOI] [PubMed] [Google Scholar]
  51. Blanche, R. , & Cunningham, S. A. (2005). Rain forest provides pollinating beetles for atemoya crops. Journal of Economic Entomology, 98(4), 1193–1201. [DOI] [PubMed] [Google Scholar]
  52. Blanche, K. R. , Ludwig, J. A. , & Cunningham, S. A. (2006). Proximity to rainforest enhances pollination and fruit set in orchards. Journal of Applied Ecology, 43(6), 1182–1187. doi:10.1111/j.1365‐2664.2006.01230.x [Google Scholar]
  53. Bobo, K. S. , Waltert, M. , Fermon, H. , Njokagbor, J. , & Muhlenberg, M. (2006). From forest to farmland: Butterfly diversity and habitat associations along a gradient of forest conversion in Southwestern Cameroon. Journal of Insect Conservation, 10(1), 29–42. doi:10.1007/s10841‐005‐8564‐x [Google Scholar]
  54. Bóçon, R . (2010). Riqueza e abundância de aves em trâs estágios sucessionais da floresta ombrófila densa submontana, Antonina, Paraná. PhD thesis, Universidade Federal do Paraná, Curitiba, Brazil.
  55. Bonham, K. J. , Mesibov, R. , & Bashford, R. (2002). Diversity and abundance of some ground‐dwelling invertebrates in plantation vs. native forests in Tasmania, Australia. Forest Ecology and Management, 158(1–3), 237–247. doi:10.1016/s0378‐1127(00)00717‐9 [Google Scholar]
  56. Borges, S. H. (2007). Bird assemblages in secondary forests developing after slash‐and‐burn agriculture in the Brazilian Amazon. Journal of Tropical Ecology, 23, 469–477. doi:10.1017/s0266467407004105 [Google Scholar]
  57. Borges, P. A. V. , Lobo, J. M. , de Azevedo, E. B. , Gaspar, C. S. , Melo, C. , & Nunes, L. V. (2006). Invasibility and species richness of island endemic arthropods: A general model of endemic vs. exotic species. Journal of Biogeography, 33(1), 169–187. doi:10.1111/j.1365‐2699.2005.01324.x [Google Scholar]
  58. Boutin, C. , Baril, A. , & Martin, P. A. (2008). Plant diversity in crop fields and woody hedgerows of organic and conventional farms in contrasting landscapes. Agriculture, Ecosystems & Environment, 123(1–3), 185–193. doi:10.1016/j.agee.2007.05.010 [Google Scholar]
  59. Boutin, C. , Martin, P. A. , & Baril, A. (2009). Arthropod diversity as affected by agricultural management (organic and conventional farming), plant species, and landscape context. Ecoscience, 16(4), 492–501. doi:10.2980/16‐4‐3250 [Google Scholar]
  60. Bouyer, J. , Sana, Y. , Samandoulgou, Y. , Cesar, J. , Guerrini, L. , Kabore‐Zoungrana, C. , & Dulieu, D. (2007). Identification of ecological indicators for monitoring ecosystem health in the trans‐boundary W Regional park: A pilot study. Biological Conservation, 138(1–2), 73–88. doi:10.1016/j.biocon.2007.04.001 [Google Scholar]
  61. Bragagnolo, C. , Nogueira, A. A. , Pinto‐da‐Rocha, R. , & Pardini, R. (2007). Harvestmen in an Atlantic forest fragmented landscape: Evaluating assemblage response to habitat quality and quantity. Biological Conservation, 139(3–4), 389–400. doi:10.1016/j.biocon.2007.07.008 [Google Scholar]
  62. Brandt, J. S. , Wood, E. M. , Pidgeon, A. M. , Han, L. , Fang, Z. , & Radeloff, V. C. (2013). Sacred forests are keystone structures for forest bird conservation in southwest China's Himalayan Mountains. Biological Conservation, 166, 34–42. doi:10.1016/j.biocon.2013.06.014 [Google Scholar]
  63. Brearley, F. Q. (2011). Below‐ground secondary succession in tropical forests of Borneo. Journal of Tropical Ecology, 27, 413–420. doi:10.1017/s0266467411000149 [Google Scholar]
  64. Breedt, J. A. D. , Dreber, N. , & Kellner, K. (2013). Post‐wildfire regeneration of rangeland productivity and functionality ‐ observations across three semi‐arid vegetation types in South Africa. African Journal of Range & Forage Science, 30(3), 161–167. doi:10.2989/10220119.2013.816367 [Google Scholar]
  65. Brito, I. , Goss, M. J. , de Carvalho, M. , Chatagnier, O. , & van Tuinen, D. (2012). Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil & Tillage Research, 121, 63–67. doi:10.1016/j.still.2012.01.012 [Google Scholar]
  66. Brook, B. W. , Ellis, E. C. , Perring, M. P. , Mackay, A. W. , & Blomqvist, L. (2013). Does the terrestrial biosphere have planetary tipping points? Trends in Ecology & Evolution, 28(7), 396–401. doi:10.1016/j.tree.2013.01.016 [DOI] [PubMed] [Google Scholar]
  67. Brown, J. H. (1984). On the relationship between abundance and distribution of species. The American Naturalist, 124(2), 255–279. [Google Scholar]
  68. Brunet, J. , Valtinat, K. , Mayr, M. L. , Felton, A. , Lindbladh, M. , & Bruun, H. H. (2011). Understory succession in post‐agricultural oak forests: Habitat fragmentation affects forest specialists and generalists differently. Forest Ecology and Management, 262(9), 1863–1871. doi:10.1016/j.foreco.2011.08.007 [Google Scholar]
  69. Buczkowski, G. (2010). Extreme life history plasticity and the evolution of invasive characteristics in a native ant. Biological Invasions, 12(9), 3343–3349. doi:10.1007/s10530‐010‐9727‐6 [Google Scholar]
  70. Buczkowski, G. , & Richmond, D. S. (2012). The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS One, 7(8), doi:10.1371/journal.pone.0041729 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Buddle, C. M. , & Shorthouse, D. P. (2008). Effects of experimental harvesting on spider (Araneae) assemblages in boreal deciduous forests. Canadian Entomologist, 140(4), 437–452. doi:10.4039/n07‐ls01 [Google Scholar]
  72. Buscardo, E. , Smith, G. F. , Kelly, D. L. , Freitas, H. , Iremonger, S. , Mitchell, F. J. G. , … McKee, A. (2008). The early effects of afforestation on biodiversity of grasslands in Ireland. Biodiversity and Conservation, 17(5), 1057–1072. doi:10.1007/s10531‐007‐9275‐2 [Google Scholar]
  73. Buse, J. , Levanony, T. , Timm, A. , Dayan, T. , & Assmann, T. (2008). Saproxylic beetle assemblages of three managed oak woodlands in the Eastern Mediterranean. Zoology in the Middle East, 45, 55–66. doi:10.1080/09397140.2008.10638307 [Google Scholar]
  74. Butchart, S. H. M. , Stattersfield, A. J. , Bennun, L. A. , Shutes, S. M. , Akçakaya, H. R. , Baillie, J. E. M. , … Mace, G. M. (2004). Measuring global trends in the status of biodiversity: Red list indices for birds. PLOS Biology, 2(12), e383. doi:10.1371/journal.pbio.0020383 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Butchart, S. H. M. , Walpole, M. , Collen, B. , van Strien, A. , Scharlemann, J. P. W. , Almond, R. E. A. , … Morcillo, M. H. (2010). Global biodiversity: Indicators of recent declines. Science, 328, 1164–1168. doi:10.1126/science.1187512 [DOI] [PubMed] [Google Scholar]
  76. Cabra‐García, J. , Bermúdez‐Rivas, C. , Osorio, A. M. , & Chacón, P. (2012). Cross‐taxon congruence of alpha and beta diversity among five leaf litter arthropod groups in Colombia. Biodiversity and Conservation, 21(6), 1493–1508. doi:10.1007/s10531‐012‐0259‐5 [Google Scholar]
  77. Cáceres, N. C. , Nápoli, R. P. , Casella, J. , & Hannibal, W. (2010). Mammals in a fragmented savannah landscape in south‐western Brazil. Journal of Natural History, 44(7–8), 491–512. doi:10.1080/00222930903477768 [Google Scholar]
  78. Cagle, N. L. (2008). Snake species distributions and temperate grasslands: A case study from the American tallgrass prairie. Biological Conservation, 141(3), 744–755. doi:10.1016/j.biocon.2008.01.003 [Google Scholar]
  79. Calviño‐Cancela, M. , Rubido‐Bará, M. , & van Etten, E. J. (2012). Do eucalypt plantations provide habitat for native forest biodiversity? Forest Ecology and Management, 270, 153–162. doi:10.1016/j.foreco.2012.01.019 [Google Scholar]
  80. Cameron, S. A. , Lozier, J. D. , Strange, J. P. , Koch, J. B. , Cordes, N. , Solter, L. F. , & Griswold, T. L. (2011). Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences of the United States of America, 108(2), 662–667. doi:10.1073/pnas.1014743108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Cardillo, M. , Mace, G. M. , Jones, K. E. , Bielby, J. , Bininda‐Emonds, O. R. P. , Sechrest, W. , … Purvis, A. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309(5738), 1239–1241. doi:10.1126/science.1116030 [DOI] [PubMed] [Google Scholar]
  82. Cardinale, B. J. , Duffy, J. E. , Gonzalez, A. , Hooper, D. U. , Perrings, C. , Venail, P. , … Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67. doi:10.1038/nature11148 [DOI] [PubMed] [Google Scholar]
  83. Cardoso, P. , Lobo, J. , Aranda, S. , Dinis, F. , Gaspar, C. , & Borges, P. (2009). A spatial scale assessment of habitat effects on arthropod communities of an oceanic island. Acta Oecologica, 35(5), 590–597. doi:10.1016/j.actao.2009.05.005 [Google Scholar]
  84. Carpenter, D. , Hammond, P. M. , Sherlock, E. , Lidgett, A. , Leigh, K. , & Eggleton, P. (2012). Biodiversity of soil macrofauna in the New Forest: A benchmark study across a national park landscape. Biodiversity and Conservation, 21(13), 3385–3410. doi:10.1007/s10531‐012‐0369‐0 [Google Scholar]
  85. Carrijo, T. F. , Brandao, D. , de Oliveira, D. E. , Costa, D. A. , & Santos, T. (2009). Effects of pasture implantation on the termite (Isoptera) fauna in the Central Brazilian Savanna (Cerrado). Journal of Insect Conservation, 13(6), 575–581. doi:10.1007/s10841‐008‐9205‐y [Google Scholar]
  86. Carvalho, A. L. D. , Ferreira, E. J. L. , Lima, J. M. T. , & de Carvalho, A. L . (2010) Floristic and structural comparisons among palm communities in primary and secondary forest fragments of the Raimundo Irineu Serra Environmental Protection Area – Rio Branco, Acre, Brazil. Acta Amazonica, 40 (4), 657–666. doi:10.1590/s0044‐59672010000400004 [Google Scholar]
  87. Cassano, C. , Barlow, J. , & Pardini, R. (2014). Forest loss or management intensification? Identifying causes of mammal decline in cacao agroforests. Biological Conservation, 169, 14–22. doi:10.1016/j.biocon.2013.10.006 [Google Scholar]
  88. Castro, H. , Lehsten, V. , Lavorel, S. , & Freitas, H. (2010). Functional response traits in relation to land use change in the Montado. Agriculture Ecosystems & Environment, 137(1–2), 183–191. doi:10.1016/j.agee.2010.02.002 [Google Scholar]
  89. Castro‐Luna, A. A. , Sosa, V. J. , & Castillo‐Campos, G. (2007). Bat diversity and abundance associated with the degree of secondary succession in a tropical forest mosaic in south‐eastern Mexico. Animal Conservation, 10(2), 219–228. doi:10.1111/j.1469‐1795.2007.00097.x [Google Scholar]
  90. Center for International Forestry Research (CIFOR) . (2013a). Multidisciplinary Landscape Assessment – Cameroon. http://www.cifor.org/mla/ref/method/index.htm
  91. Center for International Forestry Research (CIFOR) . (2013b). Multidisciplinary Landscape Assessment – Philippines. http://www.cifor.org/mla/ref/method/index.htm
  92. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) . (2010). Unpublished data of reptilian and amphibian diversity in six countries in Central America.
  93. Cerezo, A. , Conde, M. C. , & Poggio, S. L. (2011). Pasture area and landscape heterogeneity are key determinants of bird diversity in intensively managed farmland. Biodiversity and Conservation, 20(12), 2649–2667. doi:10.1007/s10531‐011‐0096‐y [Google Scholar]
  94. Chapman, A. D . (2009). Numbers of living species in Australia and the world, 2nd edition. https://www.environment.gov.au/node/13876 [Google Scholar]
  95. Chapman, K. A. , & Reich, P. B. (2007). Land use and habitat gradients determine bird community diversity and abundance in suburban, rural and reserve landscapes of Minnesota, USA. Biological Conservation, 135(4), 527–541. doi:10.1016/j.biocon.2006.10.050 [Google Scholar]
  96. Chauvat, M. , Wolters, V. , & Dauber, J. (2007). Response of collembolan communities to land‐use change and grassland succession. Ecography, 30(2), 183–192. doi:10.1111/j.2007.0906‐7590.04888.x [Google Scholar]
  97. Christensen, M. , & Heilmann‐Clausen, J. (2009). Forest biodiversity gradients and the human impact in Annapurna Conservation Area, Nepal. Biodiversity and Conservation, 18(8), 2205–2221. doi:10.1007/s10531‐009‐9583‐9 [Google Scholar]
  98. Clark, R. J. , Gerard, P. J. , & Mellsop, J. M. (2004). Spider biodiversity and density following cultivation in pastures in the Waikato, New Zealand. New Zealand Journal of Agricultural Research, 47(2), 247–259. doi:10.1080/00288233.2004.9513592 [Google Scholar]
  99. Clarke, F. M. , Rostant, L. V. , & Racey, P. A. (2005). Life after logging: Post‐logging recovery of a neotropical bat community. Journal of Applied Ecology, 42(2), 409–420. doi:10.1111/j.1365‐2664.2005.01024.x [Google Scholar]
  100. Cleary, D. F. R. , & Mooers, A. O. (2006). Burning and logging differentially affect endemic vs. widely distributed butterfly species in Borneo. Diversity and Distributions, 12(4), 409–416. doi:10.1111/j.1366‐9516.2006.00256.x [Google Scholar]
  101. Cleary, D. F. R. , Mooers, A. O. , Eichhorn, K. A. O. , van Tol, J. , de Jong, R. , & Menken, S. B. J. (2004). Diversity and community composition of butterflies and odonates in an ENSO‐induced fire affected habitat mosaic: A case study from East Kalimantan, Indonesia. Oikos, 105(2), 426–446. doi:10.1111/j.0030‐1299.2004.12219.x [Google Scholar]
  102. Cockle, K. L. , Leonard, M. L. , & Bodrati, A. A. (2005). Presence and abundance of birds in an Atlantic forest reserve and adjacent plantation of shade‐grown yerba mate, in Paraguay. Biodiversity and Conservation, 14(13), 3265–3288. doi:10.1007/s10531‐004‐0446‐0 [Google Scholar]
  103. Collen, B. , Loh, J. , Whitmee, S. , McRae, L. , Amin, R. , & Baillie, J. E. M. (2009). Monitoring change in vertebrate abundance: The Living Planet Index. Conservation Biology, 23(2), 317–327. doi:10.1111/j.1523‐1739.2008.01117.x [DOI] [PubMed] [Google Scholar]
  104. Connop, S. , Hill, T. , Steer, J. , & Shaw, P. (2011). Microsatellite analysis reveals the spatial dynamics of Bombus humilis and Bombus sylvarum . Insect Conservation and Diversity, 4(3), 212–221. doi:10.1111/j.1752‐4598.2010.00116.x [Google Scholar]
  105. Convention on International Trade in Endangered Species of Wild Fauna and Flora (2016). Appendices I, II and III to the Convention. https://cites.org/eng/app/appendices.php [DOI] [PubMed]
  106. Craig, M. D. , Grigg, A. H. , Garkaklis, M. J. , Hobbs, R. J. , Grant, C. D. , Fleming, P. A. , & Hardy, G. E. S. J. (2009). Does habitat structure influence capture probabilities? A study of reptiles in a eucalypt forest. Wildlife Research, 36(6), 509–515. doi:10.1071/wr09014 [Google Scholar]
  107. Craig, M. D. , Grigg, A. H. , Hobbs, R. J. , & Hardy, G. E. S. J. (2014). Does coarse woody debris density and volume influence the terrestrial vertebrate community in restored bauxite mines? Forest Ecology and Management, 318, 142–150. doi:10.1016/j.foreco.2014.01.011 [Google Scholar]
  108. Craig, M. D. , Hardy, G. E. S. J. , Fontaine, J. B. , Garkakalis, M. J. , Grigg, A. H. , Grant, C. D. , … Hobbs, R. J. (2012). Identifying unidirectional and dynamic habitat filters to faunal recolonisation in restored mine‐pits. Journal of Applied Ecology, 49(4), 919–928. doi:10.1111/j.1365‐2664.2012.02152.x [Google Scholar]
  109. Craig, M. D. , Stokes, V. L. , StJ. Hardy, G. E. , & Hobbs, R. J. (2015). Edge effects across boundaries between natural and restored jarrah (Eucalyptus marginata) forests in south‐western Australia. Austral Ecology, 40(2), 186–197. doi:10.1111/aec.12193 [Google Scholar]
  110. Cunningham, S. A. , Schellhorn, N. A. , Marcora, A. , & Batley, M. (2013). Movement and phenology of bees in a subtropical Australian agricultural landscape. Austral Ecology, 38(4), 456–464. doi:10.1111/j.1442‐9993.2012.02432.x [Google Scholar]
  111. Dallimer, M. , Parnell, M. , Bicknell, J. E. , & Melo, M. (2012). The importance of novel and agricultural habitats for the avifauna of an oceanic island. Journal for Nature Conservation, 20(4), 191–199. doi:10.1016/j.jnc.2012.04.001 [Google Scholar]
  112. D'Aniello, B. , Stanislao, I. , Bonelli, S. , & Balletto, E. (2011). Haying and grazing effects on the butterfly communities of two Mediterranean‐area grasslands. Biodiversity and Conservation, 20(8), 1731–1744. doi:10.1007/s10531‐011‐0058‐4 [Google Scholar]
  113. Danquah, E. , Oppong, S. K. , & Nutsuakor, M. E. (2012). Effect of protected area category on mammal abundance in Western Ghana. Journal of Biodiversity and Environmental Sciences, 2(8), 50–57. [Google Scholar]
  114. Darvill, B. , Knight, M. E. , & Goulson, D. (2004). Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos, 107(3), 471–478. doi:10.1111/j.0030‐1299.2004.13510.x [Google Scholar]
  115. Davies, K. F. , Margules, C. R. , & Lawrence, J. F. (2000). Which traits of species predict population declines in experimental forest fragments? Ecology, 81(5), 1450–146. doi:10.1890/0012-9658(2000)081[1450:WTOSPP]2.0.CO;2 [Google Scholar]
  116. Davis, E. S. , Murray, T. E. , Fitzpatrick, U. , Brown, M. J. F. , & Paxton, R. J. (2010). Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis . Molecular Ecology, 19(22), 4922–4935. doi:10.1111/j.1365‐294x.2010.04868.x [DOI] [PubMed] [Google Scholar]
  117. Davis, A. L. V. , & Philips, T. K. (2005). Effect of deforestation on a southwest Ghana dung beetle assemblage (Coleoptera: Scarabaeidae) at the periphery of Ankasa conservation area. Environmental Entomology, 34(5), 1081–1088. doi:10.1603/0046-225x(2005)034[1081:eodoas]2.0.co;2 [Google Scholar]
  118. Dawson, J. , Turner, C. , Pileng, O. , Farmer, A. , McGary, C. , Walsh, C. , … Yosi, C. (2011). Bird communities of the lower Waria Valley, Morobe Province, Papua New Guinea: A comparison between habitat types. Tropical Conservation Science, 4(3), 317–348. [Google Scholar]
  119. D'Cruze, N. , & Kumar, S. (2011). Effects of anthropogenic activities on lizard communities in northern Madagascar. Animal Conservation, 14(5), 542–552. doi:10.1111/j.1469‐1795.2011.00459.x [Google Scholar]
  120. De Palma, A. , Abrahamczyk, S. , Aizen, M. A. , Albrecht, M. , Basset, Y. , Bates, A. , … Purvis, A . (2016) Predicting bee community responses to land‐use changes: Effects of geographic and taxonomic biases. Scientific Reports, 6 (31153), 1–14. doi:10.1038/srep31153 [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. De Palma, A. , Kuhlmann, M. , Roberts, S. P. M. , Potts, S. G. , Börger, L. , Hudson, L. N. , … Purvis, A. (2015). Ecological traits affect the sensitivity of bees to land‐use pressures in European agricultural landscapes. Journal of Applied Ecology, 52(6), 1567–1577. doi:10.1111/1365‐2664.12524 [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Deheuvels, O. , Avelino, J. , Somarriba, E. , & Malézieux, E. (2012). Vegetation structure and productivity in cocoa‐based agroforestry systems in Talamanca, Costa Rica. Agriculture, Ecosystems and Environment, 149(1), 181–188. doi:10.1016/j.agee.2011.03.003 [Google Scholar]
  123. Deheuvels, O. , Rousseau, G. , Soto Quiroga, G. , Decker Franco, M. , Cerda, R. , Vílchez Mendoza, S. , & Somarriba, E. (2014). Biodiversity is affected by changes in management intensity of cocoa‐based agroforests. AgroForestry Systems, 88(6), 1081–1099. doi:10.1007/s10457‐014‐9710‐9 [Google Scholar]
  124. Delabie, J. H. C. , Cereghino, R. , Groc, S. , Dejean, A. , Gibernau, M. , Corbara, B. , & Dejean, A. (2009). Ants as biological indicators of Wayana Amerindian land use in French Guiana. Comptes Rendus Biologies, 332(7), 673–684. doi:10.1016/j.crvi.2009.01.006 [DOI] [PubMed] [Google Scholar]
  125. Devineau, J. L. , Fournier, A. , & Nignan, S. (2009). “Ordinary biodiversity” in western Burkina Faso (West Africa): What vegetation do the state forests conserve? Biodiversity and Conservation, 18(8), 2075–2099. doi:10.1007/s10531‐008‐9574‐2 [Google Scholar]
  126. Diekötter, T. , Walther‐Hellwig, K. , Conradi, M. , Suter, M. , & Frankl, R. (2006). Effects of landscape elements on the distribution of the rare bumblebee species Bombus muscorum in an agricultural landscape. Biodiversity and Conservation, 15(1), 57–68. doi:10.1007/s10531‐004‐2932‐9 [Google Scholar]
  127. Dolia, J. , Devy, M. S. , Aravind, N. A. , & Kumar, A. (2008). Adult butterfly communities in coffee plantations around a protected area in the Western Ghats, India. Animal Conservation, 11(1), 26–34. doi:10.1111/j.1469‐1795.2007.00143.x [Google Scholar]
  128. Domínguez, E. , Bahamonde, N. , & Muñoz‐Escobar, C. (2012). Efectos de la extracción de turba sobre la composición y estructura de una turbera de Sphagnum explotada y abandonada hace 20 años, Chile. Anales Instituto Patagonia (Chile), 40(2), 37–45. doi:10.4067/s0718‐686x2012000200003 [Google Scholar]
  129. Dominguez‐Haydar, Y. , & Armbrecht, I. (2010). Response of ants and their seed removal in rehabilitation areas and forests at El Cerrejon coal mine in Colombia. Restoration Ecology, 19(201), 178–184. doi:10.1111/j.1526‐100x.2010.00735.x [Google Scholar]
  130. Dornelas, M. , Gotelli, N. J. , McGill, B. , Shimadzu, H. , Moyes, F. , Sievers, C. , & Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science, 344(6181), 296–299. doi:10.1126/science.1248484 [DOI] [PubMed] [Google Scholar]
  131. Doulton, H. , Marsh, C. , Newman, A. , Bird, K. , & Bell, M . (2007) Conservation Comores 2005: Biodiversity and resource‐use assessment and environmental awareness. Technical report, University of Oxford, the Comorian Centre National de Documentation et Recherche Scientifique, and the Comorian NGOs Action Comores Anjouan and the Association d'Intervention pour le Développement et L'Environnement; with the support of the Direction National de l'Environnement et des Forâts and the United Nations Development Programme, University of Oxford, U.K.
  132. Draper, I. , Lara, F. , Albertos, B. , Garilleti, R. , & Mazimpaka, V. (2006). Epiphytic bryoora of the Atlas and Antiatlas Mountains, including a synthesis of the distribution of epiphytic bryophytes in Morocco. Journal of Bryology, 28, 312–330. doi:10.1179/174328206x136313 [Google Scholar]
  133. Dukes, J. S. , & Mooney, H. A. (1999). Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14(4), 135–139. doi:10.1016/S0169‐5347(98)01554‐7 [DOI] [PubMed] [Google Scholar]
  134. Dumont, B. , Farruggia, A. , Garel, J. P. , Bachelard, P. , Boitier, E. , & Frain, M. (2009). How does grazing intensity influence the diversity of plants and insects in a species‐rich upland grassland on basalt soils? Grass and Forage Science, 64(1), 92–105. doi:10.1111/j.1365‐2494.2008.00674.x [Google Scholar]
  135. Dures, S. G. , & Cumming, G. S. (2010). The confounding influence of homogenising invasive species in a globally endangered and largely urban biome: Does habitat quality dominate avian biodiversity? Biological Conservation, 143(3), 768–777. doi:10.1016/j.biocon.2009.12.019 [Google Scholar]
  136. Echeverría‐Londoño, S. , Newbold, T. , Hudson, L. N. , Contu, S. , Hill, S. , Lysenko, I. , … Purvis, A. (2016). Modelling and projecting the response of Colombian biodiversity to land‐use change. Diversity and Distributions, early view, doi:10.1111/ddi.12478 [Google Scholar]
  137. Edenius, L. , Mikusinski, G. , & Bergh, J. (2011). Can repeated fertilizer applications to young Norway spruce enhance avian diversity in intensively managed forests? Ambio, 40(5), 521–527. doi:10.1007/s13280‐011‐0137‐5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Eigenbrod, F. , Hecnar, S. J. , & Fahrig, L. (2008). Accessible habitat: An improved measure of the effects of habitat loss and roads on wildlife populations. Landscape Ecology, 23(2), 159–168. doi:10.1007/s10980‐007‐9174‐7 [Google Scholar]
  139. Elek, Z. , & Lovei, G. L. (2007). Patterns in ground beetle (Coleoptera: Carabidae) assemblages along an urbanisation gradient in Denmark. Acta Oecologica‐International Journal of Ecology, 32(1), 104–111. doi:10.1016/j.actao.2007.03.008 [Google Scholar]
  140. Endo, W. , Peres, C. , Salas, E. , Mori, S. , Sanchez‐Vega, J. , Shepard, G. , … Yu, D. (2010). Game vertebrate densities in hunted and nonhunted forest sites in Manu National Park, Peru. Biotropica, 42(2), 251–261. doi:10.1111/j.1744‐7429.2009.00546.x [Google Scholar]
  141. Ewers, R. M. , Bartlam, S. , & Didham, R. K. (2013). Altered species interactions at forest edges: Contrasting edge effects on bumble bees and their phoretic mite loads in temperate forest remnants. Insect Conservation and Diversity, 6(5), 598–606. doi:10.1111/icad.12014 [Google Scholar]
  142. Ewers, R. M. , Thorpe, S. , & Didham, R. K. (2007). Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology, 88(1), 96–106. doi:10.1890/0012-9658(2007)88[96:sibeaa]2.0.co;2 [DOI] [PubMed] [Google Scholar]
  143. Fabricius, C. , Burger, M. , & Hockey, P. A. R. (2003). Comparing biodiversity between protected areas and adjacent rangeland in xeric succulent thicket, South Africa: Arthropods and reptiles. Journal of Applied Ecology, 40(2), 392–403. doi:10.1046/j.1365‐2664.2003.00793.x [Google Scholar]
  144. Faruk, A. , Belabut, D. , Ahmad, N. , Knell, R. J. , & Garner, T. W. J. (2013). Effects of oil‐palm plantations on diversity of tropical anurans. Conservation Biology, 27(3), 615–624. doi:10.1111/cobi.12062 [DOI] [PubMed] [Google Scholar]
  145. Farwig, N. , Bailey, D. , Bochud, E. , Herrmann, J. D. , Kindler, E. , Reusser, N. , … Schmidt‐Entling, M. H. (2009). Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landscape Ecology, 24(7), 919–927. doi:10.1007/s10980‐009‐9376‐2 [Google Scholar]
  146. Farwig, N. , Sajita, N. , & Boehning‐Gaese, K. (2008). Conservation value of forest plantations for bird communities in western Kenya. Forest Ecology and Management, 255(11), 3885–3892. doi:10.1016/j.foreco.2008.03.042 [Google Scholar]
  147. Fayle, T. M. , Turner, E. C. , Snaddon, J. L. , Chey, V. K. , Chung, A. Y. C. , Eggleton, P. , & Foster, W. A. (2010). Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf‐litter. Basic and Applied Ecology, 11(4), 337–345. doi:10.1016/j.baae.2009.12.009 [Google Scholar]
  148. Felton, A. M. , Engstrom, L. M. , Felton, A. , & Knott, C. D. (2003). Orangutan population density, forest structure and fruit availability in hand‐logged and unlogged peat swamp forests inWest Kalimantan, Indonesia. Biological Conservation, 114(1), 91–101. doi:10.1016/s0006‐3207(03)00013‐2 [Google Scholar]
  149. Fensham, R. , Dwyer, J. , Eyre, T. , Fairfax, R. , & Wang, J. (2012). The effect of clearing on plant composition in mulga (Acacia aneura) dry forest, Australia. Austral Ecology, 37(2), 183–192. doi:10.1111/j.1442‐9993.2011.02261.x [Google Scholar]
  150. Fermon, H. , Waltert, M. , Vane‐Wright, R. I. , & Muhlenberg, M. (2005). Forest use and vertical stratification in fruit‐feeding butterflies of Sulawesi, Indonesia: Impacts for conservation. Biodiversity and Conservation, 14(2), 333–350. doi:10.1007/s10531‐004‐5054‐9 [Google Scholar]
  151. Fernandez, I. C. , & Simonetti, J. A. (2013). Small mammal assemblages in fragmented shrublands of urban areas of Central Chile. Urban Ecosystems, 16(2), 377–387. doi:10.1007/s11252‐012‐0272‐1 [Google Scholar]
  152. Ferreira, C. , & Alves, P . (2005) Impacto da implementação de medidas de gestão do habitat nas populações de coelho‐bravo (Oryctolagus cuniculus algirus) no Parque Natural do Sudoeste Alentejano e Costa Vicentina. Technical report, Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Vairão, Portugal.
  153. Ferreira, C. , & Alves, P. C. (2009). Influence of habitat management on the abundance and diet of wild rabbit (Oryctolagus cuniculus algirus) populations in Mediterranean ecosystems. European Journal of Wildlife Research, 55(5), 487–496. doi:10.1007/s10344‐009‐0257‐4 [Google Scholar]
  154. Ficetola, G. F. , Rondinini, C. , Bonardi, A. , Baisero, D. , & Padoa‐Schioppa, E. (2015). Habitat availability for amphibians and extinction threat: A global analysis. Diversity and Distributions, 21(3), 302–311. doi:10.1111/ddi.12296 [Google Scholar]
  155. Fiera, C . (2008) Preliminary data on the species diversity of Collembola (Hexapoda: Collembola) along an urban gradient in Bucureşti. Travaux du Museum National d'Histoire Naturelle “Grigore Antipa”, 51, 363–367. [Google Scholar]
  156. Fierro, M. M. , Cruz‐Lopez, L. , Sanchez, D. , Villanueva‐Gutierrez, R. , & Vandame, R. (2012). Effect of biotic factors on the spatial distribution of stingless bees (Hymenoptera: Apidae, Meliponini) in fragmented neotropical habitats. Neotropical Entomology, 41(2), 95–104. doi:10.1007/s13744‐011‐0009‐5 [DOI] [PubMed] [Google Scholar]
  157. Filgueiras, B. , Iannuzzi, L. , & Leal, I. (2011). Habitat fragmentation alters the structure of dung beetle communities in the Atlantic forest. Biological Conservation, 144(1), 362–369. doi:10.1016/j.biocon.2010.09.013 [Google Scholar]
  158. Firincioglu, H. K. , Seefeldt, S. S. , Sahin, B. , & Vural, M. (2009). Assessment of grazing effect on sheep fescue (Festuca valesiaca) dominated steppe rangelands, in the semi‐arid Central Anatolian region of Turkey. Journal of Arid Environments, 73(12), 1149–1157. doi:10.1016/j.jaridenv.2009.05.012 [Google Scholar]
  159. Flaspohler, D. J. , Giardina, C. P. , Asner, G. P. , Hart, P. , Price, J. , Lyons, C. K. , & Castaneda, X. (2010). Long‐term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests. Biological Conservation, 143(2), 280–288. doi:10.1016/j.biocon.2009.10.009 [Google Scholar]
  160. Floren, A. , Freking, A. , Biehl, M. , & Linsenmair, K. E. (2001). Anthropogenic disturbance changes the structure of arboreal tropical ant communities. Ecography, 24(5), 547–554. doi:10.1111/j.1600‐0587.2001.tb00489.x [Google Scholar]
  161. Fowler, R. E . (2014). An investigation into bee assemblage change along an urban‐rural gradient. PhD thesis, University of Birmingham, Birmingham, UK.
  162. Franzén, M. , & Nilsson, S. G. (2008). How can we preserve and restore species richness of pollinating insects on agricultural land? Ecography, 31(6), 698–708. doi:10.1111/j.1600‐0587.2008.05110.x [Google Scholar]
  163. Fredriksson, G. M. , Danielsen, L. S. , & Swenson, J. E. (2007). Impacts of El Nino related drought and forest fires on sun bear fruit resources in lowland dipterocarp forest of East Borneo. Biodiversity and Conservation, 16(6), 1823–1838. doi:10.1007/s10531‐006‐9075‐0 [Google Scholar]
  164. Freire, G. D. , & Motta, P. C. (2011). Effects of experimental fire regimes on the abundance and diversity of cursorial arachnids of Brazilian savannah (cerrado biome). Journal of Arachnology, 39(2), 263–272. doi:10.1636/cp10‐85.1 [Google Scholar]
  165. Frizzo, T. L. M. , & Vasconcelos, H. L. (2013). The potential role of scattered trees for ant conservation in an agriculturally dominated neotropical landscape. Biotropica, 45(5), 644–651. doi:10.1111/btp.12045 [Google Scholar]
  166. Fukuda, D. , Tisen, O. B. , Momose, K. , & Sakai, S. (2009). Bat diversity in the vegetation mosaic around a lowland dipterocarp forest of Borneo. Raffles Bulletin of Zoology, 57(1), 213–221. [Google Scholar]
  167. Furlani, D. , Ficetola, G. F. , Colombo, G. , Ugurlucan, M. , & De Bernardi, F. (2009). Deforestation and the structure of frog communities in the Humedale Terraba‐Sierpe, Costa Rica. Zoological Science, 26(3), 197–202. doi:10.2108/zsj.26.197 [DOI] [PubMed] [Google Scholar]
  168. Gaigher, R. , & Samways, M. J. (2010). Surface‐active arthropods in organic vineyards, integrated vineyards and natural habitat in the Cape Floristic Region. Journal of Insect Conservation, 14(6), 595–605. doi:10.1007/s10841‐010‐9286‐2 [Google Scholar]
  169. García, K. P. , Ortiz Zapata, J. C. , Aguayo, M. , & D'Elia, G. (2013). Assessing rodent community responses in disturbed environments of the Chilean Patagonia. Mammalia, 77(2), 195–204. doi:10.1515/mammalia‐2011‐0134 [Google Scholar]
  170. García‐R, J. C. , Cárdenas‐H, H. , & Castro‐H, F. (2007). Relationship between anurans diversity and successional stages of a very humid low montane forest in Valle del Cauca, southwestern of Colombia. Caldasia, 29(2), 363–374. [Google Scholar]
  171. Garden, J. G. , McAlpine, C. A. , & Possingham, H. P. (2010). Multi‐scaled habitat considerations for conserving urban biodiversity: Native reptiles and small mammals in Brisbane, Australia. Landscape Ecology, 25(7), 1013–1028. doi:10.1007/s10980‐010‐9476‐z [Google Scholar]
  172. Gardner, T. A. , Hernandez, M. I. M. , Barlow, J. , & Peres, C. A. (2008). Understanding the biodiversity consequences of habitat change: The value of secondary and plantation forests for neotropical dung beetles. Journal of Applied Ecology, 45(3), 883–893. doi:10.1111/j.1365‐2664.2008.01454.x [Google Scholar]
  173. Garmendia, A. , Arroyo‐Rodriguez, V. , Estrada, A. , Naranjo, E. J. , & Stoner, K. E. (2013). Landscape and patch attributes impacting medium‐ and large‐sized terrestrial mammals in a fragmented rain forest. Journal of Tropical Ecology, 29, 331–344. doi:10.1017/s0266467413000370 [Google Scholar]
  174. Garnier, E. , Lavorel, S. , Ansquer, P. , Castro, H. , Cruz, P. , Dolezal, J. … Zarovali, M. P. (2007). Assessing the effects of land‐use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Annals of Botany, 99(5), 967–985. doi:10.1093/aob/mcl215 [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Gaston, K. J. , & Blackburn, T. M. (1997). Evolutionary age and risk of extinction in the global avifauna. Ecology and Evolution, 11(5), 557–565. doi:10.1007/s10682‐997‐1511‐4 [Google Scholar]
  176. Gaublomme, E. , Hendrickx, F. , Dhuyvetter, H. , & Desender, K. (2008). The effects of forest patch size and matrix type on changes in carabid beetle assemblages in an urbanized landscape. Biological Conservation, 141(10), 2585–2596. doi:10.1016/j.biocon.2008.07.022 [Google Scholar]
  177. Ge, B. M. , Li, Z. X. , Zhang, D. Z. , Zhang, H. B. , Liu, Z. T. , Zhou, C. L. , & Tang, B. P. (2012). Communities of soil macrofauna in green spaces of an urbanizing city at east China. Revista Chilena De Historia Natural, 85(2), 219–226. [Google Scholar]
  178. Gendreau‐Berthiaume, B. , Kneeshaw, D. D. , & Harvey, B. D. (2012). Effects of partial cutting and partial disturbance by wind and insects on stand composition, structure and growth in boreal mixedwoods. Forestry, 85(4), 551–565. doi:10.1093/forestry/cps051 [Google Scholar]
  179. Gheler‐Costa, C. , Vettorazzi, C. A. , Pardini, R. , & Verdade, L. M. (2012). The distribution and abundance of small mammals in agroecosystems of southeastern Brazil. Mammalia, 76(2), 185–191. doi:10.1515/mammalia‐2011‐0109 [Google Scholar]
  180. Gibson, L. , Lee, T. M. , Koh, L. P. , Brook, B. W. , Gardner, T. A. , Barlow, J. , … & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378–381. doi:10.1038/nature10425 [DOI] [PubMed] [Google Scholar]
  181. Giordani, P. (2012). Assessing the effects of forest management on epiphytic lichens in coppiced forests using different indicators. Plant Biosystems, 146(3), 628–637. doi:10.1080/11263504.2011.654136 [Google Scholar]
  182. Giordani, P. , Incerti, G. , Rizzi, G. , Ginaldi, F. , Viglione, S. , Rellini, I. , … Modenesi, P. (2010). Land use intensity drives the local variation of lichen diversity in Mediterranean ecosystems sensitive to desertification. Bibliotheca Lichenologica, 105, 139–148. [Google Scholar]
  183. Giordano, S. , Sorbo, S. , Adamo, P. , Basile, A. , Spagnuolo, V. , & Cobianchi, R. C. (2004). Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy. Plant Ecology, 170(1), 1–14. doi:10.1023/b:vege.0000019025.36121.5d [Google Scholar]
  184. Giri, C. , Zhu, Z. , & Reed, B. (2005). A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sensing of Environment, 94(1), 123–132. doi:10.1016/j.rse.2004.09.005 [Google Scholar]
  185. Golodets, C. , Kigel, J. , & Sternberg, M. (2010). Recovery of plant species composition and ecosystem function after cessation of grazing in a Mediterranean grassland. Plant and Soil, 329(1–2), 365–378. doi:10.1007/s11104‐009‐0164‐1 [Google Scholar]
  186. Gomes, L. G. L. , Oostra, V. , Nijman, V. , Cleef, A. M. , & Kappelle, M. (2008). Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. Biological Conservation, 141(3), 860–871. doi:10.1016/j.biocon.2008.01.007 [Google Scholar]
  187. Gonzalez, A. , Cardinale, B. J. , Allington, G. R. H. , Byrnes, J. , Endsley, K. A. , Brown, D. G. , … Loreau, M. (2016). Estimating local biodiversity change: A critique of papers claiming no net loss of local diversity. Ecology, 97(8), 1949–1960. doi:10.1890/15‐1759.1 [DOI] [PubMed] [Google Scholar]
  188. Gottschalk, M. S. , De Toni, D. C. , Valente, V. L. S. , & Hofmann, P. R. P. (2007). Changes in Brazilian Drosophilidae (Diptera) assemblages across an urbanisation gradient. Neotropical Entomology, 36(6), 848–862. doi:10.1590/s1519‐566x2007000600005 [DOI] [PubMed] [Google Scholar]
  189. Gould, R. K. , Pejchar, L. , Bothwell, S. G. , Brosi, B. , Wolny, S. , Mendenhall, C. D. , & Daily, G. (2013). Forest restoration and parasitoid wasp communities in montane Hawai'i. PLoS One, 8(3), doi:10.1371/journal.pone.0059356 [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Goulson, D. , Lepais, O. , O'Connor, S. , Osborne, J. L. , Sanderson, R. A. , Cussans, J. , … Darvill, B. (2010). Effects of land use at a landscape scale on bumblebee nest density and survival. Journal of Applied Ecology, 47(6), 1207–1215. doi:10.1111/j.1365‐2664.2010.01872.x [Google Scholar]
  191. Goulson, D. , Lye, G. C. , & Darvill, B. (2008). Diet breadth, coexistence and rarity in bumblebees. Biodiversity and Conservation, 17(13), 3269–3288. doi:10.1007/s10531‐008‐9428‐y [Google Scholar]
  192. Gove, A. D. , Majer, J. D. , & Rico‐Gray, V. (2005). Methods for conservation outside of formal reserve systems: The case of ants in the seasonally dry tropics of Veracruz, Mexico. Biological Conservation, 126(3), 328–338. doi:10.1016/j.biocon.2005.06.008 [Google Scholar]
  193. Granjon, L. , & Duplantier, J. (2011). Guinean biodiversity at the edge: Rodents in forest patches of southern Mali. Mammalian Biology, 76(5), 583–591. doi:10.1016/j.mambio.2011.06.003 [Google Scholar]
  194. Grass, I. , Berens, D. G. , Peter, F. , & Farwig, N. (2013). Additive effects of exotic plant abundance and land‐use intensity on plant‐pollinator interactions. Oecologia, 173(3), 913–923. doi:10.1007/s00442‐013‐2688‐6 [DOI] [PubMed] [Google Scholar]
  195. Gray, C. L. , Hill, S. L. L. , Newbold, T. , Hudson, L. N. , Börger, L. , Contu, S. , … Scharlemann, J. P. W. (2016). Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications, 7, 12306. doi:10.1038/ncomms12306 [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Gray, C. L. , Slade, E. M. , Mann, D. J. , & Lewis, O. T. (2014). Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm‐dominated tropical landscapes? Ecology and Evolution, 4(7), 1049–1060. doi:10.1002/ece3.1003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Green, R. E. , Cornell, S. J. , Scharlemann, J. P. W. , & Balmford, A. (2005). Farming and the fate of wild nature. Science, 307(5709), 550–555. doi:10.1126/science.1106049 [DOI] [PubMed] [Google Scholar]
  198. Grime, J. P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86(6), 902–910. doi:10.1046/j.1365‐2745.1998.00306.x [Google Scholar]
  199. Grogan, J. , Jennings, S. B. , Landis, R. M. , Schulze, M. , Baima, A. M. V. , Lopes, J. D. C. A. , … Zimmerman, B. L . (2008) What loggers leave behind: Impacts on big‐leaf mahogany (Swietenia macrophylla) commercial populations and potential for post‐logging recovery in the Brazilian Amazon. Forest Ecology and Management, 255 (2), 269–281. doi:10.1016/j.foreco.2007.09.048 [Google Scholar]
  200. Gu, W. , Zhen‐Rong, Y. , & Dun‐Xiao, H. (2004). Carabid community and its fluctuation in farmland of salinity transforming area in the North China Plain: A case study in Quzhou County, Hebei Province. Biodiversity Science, 12(2), 262–268. [Google Scholar]
  201. Gunawardene, N. R. , Majer, J. D. , & Edirisinghe, J. P. (2010). Investigating residual effects of selective logging on ant species assemblages in Sinharaja Forest Reserve, Sri Lanka. Forest Ecology and Management, 259(3), 555–562. doi:10.1016/j.foreco.2009.11.012 [Google Scholar]
  202. Gutierrez, A. G. , Armesto, J. J. , Aravena, J. C. , Carmona, M. , Carrasco, N. V. , Christie, D. A. , … Huth, A. (2009). Structural and environmental characterization of old‐growth temperate rainforests of northern Chiloe Island, Chile: Regional and global relevance. Forest Ecology and Management, 258(4), 376–388. doi:10.1016/j.foreco.2009.03.011 [Google Scholar]
  203. Gutierrez‐Lamus, D. L. (2004). Composition and abundance of Anura in two forest types (natural and planted) in the eastern Cordillera of Colombia. Caldasia, 26(1), 245–264. [Google Scholar]
  204. Haarmeyer, D. , Schmiedel, U. , Dengler, J. , & Bosing, B. (2010). How does grazing intensity affect different vegetation types in arid Succulent Karoo, South Africa? Implications for conservation management Biological Conservation, 143(3), 588–596. doi:10.1016/j.biocon.2009.11.008 [Google Scholar]
  205. Hampton, S. E. , Strasser, C. A. , Tewksbury, J. J. , Gram, W. K. , Budden, A. E. , Batcheller, A. L. , … Porter, J. H. (2013). Big data and the future of ecology. Frontiers in Ecology and the Environment, 11(3), 156–162. doi:10.1890/120103 [Google Scholar]
  206. Hanley, M. E . (2005). Unpublished data of bee diversity in UK croplands.
  207. Hanley, M. E . (2011) Unpublished data of bee diversity in UK croplands and urban habitats.
  208. Hanley, M. E. , Franco, M. , Dean, C. E. , Franklin, E. L. , Harris, H. R. , Haynes, A. G. , … Knight, M. E. (2011). Increased bumblebee abundance along the margins of a mass flowering crop: Evidence for pollinator spill‐over. Oikos, 120(11), 1618–1624. doi:10.1111/j.1600‐0706.2011.19233.x [Google Scholar]
  209. Hanson, T. R. , Brunsfeld, S. J. , Finegan, B. , & Waits, L. P. (2008). Pollen dispersal and genetic structure of the tropical tree Dipteryx panamensis in a fragmented Costa Rican landscape. Molecular Ecology, 17(8), 2060–2073. doi:10.1111/j.1365‐294x.2008.03726.x [DOI] [PubMed] [Google Scholar]
  210. Hashim, N. , Akmal, W. , Jusoh, W. , & Nasir, M. (2010). Ant diversity in a peninsular Malaysian mangrove forest and oil palm plantation. Asian Myrmecology, 3, 5–8. [Google Scholar]
  211. Hassan, S. N. , Salum, A. R. , Rija, A. A. , Modest, R. , Kideghesho, J. R. , & Malata, P. F. (2013). Human‐induced disturbances influence on bird communities of coastal forests in eastern Tanzania. British Journal of Applied Science & Technology, 3(1), 48–64. doi:10.9734/bjast/2014/2200 [Google Scholar]
  212. Hatfield, R. G. , & LeBuhn, G. (2007). Patch and landscape factors shape community assemblage of bumble bees, Bombus spp. (Hymenoptera: Apidae), in montane meadows. Biological Conservation, 139(1–2), 150–158. doi:10.1016/j.biocon.2007.06.019 [Google Scholar]
  213. Hawes, J. , Motta, C. D. S. , Overal, W. L. , Barlow, J. , Gardner, T. A. , & Peres, C. A. (2009) Diversity and composition of Amazonian moths in primary, secondary and plantation forests. Journal of Tropical Ecology, 25, 281–300. doi:10.1017/s0266467409006038 [Google Scholar]
  214. Hayward, M. W. (2009). Bushmeat hunting in Dwesa and Cwebe nature reserves, Eastern Cape, South Africa. South African Journal of Wildlife Research, 39(1), 70–84. doi:10.3957/056.039.0108 [Google Scholar]
  215. Hayward, M. W. , Boitani, L. , Burrows, N. D. , Funston, P. J. , Karanth, K. U. , MacKenzie, D. I. , … Yarnell, R. W. (2015). Ecologists need robust survey designs, sampling and analytical methods. Journal of Applied Ecology, 52(2), 286–290. doi:10.1111/1365‐2664.12408 [Google Scholar]
  216. Helden, A. J. , & Leather, S. R. (2004). Biodiversity on urban roundabouts – Hemiptera, management and the species‐area relationship. Basic and Applied Ecology, 5(4), 367–377. doi:10.1016/j.baae.2004.06.004 [Google Scholar]
  217. Henschel, P . (2008) The conservation biology of the Leopard Panthera pardus in Gabon: Status, threats and strategies for conservation. PhD thesis, Georg‐August‐Universität Göttingen, Göttingen, Germany.
  218. Hernández, L. , Delgado, L. , Meier, W. , & Duran, C. (2012). Empobrecimiento de bosques fragmentados en el norte de la Gran Sabana, Venezuela. Interciencia, 37(12), 891–898. [Google Scholar]
  219. Herrera, J. P. , Wright, P. C. , Lauterbur, E. , Ratovonjanahary, L. , & Taylor, L. L. (2011). The effects of habitat disturbance on lemurs at Ranomafana National Park, Madagascar. International Journal of Primatology, 32(5), 1091–1108. doi:10.1007/s10764‐011‐9525‐8 [Google Scholar]
  220. Herrmann, F. , Westphal, C. , Moritz, R. F. A. , & Steffan‐Dewenter, I. (2007). Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes. Molecular Ecology, 16(6), 1167–1178. doi:10.1111/j.1365‐294x.2007.03226.x [DOI] [PubMed] [Google Scholar]
  221. Hietz, P. (2005). Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conservation Biology, 19(2), 391–399. doi:10.1111/j.1523‐1739.2005.00145.x [Google Scholar]
  222. Higuera, D. , & Wolf, J. H. D. (2010). Vascular epiphytes in dry oak forests show resilience to anthropogenic disturbance, Cordillera Oriental, Colombia. Caldasia, 32(1), 161–174. [Google Scholar]
  223. Hilje, B. , & Aide, T. M. (2012). Recovery of amphibian species richness and composition in a chronosequence of secondary forests, northeastern Costa Rica. Biological Conservation, 146(1), 170–176. doi:10.1016/j.biocon.2011.12.007 [Google Scholar]
  224. Hoffmann, A. , & Zeller, U. (2005). Influence of variations in land use intensity on species diversity and abundance of small mammals in the Nama Karoo, Namibia. Belgian Journal of Zoology, 135, 91–96. [Google Scholar]
  225. Horgan, F. G. (2009). Invasion and retreat: Shifting assemblages of dung beetles amidst changing agricultural landscapes in central Peru. Biodiversity and Conservation, 18(13), 3519–3541. doi:10.1007/s10531‐009‐9658‐7 [Google Scholar]
  226. Hornung, E. , Tothmeresz, B. , Magura, T. , & Vilisics, F. (2007). Changes of isopod assemblages along an urban‐suburban‐rural gradient in Hungary. European Journal of Soil Biology, 43(3), 158–165. doi:10.1016/j.ejsobi.2007.01.001 [Google Scholar]
  227. Hoskins, A. J. , Bush, A. , Gilmore, J. , Harwood, T. , Hudson, L. N. , Ware, C. , … Ferrier, S. (2016). Downscaling land‐use data to provide global 30″ estimates of five land‐use classes. Ecology and Evolution, 6(9), 3040–3055. doi:10.1002/ece3.2104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Hu, C. , & Cao, Z. P. (2008). Nematode community structure under compost and chemical fertilizer management practice, in the north China plain. Experimental Agriculture, 44(4), 485–496. doi:10.1017/s0014479708006716 [Google Scholar]
  229. Hudson, L. N. , Isaac, N. J. B. , & Reuman, D. C. (2013). The relationship between body mass and field metabolic rate among individual birds and mammals. Journal of Animal Ecology, 82(5), 1009–1020. doi:10.1111/1365‐2656.12086 [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Hudson, L. N. , Newbold, T. , Contu, S. , Hill, S. L. L. , Lysenko, I. , De Palma, A. , … Purvis, A. (2014). The PREDICTS database: A global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 4(24), 4701–4735. doi:10.1002/ece3.1303 [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Hudson, L. N. , Newbold, T. , Purves, D. W. , Scharlemann, J. P. W. , Mace, G. , & Purvis, A. (2013) Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (PREDICTS): Can you help? BES Bulletin, 44(1), 36–37. [Google Scholar]
  232. Hull, P. M. , Darroch, S. A. F. , & Erwin, D. H. (2015). Rarity in mass extinctions and the future of ecosystems. Nature, 528(7582), 345–351. doi:10.1038/nature16160 [DOI] [PubMed] [Google Scholar]
  233. Hurtt, G. C. , Chini, L. P. , Frolking, S. , Betts, R. A. , Feddema, J. , Fischer, G. , … Wang, Y. P. (2011). Harmonization of land‐use scenarios for the period 1500–2100: 600 years of global gridded annual land‐use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117–161. doi:10.1007/s10584‐011‐0153‐2 [Google Scholar]
  234. Hylander, K. , & Nemomissa, S. (2009). Complementary roles of home gardens and exotic tree plantations as alternative habitats for plants of the Ethiopian montane rainforest. Conservation Biology, 23(2), 400–409. doi:10.1111/j.1523‐1739.2008.01097.x [DOI] [PubMed] [Google Scholar]
  235. Hylander, K. , Nilsson, C. , & Gothner, T. (2004). Effects of buffer‐strip retention and clearcutting on land snails in boreal riparian forests. Conservation Biology, 18(4), 1052–1062. doi:10.1111/j.1523‐1739.2004.00199.x [Google Scholar]
  236. Hylander, K. , & Weibull, H. (2012). Do time‐lagged extinctions and colonizations change the interpretation of buffer strip effectiveness? – a study of riparian bryophytes in the first decade after logging. Journal of Applied Ecology, 49(6), 1316–1324. doi:10.1111/j.1365‐2664.2012.02218.x [Google Scholar]
  237. Ims, R. A. , & Henden, J. A. (2012). Collapse of an arctic bird community resulting from ungulate‐induced loss of erect shrubs. Biological Conservation, 149(1), 2–5. doi:10.1016/j.biocon.2012.02.008 [Google Scholar]
  238. Inchausti, P. , & Halley, J. (2001). Investigating long‐term ecological variability using the global population dynamics database. Science, 293(5530), 655–657. doi:10.1126/science.293.5530.655 [DOI] [PubMed] [Google Scholar]
  239. International Union for Conservation of Nature (2016). The IUCN Red List of Threatened Species. Version 2016‐1. http://www.iucnredlist.org
  240. Isaacs‐Cubides, P. J. , & Urbina‐Cardona, J. N. (2011). Anthropogenic disturbance and edge effects on anuran assemblages inhabiting cloud forest fragments in Colombia. Natureza & Conservacao, 9(1), 39–46. doi:10.4322/natcon.2011.004 [Google Scholar]
  241. Ishida, H. , Hattori, T. , & Takeda, Y. (2005). Comparison of species composition and richness between primary and secondary lucidophyllous forests in two altitudinal zones of Tsushima Island, Japan. Forest Ecology and Management, 213(1–3), 273–287. doi:10.1016/j.foreco.2005.03.046 [Google Scholar]
  242. Ishitani, M. , Kotze, D. J. , & Niemela, J. (2003). Changes in carabid beetle assemblages across an urban‐rural gradient in Japan. Ecography, 26(4), 481–489. doi:10.1034/j.1600‐0587.2003.03436.x [Google Scholar]
  243. Jacobs, C. T. , Scholtz, C. H. , Escobar, F. , & Davis, A. L. V. (2010). How might intensification of farming influence dung beetle diversity (Coleoptera: Scarabaeidae) in Maputo Special Reserve (Mozambique)? Journal of Insect Conservation, 14(4), 389–399. doi:10.1007/s10841‐010‐9270‐x [Google Scholar]
  244. Jauker, B. , Krauss, J. , Jauker, F. , & Steffan‐Dewenter, I . (2013) Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecology, 28 (1), 107–120. doi:10.1007/s10980‐012‐9820‐6 [Google Scholar]
  245. Johnson, M. F. , Gómez, A. , & Pinedo‐Vasquez, M. (2008). Land use and mosquito diversity in the Peruvian Amazon. Journal of Medical Entomology, 45(6), 1023–1030. doi:10.1603/0022-2585(2008)45[1023:luamdi]2.0.co;2 [DOI] [PubMed] [Google Scholar]
  246. Jolli, V. , & Pandit, M. K. (2011). Monitoring pheasants (Phasianidae) in the western Himalayas to measure the impact of hydro‐electric projects. Ring, 33(1–2), 37–46. doi:10.2478/v10050‐011‐0003‐7 [Google Scholar]
  247. Jones, K. E. , Bielby, J. , Cardillo, M. , Fritz, S. A. , O'Dell, J. , Orme, C. D. L. , … Purvis, A. (2009). PanTHERIA: A species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90(9), 2648. doi:10.1890/08‐1494.1 [Google Scholar]
  248. Jonsell, M. (2012). Old park trees as habitat for saproxylic beetle species. Biodiversity and Conservation, 21(3), 619–642. doi:10.1007/s10531‐011‐0203‐0 [Google Scholar]
  249. Joubert, L. , Esler, K. J. , & Privett, S. D. J. (2009). The effect of ploughing and augmenting natural vegetation with commercial fynbos species on the biodiversity of Overberg Sandstone fynbos on the Agulhas Plain, South Africa. South African Journal of Botany, 75(3), 526–531. doi:10.1016/j.sajb.2009.05.002 [Google Scholar]
  250. Julier, H. E. , & Roulston, T. H. (2009). Wild bee abundance and pollination service in cultivated pumpkins: Farm management, nesting behavior and landscape effects. Journal of Economic Entomology, 102(2), 563–573. doi:10.1603/029.102.0214 [DOI] [PubMed] [Google Scholar]
  251. Jung, T. S. , & Powell, T. (2011). Spatial distribution of meadow jumping mice (Zapus hudsonius) in logged boreal forest of northwestern Canada. Mammalian Biology, 76(6), 678–682. doi:10.1016/j.mambio.2011.08.002 [Google Scholar]
  252. Justice, C. O. , Vermote, E. , Townshend, J. R. , Defries, R. , Roy, D. P. , Hall, D. K. , … Barnsley, M. J. (1998). The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228–1249. [Google Scholar]
  253. Kapoor, V. (2008). Effects of rainforest fragmentation and shade‐coffee plantations on spider communities in the Western Ghats, India. Journal of Insect Conservation, 12(1), 53–68. doi:10.1007/s10841‐006‐9062‐5 [Google Scholar]
  254. Kappes, H. , Katzschner, L. , & Nowak, C. (2012). Urban summer heat load: Meteorological data as a proxy for metropolitan biodiversity. Meteorologische Zeitschrift, 21(5), 525–528. doi:10.1127/0941-2948/2012/0361 [Google Scholar]
  255. Kati, V. , Zografou, K. , Tzirkalli, E. , Chitos, T. , & Willemse, L. (2012). Butterfly and grasshopper diversity patterns in humid Mediterranean grasslands: The roles of disturbance and environmental factors. Journal of Insect Conservation, 16(6), 807–818. doi:10.1007/s10841‐012‐9467‐2 [Google Scholar]
  256. Katovai, E. , Burley, A. L. , & Mayfield, M. M. (2012). Understory plant species and functional diversity in the degraded wet tropical forests of Kolombangara Island, Solomon Islands. Biological Conservation, 145(1), 214–224. doi:10.1016/j.biocon.2011.11.008 [Google Scholar]
  257. Kattge, J. , Diaz, S. , Lavorel, S. , Prentice, C. , Leadley, P. , Bonisch, G. , … Wirth, C. (2011). TRY – a global database of plant traits. Global Change Biology, 17(9), 2905–2935. doi:10.1111/j.1365‐2486.2011.02451.x [Google Scholar]
  258. Kessler, M. , Abrahamczyk, S. , Bos, M. , Buchori, D. , Putra, D. D. , Gradstein, S. R. , … Tscharntke, T. (2009). Alpha and beta diversity of plants and animals along a tropical land‐use gradient. Ecological Applications, 19(8), 2142–2156. doi:10.1890/08‐1074.1 [DOI] [PubMed] [Google Scholar]
  259. Kessler, M. , Kessler, P. J. A. , Gradstein, S. R. , Bach, K. , Schmull, M. , & Pitopang, R. (2005). Tree diversity in primary forest and different land use systems in Central Sulawesi, Indonesia. Biodiversity and Conservation, 14(3), 547–560. doi:10.1007/s10531‐004‐3914‐7 [Google Scholar]
  260. Kittle, A. M. , Watson, A. C. , Chanaka Kumara, P. H. , & Nimalka Sanjeewani, H. K. (2012). Status and distribution of the leopard in the central hills of Sri Lanka. Cat News, 56, 28–31. [Google Scholar]
  261. Knight, M. E. , Osborne, J. L. , Sanderson, R. A. , Hale, R. J. , Martin, A. P. , & Goulson, D. (2009). Bumblebee nest density and the scale of available forage in arable landscapes. Insect Conservation and Diversity, 2(2), 116–124. doi:10.1111/j.1752‐4598.2009.00049.x [Google Scholar]
  262. Knop, E. , Ward, P. I. , & Wich, S. A. (2004). A comparison of orang‐utan density in a logged and unlogged forest on Sumatra. Biological Conservation, 120(2), 183–188. doi:10.1016/j.biocon.2004.02.010 [Google Scholar]
  263. Kohler, F. , Verhulst, J. , van Klink, R. , & Kleijn, D. (2008). At what spatial scale do high‐quality habitats enhance the diversity of forbs and pollinators in intensively farmed landscapes? Journal of Applied Ecology, 45(3), 753–762. doi:10.1111/j.1365‐2664.2007.01394.x [Google Scholar]
  264. Koivula, M. , Hyyrylainen, V. , & Soininen, E. (2004). Carabid beetles (Coleoptera: Carabidae) at forest‐farmland edges in southern Finland. Journal of Insect Conservation, 8(4), 297–309. doi:10.1007/s10841‐004‐0296‐9 [Google Scholar]
  265. Kolb, A. , & Diekmann, M. (2004). Effects of environment, habitat configuration and forest continuity on the distribution of forest plant species. Journal of Vegetation Science, 15(2), 199–208. doi:10.1111/j.1654‐1103.2004.tb02255.x [Google Scholar]
  266. Kone, M. , Konate, S. , Yeo, K. , Kouassi, P. K. , & Linsenmair, K. E. (2010). Diversity and abundance of terrestrial ants along a gradient of land use intensification in a transitional forest‐savannah zone of Côte d'Ivoire. Journal of Applied Biosciences, 29, 1809–1827. [Google Scholar]
  267. Kőrösi, A. , Batáry, P. , Orosz, A. , Rédei, D. , & Báldi, A. (2012). Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary. Insect Conservation and Diversity, 5(1), 57–66. doi:10.1111/j.1752‐4598.2011.00153.x [Google Scholar]
  268. Krauss, J. , Bommarco, R. , Guardiola, M. , Heikkinen, R. K. , Helm, A. , Kuussaari, M. , … Steffan‐Dewenter, I. (2010). Habitat fragmentation causes immediate and time‐delayed biodiversity loss at different trophic levels. Ecology Letters, 13(5), 597–605. doi:10.1111/j.1461‐0248.2010.01457.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Krauss, J. , Klein, A. M. , Steffan‐Dewenter, I. , & Tscharntke, T. (2004). Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodiversity and Conservation, 13(8), 1427–1439. doi:10.1023/b:bioc.0000021323.18165.58 [Google Scholar]
  270. Krauss, J. , Steffan‐Dewenter, I. , & Tscharntke, T. (2003). How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? Journal of Biogeography, 30(6), 889–900. doi:10.1046/j.1365‐2699.2003.00878.x [Google Scholar]
  271. Kumar, R. , & Shahabuddin, G. (2005). Effects of biomass extraction on vegetation structure, diversity and composition of forests in Sariska Tiger Reserve, India. Environmental Conservation, 32(3), 248–259. doi:10.1017/s0376892905002316 [Google Scholar]
  272. Kurz, D. J. , Nowakowski, A. J. , Tingley, M. W. , Donnelly, M. A. , & Wilcove, D. S. (2014). Forest‐land use complementarity modifies community structure of a tropical herpetofauna. Biological Conservation, 170, 246–255. doi:10.1016/j.biocon.2013.12.027 [Google Scholar]
  273. Kutt, A. S. , Vanderduys, E. P. , & O'Reagain, P. (2012). Spatial and temporal effects of grazing management and rainfall on the vertebrate fauna of a tropical savanna. Rangeland Journal, 34(2), 173–182. doi:10.1071/rj11049 [Google Scholar]
  274. Kutt, A. S. , & Woinarski, J. C. Z. (2007). The effects of grazing and fire on vegetation and the vertebrate assemblage in a tropical savanna woodland in north‐eastern Australia. Journal of Tropical Ecology, 23, 95–106. doi:10.1017/s0266467406003579 [Google Scholar]
  275. Lachat, T. , Attignon, S. , Djego, J. , Goergen, G. , Nagel, P. , Sinsin, B. , & Peveling, R. (2006). Arthropod diversity in Lama forest reserve (South Benin), a mosaic of natural, degraded and plantation forests. Biodiversity and Conservation, 15(1), 3–23. doi:10.1007/s10531‐004‐1234‐6 [Google Scholar]
  276. Lantschner, M. V. , Rusch, V. , & Hayes, J. P. (2012). Habitat use by carnivores at different spatial scales in a plantation forest landscape in Patagonia, Argentina. Forest Ecology and Management, 269, 271–278. doi:10.1016/j.foreco.2011.12.045 [Google Scholar]
  277. Lantschner, M. V. , Rusch, V. , & Peyrou, C. (2008). Bird assemblages in pine plantations replacing native ecosystems in NW Patagonia. Biodiversity and Conservation, 17(5), 969–989. doi:10.1007/s10531‐007‐9243‐x [Google Scholar]
  278. Lasky, J. R. , & Keitt, T. H. (2010). Abundance of Panamanian dry‐forest birds along gradients of forest cover at multiple scales. Journal of Tropical Ecology, 26, 67–78. doi:10.1017/s0266467409990368 [Google Scholar]
  279. Latta, S. C. , Tinoco, B. A. , Astudillo, P. X. , & Graham, C. H. (2011). Patterns and magnitude of temporal change in avian communities in the Ecuadorian Andes. Condor, 113(1), 24–40. doi:10.1525/cond.2011.090252 [Google Scholar]
  280. Laurance, W. F. , & Laurance, S. G. W. (1996). Responses of five arboreal marsupials to recent selective logging in tropical Australia. Biotropica, 28(3), 310–322. doi:10.2307/2389195 [Google Scholar]
  281. Lawton, J. H. , Bignell, D. E. , Bolton, B. , Bloemers, G. F. , Eggleton, P. , Hammond, P. M. , … Watt, A. D. (1998). Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 391(6662), 72–76. doi:10.1038/34166 [Google Scholar]
  282. Le Féon, V. , Schermann‐Legionnet, A. , Delettre, Y. , Aviron, S. , Billeter, R. , Bugter, R. , … Burel, F. (2010). Intensification of agriculture, landscape composition and wild bee communities: a large scale study in four European countries. Agriculture Ecosystems & Environment, 137(1–2), 143–150. doi:10.1016/j.agee.2010.01.015 [Google Scholar]
  283. Légaré, J. P. , Hébert, C. , & Ruel, J. C. (2011). Alternative silvicultural practices in irregular boreal forests: Response of beetle assemblages. Silva Fennica, 45(5), 937–956. [Google Scholar]
  284. Lehouck, V. , Spanhove, T. , Colson, L. , Adringa‐Davis, A. , Cordeiro, N. , & Lens, L. (2009). Habitat disturbance reduces seed dispersal of a forest interior tree in a fragmented African cloud forest. Oikos, 118(7), 1023–1034. doi:10.1111/j.1600‐0706.2009.17300.x [Google Scholar]
  285. Leighton‐Goodall, I. , Brown, K. , Hammond, P. M. , & Eggleton, P . (2012). Unpublished data of soil macrofauna in London woodlands: species density, composition and level of synanthropy vary with distance from the centre of the city. [Google Scholar]
  286. Lentini, P. E. , Martin, T. G. , Gibbons, P. , Fischer, J. , & Cunningham, S. A. (2012). Supporting wild pollinators in a temperate agricultural landscape: Maintaining mosaics of natural features and production. Biological Conservation, 149(1), 84–92. doi:10.1016/j.biocon.2012.02.004 [Google Scholar]
  287. Letcher, S. G. , & Chazdon, R. L. (2009). Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica, 41(5), 608–617. doi:10.1111/j.1744‐7429.2009.00517.x [Google Scholar]
  288. Li, S. N. , Zou, F. S. , Zhang, Q. , & Sheldon, F. H. (2013). Species richness and guild composition in rubber plantations compared to secondary forest on Hainan Island. China. Agroforestry Systems, 87(5), 1117–1128. doi:10.1007/s10457‐013‐9624‐y [Google Scholar]
  289. de Lima, R. F. , Dallimer, M. , Atkinson, P. W. , & Barlow, J. (2013). Biodiversity and land‐use change: Understanding the complex responses of an endemic‐rich bird assemblage. Diversity and Distributions, 19(4), 411–422. doi:10.1111/ddi.12015 [Google Scholar]
  290. Liow, L. H. , Sodhi, N. S. , & Elmqvist, T. (2001). Bee diversity along a disturbance gradient in tropical lowland forests of south‐east Asia. Journal of Applied Ecology, 38(1), 180–192. doi:10.1046/j.1365‐2664.2001.00582.x [Google Scholar]
  291. Litchwark, S. A . (2013) Honeybee declines in a changing landscape: Interactive effects of honeybee declines and land‐use intensification on pollinator communities. MSc thesis, University of Canterbury, Christchurch, New Zealand.
  292. Littlewood, N. A. (2008). Grazing impacts on moth diversity and abundance on a Scottish upland estate. Insect Conservation and Diversity, 1(3), 151–160. doi:10.1111/j.1752‐4598.2008.00021.x [Google Scholar]
  293. Littlewood, N. A. , Pakeman, R. J. , & Pozsgai, G. (2012). Grazing impacts on Auchenorrhyncha diversity and abundance on a Scottish upland estate. Insect Conservation and Diversity, 5(1), 67–74. doi:10.1111/j.1752‐4598.2011.00135.x [Google Scholar]
  294. Liu, Y. H. , Axmacher, J. C. , Wang, C. L. , Li, L. T. , & Yu, Z. R. (2012). Ground beetle (Coleoptera: Carabidae) assemblages of restored semi‐natural habitats and intensively cultivated fields in northern China. Restoration Ecology, 20(2), 234–239. doi:10.1111/j.1526‐100x.2010.00755.x [Google Scholar]
  295. Lo‐Man‐Hung, N. F. , Gardner, T. A. , Ribeiro‐Júnior, M. A. , Barlow, J. , & Bonaldo, A. B. (2008). The value of primary, secondary, and plantation forests for Neotropical epigeic arachnids. Journal of Arachnology, 36(2), 394–401. doi:10.1636/ct07‐136.1 [Google Scholar]
  296. Lo‐Man‐Hung, N. F. , Marichal, R. , Candiani, D. F. , Carvalho, L. S. , Indicatti, R. P. , Bonaldo, A. B. , … Lavelle, P. (2011). Impact of different land management on soil spiders (Arachnida: Araneae) in two Amazonian areas of Brazil and Colombia. Journal of Arachnology, 39(2), 296–302. doi:10.1636/cp10‐89.1 [Google Scholar]
  297. López‐Quintero, C. A. , Straatsma, G. , Franco‐Molano, A. E. , & Boekhout, T. (2012). Macrofungal diversity in Colombian Amazon forests varies with regions and regimes of disturbance. Biodiversity Conservation, 21, 2221–2243. doi:10.1007/s10531‐012‐0280‐8 [Google Scholar]
  298. Louhaichi, M. , Salkini, A. K. , & Petersen, S. L. (2009). Effect of small ruminant grazing on the plant community characteristics of semiarid Mediterranean ecosystems. International Journal of Agriculture and Biology, 11(6), 681–689. [Google Scholar]
  299. Lucas‐Borja, M. E. , Bastida, F. , Moreno, J. L. , Nicolas, C. , Andres, M. , Lopez, F. R. , & Del Cerro, A. (2011). The effects of human trampling on the microbiological properties of soil and vegetation in Mediterranean mountain areas. Land Degradation & Development, 22(4), 383–394. doi:10.1002/ldr.1014 [Google Scholar]
  300. Luja, V. , Herrando‐Perez, S. , Gonzalez‐Solis, D. , & Luiselli, L. (2008). Secondary rain forests are not havens for reptile species in tropical Mexico. Biotropica, 40(6), 747–757. doi:10.1111/j.1744‐7429.2008.00439.x [Google Scholar]
  301. Luskin, M. S. (2010). Flying foxes prefer to forage in farmland in a tropical dry forest landscape mosaic in Fiji. Biotropica, 42(2), 246–250. doi:10.1111/j.1744‐7429.2009.00577.x [Google Scholar]
  302. Mace, G. , & Balmford, A . (2000) Patterns and processes in contemporary mammalian extinction In Entwhistle A. & Dunstone N. (Eds.), Future priorities for the conservation of mammalian diversity, chapter 3 (pp. 27–52). Cambridge, UK: Cambridge University Press. [Google Scholar]
  303. Macip‐Ríos, R. , & Muñoz‐Alonso, A. (2008). Diversidad de lagartijas en cafetales y bosque primario en el Soconusco chiapaneco. Revista Mexicana De Biodiversidad, 79(1), 185–195. [Google Scholar]
  304. MacKenzie, D. I. , Nichols, J. D. , Lachman, G. B. , Droege, S. , Royle, J. A. , & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8), 2248–2255. doi:10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 [Google Scholar]
  305. MacSwiney, M. C. G. , Vilchis, P. L. , Clarke, F. M. , & Racey, P. A. (2007). The importance of cenotes in conserving bat assemblages in the Yucatan, Mexico. Biological Conservation, 136(4), 499–509. doi:10.1016/j.biocon.2006.12.021 [Google Scholar]
  306. Madin, J. S. , Anderson, K. D. , Andreasen, M. H. , Bridge, T. C. , Cairns, S. D. , Connolly, S. R. , … Baird, A. H. (2016). The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Scientific Data, 3, doi:10.1038/sdata.2016.17 [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Maeto, K. , & Sato, S. (2004). Impacts of forestry on ant species richness and composition in warm‐temperate forests of Japan. Forest Ecology and Management, 187(2–3), 213–223. doi:10.1016/s0378‐1127(03)00333‐5 [Google Scholar]
  308. Magrini, M. J. , Freitas, A. V. L. , & Uehara‐Prado, M. (2011). The effects of four types of anthropogenic disturbances on composition and abundance of terrestrial isopods (Isopoda: Oniscidea). Zoologia, 28(1), 63–71. doi:10.1590/s1984‐46702011000100010 [Google Scholar]
  309. Magura, T. , Horvath, R. , & Tothmeresz, B. (2010). Effects of urbanization on ground‐dwelling spiders in forest patches, in Hungary. Landscape Ecology, 25(4), 621–629. doi:10.1007/s10980‐009‐9445‐6 [Google Scholar]
  310. Mallari, N. A. D. , Collar, N. J. , Lee, D. C. , McGowan, P. J. K. , Wilkinson, R. , & Marsden, S. J. (2011). Population densities of understorey birds across a habitat gradient in Palawan, Philippines: Implications for conservation. Oryx, 45(2), 234–242. doi:10.1017/s0030605310001031 [Google Scholar]
  311. Malone, L. , Aulsford, J. , Howlett, B. , Scott‐Dupree, C. , Bardol, N. , & Donovan, B. (2010). Observations on bee species visiting white clover in New Zealand pastures. Journal of Apicultural Research, 49(3), 284–286. doi:10.3896/ibra.1.49.3.09 [Google Scholar]
  312. Malonza, P. K. , & Veith, M. (2012). Amphibian community along elevational and habitat disturbance gradients in the Taita Hills, Kenya. Herpetotropicos, 7(1–2), 7–16. [Google Scholar]
  313. Malumbres‐Olarte, J. , Barratt, B. I. P. , Vink, C. J. , Paterson, A. M. , Cruickshank, R. H. , Ferguson, C. M. , & Barton, D. M. (2014). Big and aerial invaders: Dominance of exotic spiders in burned New Zealand tussock grasslands. Biological Invasions, 16(11), 2311–2322. doi:10.1007/s10530‐014‐0666‐5 [Google Scholar]
  314. Måren, I . (2011) Unpublished data of woody species study in Nepal.
  315. Måren, I. , Bhattarai, K. R. , & Chaudhary, R. P. (2013). Forest ecosystem services and biodiversity in contrasting Himalayan forest management systems. Environmental Conservation, 41(1), 73–83. doi:10.1017/s0376892913000258 [Google Scholar]
  316. Marin‐Spiotta, E. , Ostertag, R. , & Silver, W. L. (2007). Long‐term patterns in tropical reforestation: Plant community composition and aboveground biomass accumulation. Ecological Applications, 17(3), 828–839. doi:10.1890/06‐1268 [DOI] [PubMed] [Google Scholar]
  317. Marsh, C. J. , Lewis, O. T. , Said, I. , & Ewers, R. M. (2010). Community‐level diversity modelling of birds and butterflies on Anjouan, Comoro Islands. Biological Conservation, 143(6), 1364–1374. doi:10.1016/j.biocon.2010.03.010 [Google Scholar]
  318. Marshall, E. J. P. , West, T. M. , & Kleijn, D. (2006). Impacts of an agri‐environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agriculture Ecosystems & Environment, 113(1–4), 36–44. doi:10.1016/j.agee.2005.08.036 [Google Scholar]
  319. Martin, P. S. , Gheler‐Costa, C. , Lopes, P. C. , Rosalino, L. M. , & Verdade, L. M. (2012). Terrestrial non‐volant small mammals in agro‐silvicultural landscapes of Southeastern Brazil. Forest Ecology and Management, 282, 185–195. doi:10.1016/j.foreco.2012.07.002 [Google Scholar]
  320. Matsumoto, T. , Itioka, T. , Yamane, S. , & Momose, K. (2009). Traditional land use associated with swidden agriculture changes encounter rates of the top predator, the army ant, in Southeast Asian tropical rain forests. Biodiversity and Conservation, 18(12), 3139–3151. doi:10.1007/s10531‐009‐9632‐4 [Google Scholar]
  321. Mayfield, M. M. , Ackerly, D. , & Daily, G. C. (2006). The diversity and conservation of plant reproductive and dispersal functional traits in human‐dominated tropical landscapes. Journal of Ecology, 94(3), 522–536. doi:10.1111/j.1365-2745.2006.01108.x [Google Scholar]
  322. McCarthy, J. L. , McCarthy, K. P. , Fuller, T. K. , & McCarthy, T. M. (2010). Assessing variation in wildlife biodiversity in the Tien Shan Mountains of Kyrgyzstan using ancillary camera‐trap photos. Mountain Research and Development, 30(3), 295–301. doi:10.1659/mrd‐journal‐d‐09‐00080.1 [Google Scholar]
  323. McFrederick, Q. S. , & LeBuhn, G. (2006). Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biological Conservation, 129(3), 372–382. doi:10.1016/j.biocon.2005.11.004 [Google Scholar]
  324. McKinney, M. L. (1997). Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annual Review of Ecology and Systematics, 28, 495–516. doi:10.1146/annurev.ecolsys.28.1.495 [Google Scholar]
  325. McNamara, S. , Erskine, P. D. , Lamb, D. , Chantalangsy, L. , & Boyle, S. (2012). Primary tree species diversity in secondary fallow forests of Laos. Forest Ecology and Management, 281, 93–99. doi:10.1016/j.foreco.2012.06.004 [Google Scholar]
  326. McShea, W. J. , Stewart, C. , Peterson, L. , Erb, P. , Stuebing, R. , & Giman, B. (2009). The importance of secondary forest blocks for terrestrial mammals within an Acacia/secondary forest matrix in Sarawak, Malaysia. Biological Conservation, 142(12), 3108–3119. doi:10.1016/j.biocon.2009.08.009 [Google Scholar]
  327. Medina, R. , Lara, F. , Albertos, B. , Draper, I. , Garilleti, R. , & Mazimpaka, V. (2010). Epiphytic bryophytes in harsh environments: The Juniperus thurifera forests. Journal of Bryology, 32(1), 23–31. doi:10.1179/037366810x12578498135715 [Google Scholar]
  328. Meijer, S. S. , Whittaker, R. J. , & Borges, P. A. V. (2011). The effects of land‐use change on arthropod richness and abundance on Santa Maria Island (Azores): Unmanaged plantations favour endemic beetles. Journal of Insect Conservation, 15(4), 505–522. doi:10.1007/s10841‐010‐9330‐2 [Google Scholar]
  329. Mena, J. L. , & Medellín, R. A. (2010). Small mammal assemblages in a disturbed tropical landscape at Pozuzo, Peru. Mammalian Biology, 75(1), 83–91. doi:10.1016/j.mambio.2009.08.006 [Google Scholar]
  330. Meyer, B. , Gaebele, V. , & Steffan‐Dewenter, I. D. (2007). Patch size and landscape effects on pollinators and seed set of the horseshoe vetch, Hippocrepis comosa, in an agricultural landscape of central Europe. Entomologia Generalis, 30(2), 173–185. [Google Scholar]
  331. Meyer, B. , Jauker, F. , & Steffan‐Dewenter, I. (2009). Contrasting resource‐dependent responses of hovery richness and density to landscape structure. Basic and Applied Ecology, 10(2), 178–186. doi:10.1016/j.baae.2008.01.001 [Google Scholar]
  332. Meyer, C. , Kreft, H. , Guralnick, R. , & Jetz, W. (2015). Global priorities for an effective information basis of biodiversity distributions. Nature Communications, 6, doi:10.1038/ncomms9221 [DOI] [PMC free article] [PubMed] [Google Scholar]
  333. Mico, E. , Garcia‐Lopez, A. , Brustel, H. , Padilla, A. , & Galante, E. (2013). Explaining the saproxylic beetle diversity of a protected Mediterranean area. Biodiversity and Conservation, 22(4), 889–904. doi:10.1007/s10531‐013‐0456‐x [Google Scholar]
  334. Milder, J. C. , DeClerck, F. A. J. , Sanfiorenzo, A. , Sanchez, D. M. , Tobar, D. E. , & Zuckerberg, B . (2010) Effects of farm and landscape management on bird and butterfly conservation in western Honduras. Ecosphere, 1 (1), art2. doi:10.1890/es10‐00003.1 [Google Scholar]
  335. Miranda, M. V. , Politi, N. , & Rivera, L. O. (2010). Unexpected changes in the bird assemblage in areas under selective logging in piedmont forest in northwestern Argentina. Ornitologia Neotropical, 21(3), 323–337. [Google Scholar]
  336. Mittermeier, R. A. , Gil, P. R. , & Mittermeier, C. G . (1997). Megadiversity: Earth's biologically wealthiest nations. Mexico City Mexico, CEMEX. [Google Scholar]
  337. Mittermeier, R. A. , Mittermeier, C. G. , Brooks, T. M. , Pilgrim, J. D. , Konstant, W. R. , da Fonseca, G. A. B. , & Kormos, C. (2003). Wilderness and biodiversity conservation. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10309–10313. doi:10.1073/pnas.1732458100 [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. Moir, M. L. , Brennan, K. E. C. , Koch, J. M. , Majer, J. D. , & Fletcher, M. J. (2005). Restoration of a forest ecosystem: The effects of vegetation and dispersal capabilities on the reassembly of plant‐dwelling arthropods. Forest Ecology and Management, 217(2–3), 294–306. doi:10.1016/j.foreco.2005.06.012 [Google Scholar]
  339. Moreno‐Mateos, D. , Rey Benayas, J. M. , Perez‐Camacho, L. , de la Montana, E. , Rebollo, S. , & Cayuela, L. (2011). Effects of land use on nocturnal birds in a Mediterranean agricultural landscape. Acta Ornithologica, 46(2), 173–182. doi:10.3161/000164511x625946 [Google Scholar]
  340. Muchane, M. N. , Karanja, D. , Wambugu, G. M. , Mutahi, J. M. , Masiga, C. W. , Mugoya, C. , & Muchai, M. (2012). Land use practices and their implications on soil macro‐fauna in Maasai Mara ecosystem. International Journal of Biodiversity and Conservation, 4(13), 500–514. doi:10.5897/ijbc12.030 [Google Scholar]
  341. Mudri‐Stojnic, S. , Andric, A. , Jozan, Z. , & Vujic, A. (2012). Pollinator diversity (Hymenoptera and Diptera) in semi‐natural habitats in Serbia during summer. Archives of Biological Sciences, 64(2), 777–786. doi:10.2298/abs1202777s [Google Scholar]
  342. Munyekenye, F. , Mwangi, E. , & Gichuki, N. (2008). Bird species richness and abundance in different forest types at Kakamega Forest, western Kenya. Ostrich, 79(1), 37–42. doi:10.2989/ostrich.2008.79.1.4.361 [Google Scholar]
  343. Myers, N. , Mittermeier, R. A. , Mittermeier, C. G. , da Fonseca, G. A. B. , & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. doi:10.1038/35002501 [DOI] [PubMed] [Google Scholar]
  344. Naidoo, R. (2004). Species richness and community composition of songbirds in a tropical forest‐agricultural landscape. Animal Conservation, 7, 93–105. doi:10.1017/s1367943003001185 [Google Scholar]
  345. Naithani, A. , & Bhatt, D. (2012). Bird community structure in natural and urbanized habitats along an altitudinal gradient in Pauri district (Garhwal Himalaya) of Uttarakhand state, India. Biologia, 67(4), 800–808. doi:10.2478/s11756‐012‐0068‐z [Google Scholar]
  346. Nakagawa, M. , Miguchi, H. , & Nakashizuka, T. (2006). The effects of various forest uses on small mammal communities in Sarawak, Malaysia. Forest Ecology and Management, 231(1–3), 55–62. doi:10.1016/j.foreco.2006.05.006 [Google Scholar]
  347. Nakamura, A. , Proctor, H. , & Catterall, C. P. (2003). Using soil and litter arthropods to assess the state of rainforest restoration. Ecological Management & Restoration, 4(Suppl.), S20–S28. doi:10.1046/j.1442‐8903.4.s.3.x [Google Scholar]
  348. Nakashima, Y. , Inoue, E. , & Akomo‐Okoue, E. (2013). Population density and habitat preferences of forest duikers in Moukalaba‐Doudou National Park, Gabon. African Zoology, 48(2), 395–399. doi:10.3377/004.048.0212 [Google Scholar]
  349. Naoe, S. , Sakai, S. , & Masaki, T. (2012). Effect of forest shape on habitat selection of birds in a plantation‐dominant landscape across seasons: Comparison between continuous and strip forests. Journal of Forest Research, 17(2), 219–223. doi:10.1007/s10310‐011‐0296‐z [Google Scholar]
  350. Navarrete, D. , & Halffter, G. (2008). Dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in continuous forest, forest fragments and cattle pastures in a landscape of Chiapas, Mexico: The effects of anthropogenic changes. Biodiversity and Conservation, 17(12), 2869–2898. doi:10.1007/s10531‐008‐9402‐8 [Google Scholar]
  351. Navarro, I. L. , Roman, A. K. , Gomez, F. H. , & Perez, H. A. (2011). Seasonal variation in dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) from Serrania de Coraza, Sucre (Colombia). Revista Colombiana de Ciencia Animal, 3(1), 102–110. [Google Scholar]
  352. Ndang'ang'a, P. , Njoroge, J. , & Githiru, M. (2013) Vegetation composition and structure influences bird species community assemblages in the highland agricultural landscape of Nyandarua, Kenya. Ostrich, 84 (3), 171–179. doi:10.2989/00306525.2013.860929 [Google Scholar]
  353. Neuschulz, E. L. , Botzat, A. , & Farwig, N. (2011). Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in South Africa. Oikos, 120(9), 1371–1379. doi:10.1111/j.1600‐0706.2011.19097.x [Google Scholar]
  354. Newbold, T. , Hudson, L. N. , Arnell, A. P. , Contu, S. , De Palma, A. , Ferrier, S. , … Purvis, A. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment Science, 353(6296), 288–291. doi:10.1126/science.aaf2201 [DOI] [PubMed] [Google Scholar]
  355. Newbold, T. , Hudson, L. N. , Hill, S. L. L. , Contu, S. , Gray, C. L. , Scharlemann, J. P. W. , … Purvis, A. (2016). Global patterns of terrestrial assemblage turnover within and among land uses. Ecography, 39, 1–13. doi:10.1111/ecog.01932 [Google Scholar]
  356. Newbold, T. , Hudson, L. N. , Hill, S. L. L. , Contu, S. , Lysenko, I. , Senior, R. A. , … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50. doi:10.1038/nature14324 [DOI] [PubMed] [Google Scholar]
  357. Newbold, T. , Hudson, L. N. , Phillips, H. R. , Hill, S. L. L. , Contu, S. , Lysenko, I. , … Purvis, A. (2014). A global model of the response of tropical and sub‐tropical forest biodiversity to anthropogenic pressures. Proceedings of the Royal Society B – Biological Sciences, 281(1792), doi:10.1098/rspb.2014.1371 [DOI] [PMC free article] [PubMed] [Google Scholar]
  358. Newbold, T. , Hudson, L. , Purves, D. W. , Scharlemann, J. P. W. , Mace, G. , & Purvis, A. (2012). Call for data: PREDICTS: Projecting responses of ecological diversity in changing terrestrial systems. Frontiers of Biogeography, 4(4), 155–156. [Google Scholar]
  359. Ngai, J. T. , Kirby, K. R. , Gilbert, B. , Starzomski, B. M. , Pelletier, A. J. D. , & Conner, J. C. R. (2008). The impact of land‐use change on larval insect communities: Testing the role of habitat elements in conservation. Ecoscience, 15(2), 160–168. doi:10.2980/15‐2‐3098 [Google Scholar]
  360. Nicolas, V. , Barriere, P. , Tapiero, A. , & Colyn, M. (2009). Shrew species diversity and abundance in Ziama Biosphere Reserve, Guinea: Comparison among primary forest, degraded forest and restoration plots. Biodiversity and Conservation, 18(8), 2043–2061. doi:10.1007/s10531‐008‐9572‐4 [Google Scholar]
  361. Nielsen, A. , Steffan‐Dewenter, I. , Westphal, C. , Messinger, O. , Potts, S. G. , Roberts, S. P. M. , … Petanidou, T. (2011). Assessing bee species richness in two Mediterranean communities: Importance of habitat type and sampling techniques. Ecological Research, 26(5), 969–983. doi:10.1007/s11284‐011‐0852‐1 [Google Scholar]
  362. Noreika, N. (2009). New records of rare species of Coleoptera found in Ukmergė district in 2004–2005. New and Rare for Lithuania Insect Species, 21, 68–71. [Google Scholar]
  363. Noreika, N. , & Kotze, D. J. (2012). Forest edge contrasts have a predictable effect on the spatial distribution of carabid beetles in urban forests. Journal of Insect Conservation, 16(6), 867–881. doi:10.1007/s10841‐012‐9474‐3 [Google Scholar]
  364. Norfolk, O. , Abdel‐Dayem, M. , & Gilbert, F. (2012). Rainwater harvesting and arthropod biodiversity within an arid agro‐ecosystem. Agriculture Ecosystems & Environment, 162, 8–14. doi:10.1016/j.agee.2012.08.007 [Google Scholar]
  365. Norfolk, O. , Eichhorn, M. P. , & Gilbert, F. (2013). Traditional agricultural gardens conserve wild plants and functional richness in arid South Sinai. Basic and Applied Ecology, 14(8), 659–669. doi:10.1016/j.baae.2013.10.004 [Google Scholar]
  366. Noriega, J. A. , Palacio, J. M. , Monroy‐G, J. D. , & Valencia, E. (2012). Estructura de un ensamblaje de escarabajos coprofagos (Coleoptera: Scarabaeinae) en tres sitios con diferente uso del suelo en Antioquia, Colombia. Actualidades Biologicas (Medellin), 34(96), 43–54. [Google Scholar]
  367. Noriega, J. A. , Realpe, E. , & Fagua, G. (2007). Diversidad de escarabajos coprofagos (Coleoptera: Scarabaeidae) en un bosque de galeria con tres estadios de alteracion. Universitas Scientiarum, 12, 51–63. [Google Scholar]
  368. Norris, K. (2012). Biodiversity in the context of ecosystem services: The applied need for systems approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1586), 191–199. doi:10.1098/rstb.2011.0176 [DOI] [PMC free article] [PubMed] [Google Scholar]
  369. Norton, D. A. , Espie, P. R. , Murray, W. , & Murray, J . (2006) Influence of pastoral management on plant biodiversity in a depleted short tussock grassland, Mackenzie Basin. New Zealand Journal of Ecology, 30(3), 335–344. doi:10092/26 [Google Scholar]
  370. Nöske, N. M. , Hilt, N. , Werner, F. A. , Brehm, G. , Fiedler, K. , Sipman, H. J. M. , & Gradstein, S. R. (2008). Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic and Applied Ecology, 9(1), 4–12. doi:10.1016/j.baae.2007.06.014 [Google Scholar]
  371. Numa, C. , Verdu, J. R. , Rueda, C. , & Galante, E. (2012). Comparing dung beetle species assemblages between protected areas and adjacent pasturelands in a Mediterranean savanna landscape. Rangeland Ecology & Management, 65(2), 137–143. doi:10.2111/rem‐d‐10-00050.1 [Google Scholar]
  372. Nyeko, P. (2009). Dung beetle assemblages and seasonality in primary forest and forest fragments on agricultural landscapes in Budongo, Uganda. Biotropica, 41(4), 476–484. doi:10.1111/j.1744‐7429.2009.00499.x [Google Scholar]
  373. O'Connor, T. G. (2005). Influence of land use on plant community composition and diversity in Highland Sourveld grassland in the southern Drakensberg, South Africa. Journal of Applied Ecology, 42(5), 975–988. doi:10.1111/j.1365‐2664.2005.01065.x [Google Scholar]
  374. O'Dea, N. , & Whittaker, R. J. (2007). How resilient are Andean montane forest bird communities to habitat degradation? Biodiversity and Conservation, 16(4), 1131–1159. doi:10.1007/s10531‐006‐9095‐9 [Google Scholar]
  375. Oertli, S. , Muller, A. , & Dorn, S. (2005). Ecological and seasonal patterns in the diversity of a species‐rich bee assemblage (Hymenoptera: Apoidea: Apiformes). European Journal of Entomology, 102(1), 53–63. doi:10.1016/j.biocon.2005.05.014 [Google Scholar]
  376. O'Farrell, P. J. , Donaldson, J. S. , Hoffman, M. T. , & Mader, A. D. (2008). Small mammal diversity and density on the Bokkeveld escarpment, South Africa – implications for conservation and livestock predation. African Zoology, 43(1), 117–124. doi:10.3377/1562-7020(2008)43[117:smdado]2.0.co;2 [Google Scholar]
  377. Ofori‐Boateng, C. , Oduro, W. , Hillers, A. , Norris, K. , Oppong, S. K. , Adum, G. B. , & Rodel, M. O. (2013). Differences in the effects of selective logging on amphibian assemblages in three West African forest types. Biotropica, 45(1), 94–101. doi:10.1111/j.1744‐7429.2012.00887.x [Google Scholar]
  378. Oke, C. (2013). Land snail diversity in post extraction secondary forest reserves in Edo State, Nigeria. African Journal of Ecology, 51(2), 244–254. doi:10.1111/aje.12029 [Google Scholar]
  379. Oke, O. C. , & Chokor, J. U. (2009). The effect of land use on snail species richness and diversity in the tropical rainforest of south‐western Nigeria. African Scientist, 10(2), 95–108. [Google Scholar]
  380. Oliveira, D. E. , Carrijo, T. F. , & Brandão, D. (2013). Species composition of termites (Isoptera) in different Cerrado vegetation physiognomies. Sociobiology, 60(2), 190–197. doi:10.13102/sociobiology.v60i2.190‐197 [Google Scholar]
  381. Oostra, V. , Gomes, L. G. L. , & Nijman, V. (2008). Implications of deforestation for the abundance of restricted‐range bird species in a Costa Rican cloud forest. Bird Conservation International, 18(1), 11–19. [Google Scholar]
  382. Osgathorpe, L. M. , Park, K. , & Goulson, D. (2012). The use of off‐farm habitats by foraging bumblebees in agricultural landscapes: Implications for conservation management. Apidologie, 43(2), 113–127. doi:10.1007/s13592‐011‐0083‐z [Google Scholar]
  383. Otavo, S. E. , Parrado‐Rosselli, A. , & Noriega, J. A . (2013) Superfamilia Scarabaeoidea (Insecta: Coleoptera) como elemento bioindicador de perturbación antropogénica en un parque nacional amazónico. Revista de Biología Tropical, 61(2), 735–752. [PubMed] [Google Scholar]
  384. Otto, C. R. V. , & Roloff, G. J. (2012). Songbird response to green‐tree retention prescriptions in clearcut forests. Forest Ecology and Management, 284, 241–250. doi:10.1016/j.foreco.2012.07.016 [Google Scholar]
  385. Owiunji, I. , & Plumptre, A. J. (1998). Bird communities in logged and unlogged compartments in Budongo Forest, Uganda. Forest Ecology and Management, 108(1–2), 115–126. doi:10.1016/s0378‐1127(98)00219‐9 [Google Scholar]
  386. Pacifici, M. , Santini, L. , Di Marco, M. , Baisero, D. , Francucci, L. , Marasini, G. G. , … Rondinini, C. (2013). Generation length for mammals. Nature Conservation, 5, 87–94. doi:10.3897/natureconservation.5.5734 [Google Scholar]
  387. Page, N. V. , Qureshi, Q. , Rawat, G. S. , & Kushalappa, C. G. (2010). Plant diversity in sacred forest fragments of Western Ghats: A comparative study of four life forms. Plant Ecology, 206(2), 237–250. doi:10.1007/s11258‐009‐9638‐8 [Google Scholar]
  388. Paradis, S. , & Work, T. T. (2011). Partial cutting does not maintain spider assemblages within the observed range of natural variability in Eastern Canadian black spruce forests. Forest Ecology and Management, 262(11), 2079–2093. doi:10.1016/j.foreco.2011.08.032 [Google Scholar]
  389. Paritsis, J. , & Aizen, M. A. (2008). Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagus dombeyi forests. Forest Ecology and Management, 255(5–6), 1575–1583. doi:10.1016/j.foreco.2007.11.015 [Google Scholar]
  390. Parra‐H, A. , & Nates‐Parra, G . (2007) Variation of the orchid bees community (Hymenoptera: Apidae) in three altered habitats of the Colombian “llano” piedmont. Revista de Biología Tropical, 55(3–4), 931–941. [PubMed] [Google Scholar]
  391. Parry, L. , Barlow, J. , & Peres, C. A. (2009). Hunting for sustainability in tropical secondary forests. Conservation Biology, 23(5), 1270–1280. doi:10.1111/j.1523‐1739.2009.01224.x [DOI] [PubMed] [Google Scholar]
  392. Pearman, P. B. (2002). The scale of community structure: Habitat variation and avian guilds in tropical forest understory. Ecological Monographs, 72(1), 19–39. doi:10.2307/3100083 [Google Scholar]
  393. Pe'er, G. , van Maanen, C. , Turbe, A. , Matsinos, Y. G. , & Kark, S . (2011) Butterfly diversity at the ecotone between agricultural and semi‐natural habitats across a climatic gradient. Diversity and Distributions, 17 (6), 1186–1197. doi:10.1111/j.1472‐4642.2011.00795.x [Google Scholar]
  394. Pelegrin, N. , & Bucher, E. H. (2012). Effects of habitat degradation on the lizard assemblage in the Arid Chaco, central Argentina. Journal of Arid Environments, 79, 13–19. doi:10.1016/j.jaridenv.2011.11.004 [Google Scholar]
  395. Pereira, H. M. , Ferrier, S. , Walters, M. , Geller, G. N. , Jongman, R. H. G. , Scholes, R. J. , … Wegmann, M. (2013). Essential biodiversity variables. Science, 339(6117), 277–278. doi:10.1126/science.1229931 [DOI] [PubMed] [Google Scholar]
  396. Peres, C. A. , & Nascimento, H. S. (2006). Impact of game hunting by the Kayapo of south‐eastern Amazonia: Implications for wildlife conservation in tropical forest indigenous reserves. Biodiversity and Conservation, 15(8), 2627–2653. doi:10.1007/s10531‐005‐5406‐9 [Google Scholar]
  397. Peri, P. L. , Lencinas, M. V. , Martínez Pastur, G. , Wardell‐Johnson, G. W. , & Lasagno, R . (2013) Diversity patterns in the steppe of Argentinean southern Patagonia: Environmental drivers and impact of grazing In Morales Prieto M. B. & Traba Diaz J. (Eds.), Steppe ecosystems: Biological diversity, management and restoration, p. 346 New York, USA: Nova Science Publishers Inc. [Google Scholar]
  398. Peters, M. K. , Fischer, G. , Schaab, G. , & Kraemer, M. (2009). Species compensation maintains abundance and raid rates of African swarm‐raiding army ants in rainforest fragments. Biological Conservation, 142(3), 668–675. doi:10.1016/j.biocon.2008.11.021 [Google Scholar]
  399. Peters, M. K. , Lung, T. , Schaab, G. , & Waegele, J. (2011). Deforestation and the population decline of the army ant Dorylus wilverthi in western Kenya over the last century. Journal of Applied Ecology, 48(3), 697–705. doi:10.1111/j.1365‐2664.2011.01959.x [Google Scholar]
  400. Pethiyagoda Jr, R. S . & Manamendra‐Arachchi, K. (2012). Endangered anurans in a novel forest in the highlands of Sri Lanka. Wildlife Research, 39(7), 641–648. doi:10.1071/wr12079 [Google Scholar]
  401. Pfeifer, M. , Lefebvre, V. , Gardner, T. A. , Arroyo‐Rodriguez, V. , Baeten, L. , Banks‐Leite, C. … Ewers, R. M. (2014). BIOFRAG – a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecology and Evolution, 4(9), 1524–1537. doi:10.1002/ece3.1036 [DOI] [PMC free article] [PubMed] [Google Scholar]
  402. Phalan, B. , Onial, M. , Balmford, A. , & Green, R. (2011). Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science, 333(6047), 1289–1291. doi:10.1126/science.1208742 [DOI] [PubMed] [Google Scholar]
  403. Pillsbury, F. C. , & Miller, J. R. (2008). Habitat and landscape characteristics underlying anuran community structure along an urban‐rural gradient. Ecological Applications, 18(5), 1107–1118. doi:10.1890/07‐1899.1 [DOI] [PubMed] [Google Scholar]
  404. Pincheira‐Ulbrich, J. , Rau, J. R. , & Smith‐Ramirez, C. (2012). Vascular epiphytes and climbing plants diversity in an agroforestal landscape in southern Chile: A comparison among native forest fragments. Boletin De La Sociedad Argentina De Botanica, 47(3–4), 411–426. [Google Scholar]
  405. Pineda, E. , & Halffter, G. (2004). Species diversity and habitat fragmentation: Frogs in a tropical montane landscape in Mexico. Biological Conservation, 117(5), 499–508. doi:10.1016/j.biocon.2003.08.009 [Google Scholar]
  406. Pineda, E. , & Lobo, J. M. (2008). Assessing the accuracy of species distribution models to predict amphibian species richness patterns. Journal of Animal Ecology, 78(1), 182–190. doi:10.1111/j.1365‐2656.2008.01471.xView [DOI] [PubMed] [Google Scholar]
  407. Poggio, S. L. , Chaneton, E. J. , & Ghersa, C. M. (2013). The arable plant diversity of intensively managed farmland: Effects of field position and crop type at local and landscape scales. Agriculture Ecosystems & Environment, 166, 55–64. doi:10.1016/j.agee.2012.01.013 [Google Scholar]
  408. Politi, N. , Hunter Jr, M . & Rivera, L. (2012). Assessing the effects of selective logging on birds in Neotropical piedmont and cloud montane forests. Biodiversity and Conservation, 21(12), 3131–3155. doi:10.1007/s10531‐012‐0358‐3 [Google Scholar]
  409. Pons, P. , & Wendenburg, C. (2005). The impact of fire and forest conversion into savanna on the bird communities of West Madagascan dry forests. Animal Conservation, 8, 183–193. doi:10.1017/s1367943005001940 [Google Scholar]
  410. Poveda, K. , Martinez, E. , Kersch‐Becker, M. , Bonilla, M. , & Tscharntke, T. (2012). Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. Journal of Applied Ecology, 49(2), 513–522. doi:10.1111/j.1365‐2664.2012.02120.x [Google Scholar]
  411. Power, E. F. , Kelly, D. L. , & Stout, J. C. (2012). Organic farming and landscape structure: Effects on insect‐pollinated plant diversity in intensively managed grasslands. PLoS One, 7(5), doi:10.1371/journal.pone.0038073 [DOI] [PMC free article] [PubMed] [Google Scholar]
  412. Power, E. F. , & Stout, J. C. (2011). Organic dairy farming: Impacts on insect‐ower interaction networks and pollination. Journal of Applied Ecology, 48(3), 561–569. doi:10.1111/j.1365‐2664.2010.01949.x [Google Scholar]
  413. Presley, S. J. , Willig, M. R. , Wunderle, J. , Joseph, M. , & Saldanha, L. N. (2008). Effects of reduced‐impact logging and forest physiognomy on bat populations of lowland Amazonian forest. Journal of Applied Ecology, 45(1), 14–25. doi:10.1111/j.1365‐2664.2007.01373.x [Google Scholar]
  414. Proença, V. M. , Pereira, H. M. , Guilherme, J. A. , & Vicente, L. (2010). Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal. Acta Oecologica‐International Journal of Ecology, 36(2), 219–226. doi:10.1016/j.actao.2010.01.002 [Google Scholar]
  415. Purvis, A. , Agapow, P.‐M. , Gittleman, J. L. , & Mace, G. M. (2000). Nonrandom extinction and the loss of evolutionary history. Science, 288(5464), 328–330. doi:10.1126/science.288.5464.328 [DOI] [PubMed] [Google Scholar]
  416. Quaranta, M. , Ambroselli, S. , Barro, P. , Bella, S. , Carini, A. , Celli, G. , … Zandigiacomo, P . (2004) Wild bees in agroecosystems and semi‐natural landscapes. 1997–2000 collection period in Italy. Bulletin of Insectology, 57 (1), 11–62. [Google Scholar]
  417. Quintero, C. , Morales, C. L. , & Aizen, M. A. (2010). Effects of anthropogenic habitat disturbance on local pollinator diversity and species turnover across a precipitation gradient. Biodiversity and Conservation, 19(1), 257–274. doi:10.1007/s10531‐009‐9720‐5 [Google Scholar]
  418. R Core Team (2015). R: A Language and Environment for Statistical Computing. http://www.r-project.org
  419. Rader, R. , Bartomeus, I. , Tylianakis, J. M. , & Laliberte, E. (2014). The winners and losers of land use intensification: Pollinator community disassembly is non‐random and alters functional diversity. Diversity and Distributions, 20(8), 908–917. doi:10.1111/ddi.12221 [Google Scholar]
  420. Ramesh, B. R. , Swaminath, M. H. , Patil, S. V. , Dasappa, Pélissier, R. , Venugopal, P. D. , … Ramalingam, S. (2010). Forest stand structure and composition in 96 sites along environmental gradients in the central Western Ghats of India. Ecology, 91(10), 3118. doi:10.1890/10‐0133.1 [Google Scholar]
  421. Ramos‐Robles, M. , Gallina, S. , & Mandujano, S. (2013). Habitat and human factors associated with white‐tailed deer density in the tropical dry forest of Tehuacan‐Cuicatlan Biosphere Reserve, Mexico. Tropical Conservation Science, 6(1), 70–86. [Google Scholar]
  422. Ranganathan, J. , Chan, K. M. A. , & Daily, G. C. (2007). Satellite detection of bird communities in tropical countryside. Ecological Applications, 17(5), 1499–1510. doi:10.1890/06‐0285.1 [DOI] [PubMed] [Google Scholar]
  423. Ranganathan, J. , Daniels, R. J. R. , Chandran, M. D. S. , Ehrlich, P. R. , & Daily, G. C. (2008). Sustaining biodiversity in ancient tropical countryside. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17852–17854. doi:10.1073/pnas.0808874105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  424. Rasmussen, C. (2009). Diversity and abundance of orchid bees (Hymenoptera: Apidae, Euglossini) in a tropical rainforest succession. Neotropical Entomology, 38(1), 66–73. doi:10.1590/s1519‐566x2009000100006 [DOI] [PubMed] [Google Scholar]
  425. Raub, F. , Hoefer, H. , Scheuermann, L. , & Brandl, R. (2014). The conservation value of secondary forests in the southern Brazilian Mata Atlantica from a spider perspective. Journal of Arachnology, 42(1), 52–73. doi:10.1636/p13‐47.1 [Google Scholar]
  426. Redpath, N. , Osgathorpe, L. M. , Park, K. , & Goulson, D. (2010). Crofting and bumblebee conservation: The impact of land management practices on bumblebee populations in northwest Scotland. Biological Conservation, 143(2), 492–500. doi:10.1016/j.biocon.2009.11.019 [Google Scholar]
  427. Reid, J. L. , Harris, J. B. C. , & Zahawi, R. A. (2012). Avian habitat preference in tropical forest restoration in southern Costa Rica. Biotropica, 44(3), 350–359. doi:10.1111/j.1744‐7429.2011.00814.x [Google Scholar]
  428. Reis, Y. T. , & Cancello, E. M. (2007). Termite (Insecta, Isoptera) richness in primary and secondary Atlantic Forest in southeastern Bahia. Iheringia Serie Zoologia, 97(3), 229–234. [Google Scholar]
  429. Rey‐Benayas, J. M. , Galvan, I. , & Carrascal, L. M. (2010). Differential effects of vegetation restoration in Mediterranean abandoned cropland by secondary succession and pine plantations on bird assemblages. Forest Ecology and Management, 260(1), 87–95. doi:10.1016/j.foreco.2010.04.004 [Google Scholar]
  430. Reynolds, C. , & Symes, C. T. (2013). Grassland bird response to vegetation structural heterogeneity and clearing of invasive bramble. African Zoology, 48(2), 228–239. doi:10.3377/004.048.0217 [Google Scholar]
  431. Rey‐Velasco, J. C. , & Miranda‐Esquivel, D. R. (2012) Unpublished data of the response of ground beetles (Coleoptera: Carabidae) in the northeastern Colombian Andes to habitat modification.
  432. Ribeiro, D. B. , & Freitas, A. V. L. (2012). The effect of reduced‐impact logging on fruit‐feeding butterflies in Central Amazon, Brazil. Journal of Insect Conservation, 16(5), 733–744. doi:10.1007/s10841‐012‐9458‐3 [Google Scholar]
  433. Richards, M. H. , Rutgers‐Kelly, A. , Gibbs, J. , Vickruck, J. L. , Rehan, S. M. , & Sheffield, C. S. (2011). Bee diversity in naturalizing patches of Carolinian grasslands in southern Ontario, Canada. Canadian Entomologist, 143(3), 279–299. doi:10.4039/n11‐010 [Google Scholar]
  434. Richardson, B. A. , Richardson, M. J. , & Soto‐Adames, F. N. (2005). Separating the effects of forest type and elevation on the diversity of litter invertebrate communities in a humid tropical forest in Puerto Rico. Journal of Animal Ecology, 74(5), 926–936. doi:10.1111/j.1365‐2656.2005.00990.x [Google Scholar]
  435. Robinson, R. M. , & Williams, M. R. (2011). FORESTCHECK: The response of epigeous macrofungi to silviculture in jarrah (Eucalyptus marginata) forest. Australian Forestry, 74(4), 288–302. doi:10.1080/00049158.2011.10676373 [Google Scholar]
  436. Robles, C. A. , Carmaran, C. C. , & Lopez, S. E. (2011). Screening of xylophagous fungi associated with Platanus acerifolia in urban landscapes: Biodiversity and potential biodeterioration. Landscape and Urban Planning, 100(1–2), 129–135. doi:10.1016/j.landurbplan.2010.12.003 [Google Scholar]
  437. Rodrigues, M. M. , Uchoa, M. A. , & Ide, S. (2013). Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil. Brazilian Journal of Biology, 73(1), 211–220. [DOI] [PubMed] [Google Scholar]
  438. Römbke, J. , Schmidt, P. , & Höfer, H. (2009). The earthworm fauna of regenerating forests and anthropogenic habitats in the coastal region of Paraná. Pesquisa Agropecuaria Brasileira, 44(8), 1040–1049. doi:10.1590/s0100‐204x2009000800037 [Google Scholar]
  439. Romero‐Duque, L. P. , Jaramillo, V. J. , & Perez‐Jimenez, A. (2007). Structure and diversity of secondary tropical dry forests in Mexico, differing in their prior land‐use history. Forest Ecology and Management, 253(1–3), 38–47. doi:10.1016/j.foreco.2007.07.002 [Google Scholar]
  440. Rös, M. , Escobar, F. , & Halffter, G. (2012). How dung beetles respond to a human‐modified variegated landscape in Mexican cloud forest: A study of biodiversity integrating ecological and biogeographical perspectives. Diversity and Distributions, 18(4), 377–389. doi:10.1111/j.1472‐4642.2011.00834.x [Google Scholar]
  441. Roskov, Y. , Kunz, T. , Paglinawan, L. , Orrell, T. , Nicolson, D. , Culham, A. , … De Wever, A . (2013) Species 2000 & Catalogue of Life, 2013 Annual Checklist. http://catalogueoife.org/annual-checklist/2013/
  442. Rosselli, L . (2011). Factores ambientales relacionados con la presencia y abundancia de las aves de los humedales de la Sabana de Bogotá. PhD thesis, Universidad Nacional de Colombia, Bogotá, Colombia.
  443. Roth, D. S. , Perfecto, I. , & Rathcke, B. (1994). The effects of management systems on ground‐foraging ant diversity in Costa Rica. Ecological Applications, 4(3), 423–436. doi:10.2307/1941947 [Google Scholar]
  444. Rousseau, G. , Deheuvels, O. , Rodriguez Arias, I. , & Somarriba, E. (2012). Indicating soil quality in cacao‐based agroforestry systems and old‐growth forests: The potential of soil macrofauna assemblage. Ecological Indicators, 23, 535–543. doi:10.1016/j.ecolind.2012.05.008 [Google Scholar]
  445. Rousseau, L. , Fonte, S. J. , Tellez, O. , van der Hoek, R. , & Lavelle, P. (2013). Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecological Indicators, 27, 71–82. doi:10.1016/j.ecolind.2012.11.020 [Google Scholar]
  446. Rubio, A. V. , & Simonetti, J. A. (2011). Lizard assemblages in a fragmented landscape of central Chile. European Journal of Wildlife Research, 57(1), 195–199. doi:10.1007/s10344‐010‐0434‐5 [Google Scholar]
  447. Safian, S. , Csontos, G. , & Winkler, D. (2011). Butterfly community recovery in degraded rainforest habitats in the Upper Guinean Forest Zone (Kakum forest, Ghana). Journal of Insect Conservation, 15(1–2), 351–359. doi:10.1007/s10841‐010‐9343‐x [Google Scholar]
  448. Sakchoowong, W. , Nomura, S. , Ogata, K. , & Chanpaisaeng, J. (2008). Diversity of pselaphine beetles (Coleoptera: Staphylinidae: Pselaphinae) in eastern Thailand. Entomological Science, 11(3), 301–313. doi:10.1111/j.1479‐8298.2008.00281.x [Google Scholar]
  449. Saldaña‐Vázquez, R. A. , Sosa, V. J. , Hernández‐Montero, J. R. , & López‐Barrera, F. (2010). Abundance responses of frugivorous bats (Stenodermatinae) to coffee cultivation and selective logging practices in mountainous central Veracruz, Mexico. Biodiversity and Conservation, 19(7), 2111–2124. doi:10.1007/s10531‐010‐9829‐6 [Google Scholar]
  450. Sam, K. , Koane, B. , Jeppy, S. , & Novotny, V. (2014). Effect of forest fragmentation on bird species richness in Papua New Guinea. Journal of Field Ornithology, 85(2), 152–167. doi:10.1111/jofo.12057 [Google Scholar]
  451. Samnegård, U. , Persson, A. S. , & Smith, H. G. (2011). Gardens benefit bees and enhance pollination in intensively managed farmland. Biological Conservation, 144(11), 2602–2606. doi:10.1016/j.biocon.2011.07.008 [Google Scholar]
  452. Santana, J. , Porto, M. , Gordinho, L. , Reino, L. , & Beja, P. (2012). Long‐term responses of Mediterranean birds to forest fuel management. Journal of Applied Ecology, 49(3), 632–643. doi:10.1111/j.1365‐2664.2012.02141.x [Google Scholar]
  453. de Sassi, C. , Lewis, O. T. , & Tylianakis, J. M. (2012). Plant‐mediated and nonadditive effects of two global change drivers on an insect herbivore community. Ecology, 93(8), 1892–1901. doi:10.1890/11‐1839.1 [DOI] [PubMed] [Google Scholar]
  454. Savage, J. , Wheeler, T. A. , Moores, A. M. A. , & Taillefer, A. G. (2011). Effects of habitat size, vegetation cover, and surrounding land use on Diptera diversity in temperate nearctic bogs. Wetlands, 31(1), 125–134. doi:10.1007/s13157‐010‐0133‐8 [Google Scholar]
  455. Schilthuizen, M. , Liew, T. S. , Bin Elahan, B. , & Lackman‐Ancrenaz, I. (2005). Effects of karst forest degradation on pulmonate and prosobranch land snail communities in Sabah. Malaysian Borneo. Conservation Biology, 19(3), 949–954. doi:10.1111/j.1523‐1739.2005.00209.x [Google Scholar]
  456. Schmidt, A. C. , Fraser, L. H. , Carlyle, C. N. , & Bassett, E. R. L. (2012). Does cattle grazing affect ant abundance and diversity in temperate grasslands? Rangeland Ecology & Management, 65(3), 292–298. doi:10.2111/rem‐d‐11-00100.1 [Google Scholar]
  457. Schmitt, C. B. , Senbeta, F. , Denich, M. , Preisinger, H. , & Boehmer, H. J. (2010). Wild coffee management and plant diversity in the montane rainforest of southwestern Ethiopia. African Journal of Ecology, 48(1), 78–86. doi:10.1111/j.1365‐2028.2009.01084.x [Google Scholar]
  458. Scholes, R. J. , & Biggs, R. (2005). A biodiversity intactness index. Nature, 434(7029), 45–49. doi:10.1038/nature03289 [DOI] [PubMed] [Google Scholar]
  459. Schon, N. L. , Mackay, A. D. , & Minor, M. A. (2011). Soil fauna in sheep‐grazed hill pastures under organic and conventional livestock management and in an adjacent ungrazed pasture. Pedobiologia, 54(3), 161–168. doi:10.1016/j.pedobi.2011.01.001 [Google Scholar]
  460. Schon, N. L. , Mackay, A. D. , Minor, M. A. , Yeates, G. W. , & Hedley, M. J. (2008). Soil fauna in grazed New Zealand hill country pastures at two management intensities. Applied Soil Ecology, 40(2), 218–228. doi:10.1016/j.apsoil.2008.04.007 [Google Scholar]
  461. Schon, N. L. , Mackay, A. D. , Yeates, G. W. , & Minor, M. A. (2010). Separating the effects of defoliation and dairy cow treading pressure on the abundance and diversity of soil invertebrates in pastures. Applied Soil Ecology, 46(2), 209–221. doi:10.1016/j.apsoil.2010.08.011 [Google Scholar]
  462. Schüepp, C. , Herrmann, J. D. , Herzog, F. , & Schmidt‐Entling, M. H. (2011). Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies. Oecologia, 165(3), 713–721. doi:10.1007/s00442‐010‐1746‐6 [DOI] [PubMed] [Google Scholar]
  463. Schüepp, C. , Rittiner, S. , & Entling, M. H. (2012). High bee and wasp diversity in a heterogeneous tropical farming system compared to protected forest. PLoS One, 7(12), e52109. doi:10.1371/journal.pone.0052109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  464. Schumann, K. , Wittig, R. , Thiombiano, A. , Becker, U. , & Hahn, K. (2011). Impact of land‐use type and harvesting on population structure of a non‐timber forest product‐providing tree in a semi‐arid savanna, West Africa. Biological Conservation, 144(9), 2369–2376. doi:10.1016/j.biocon.2011.06.018 [Google Scholar]
  465. Scott, D. M. , Brown, D. , Mahood, S. , Denton, B. , Silburn, A. , & Rakotondraparany, F. (2006). The impacts of forest clearance on lizard, small mammal and bird communities in the arid spiny forest, southern Madagascar. Biological Conservation, 127(1), 72–87. doi:10.1016/j.biocon.2005.07.014 [Google Scholar]
  466. Scott, K. A. , Setterfield, S. A. , Douglas, M. M. , & Andersen, A. N. (2010). Fire tolerance of perennial grass tussocks in a savanna woodland. Austral Ecology, 35(8), 858–861. doi:10.1111/j.1442‐9993.2009.02091.x [Google Scholar]
  467. Sedlock, J. L. , Weyandt, S. E. , Cororan, L. , Damerow, M. , Hwa, S. , & Pauli, B. (2008). Bat diversity in tropical forest and agro‐pastoral habitats within a protected area in the Philippines. Acta Chiropterologica, 10(2), 349–358. doi:10.3161/150811008x414926 [Google Scholar]
  468. Shafie, N. J. , Sah, S. A. M. , Latip, N. S. A. , Azman, N. M. , & Khairuddin, N. L. (2011). Diversity pattern of bats at two contrasting habitat types along Kerian River, Perak, Malaysia. Tropical Life Sciences Research, 22(2), 13–22. [PMC free article] [PubMed] [Google Scholar]
  469. Shahabuddin, G. , & Kumar, R. (2006). Influence of anthropogenic disturbance on birds of tropical dry forest: The role of vegetation structure. Animal Conservation, 9(4), 404–413. doi:10.1111/j.1469‐1795.2006.00051.x [Google Scholar]
  470. Shahabuddin, G. , & Kumar, R. (2007). Effects of extractive disturbance on bird assemblages, vegetation structure and floristics in tropical scrub forest, Sariska Tiger Reserve, India. Forest Ecology and Management, 246(2–3), 175–185. doi:10.1016/j.foreco.2007.03.061 [Google Scholar]
  471. Shannon, G. , Druce, D. J. , Page, B. R. , Eckhardt, H. C. , Grant, R. , & Slotow, R. (2008). The utilization of large savanna trees by elephant in southern Kruger National Park. Journal of Tropical Ecology, 24, 281–289. doi:10.1017/s0266467408004951 [Google Scholar]
  472. Sheil, D. , Puri, R. K. , Basuki, I. , van Heist, M. , Wan, M. , Liswanti, N. , … Wijaya, A. (2002). Exploring biological diversity, environment and local people's perspectives in forest landscapes: Methods for a multidisciplinary landscape assessment. Technical report, Center for International Forestry Research (CIFOR), Jakarta, Indonesia. [Google Scholar]
  473. Sheldon, F. , Styring, A. , & Hosner, P. (2010). Bird species richness in a Bornean exotic tree plantation: A long‐term perspective. Biological Conservation, 143(2), 399–407. doi:10.1016/j.biocon.2009.11.004 [Google Scholar]
  474. Shochat, E. , Stefanov, W. L. , Whitehouse, M. E. A. , & Faeth, S. H. (2004). Urbanization and spider diversity: Influences of human modification of habitat structure and productivity. Ecological Applications, 14(1), 268–280. doi:10.1890/02‐5341 [Google Scholar]
  475. Shuler, R. E. , Roulston, T. H. , & Farris, G. E. (2005). Farming practices influence wild pollinator populations on squash and pumpkin. Journal of Economic Entomology, 98(3), 790–795. doi:10.1603/0022‐0493‐98.3.790 [DOI] [PubMed] [Google Scholar]
  476. Siebert, S. J. (2011). Patterns of plant species richness of temperate and tropical grassland in South Africa. Plant Ecology and Evolution, 144(3), 249–254. doi:10.5091/plecevo.2011.501 [Google Scholar]
  477. da Silva, P. G . (2011) Espécies de Scarabaeinae (Coleoptera: Scarabaeidae) de fragmentos florestais com diferentes níveis de alteração em Santa Maria, Rio Grande do Sul. MSc thesis, Universidade Federal de Santa Maria, Santa Maria, Brazil.
  478. Silva, F. A. B. , Costa, C. M. Q. , Moura, R. C. , & Farias, A. I. (2010). Study of the dung beetle (Coleoptera: Scarabaeidae) community at two sites: Atlantic forest and clear‐cut, Pernambuco, Brazil. Environmental Entomology, 39(2), 359–367. doi:10.1603/en09180 [DOI] [PubMed] [Google Scholar]
  479. Simkin, S. M. , Allen, E. B. , Bowman, W. D. , Clark, C. M. , Belnap, J. , Brooks, … Waller, D. M . (2016). Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America, 113(15), 4086–4091. doi:10.1073/pnas.1515241113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  480. Slade, E. M. , Mann, D. J. , & Lewis, O. T. (2011). Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biological Conservation, 144(1), 166–174. doi:10.1016/j.biocon.2010.08.011 [Google Scholar]
  481. Smith, J . (2006). Arable field margins increase soil macroinvertebrate biodiversity in agroecosystems. PhD thesis, University of Reading, Reading, U.K.
  482. Smith, J. , Potts, S. , & Eggleton, P. (2008). Evaluating the effciency of sampling methods in assessing soil macrofauna communities in arable systems. European Journal of Soil Biology, 44(3), 271–276. doi:10.1016/j.ejsobi.2008.02.002 [Google Scholar]
  483. Smith, J. , Potts, S. G. , Woodcock, B. A. , & Eggleton, P. (2008). Can arable field margins be managed to enhance their biodiversity, conservation and functional value for soil macrofauna? Journal of Applied Ecology, 45(1), 269–278. doi:10.1111/j.1365-2664.2007.01433.x [Google Scholar]
  484. Smith‐Pardo, A. , & Gonzalez, V. H . (2007) Diversidad de abejas (Hymenoptera: Apoidea) en estados sucesionales del bosque humedo tropical. Acta Biológica Colombiana, 12 (1), 43–55. [Google Scholar]
  485. Sodhi, N. S. , Wilcove, D. S. , Lee, T. M. , Şekercioğlu, C. H. , Subaraj, R. , Bernard, H. , … Brook, B. W. (2010) Deforestation and avian extinction on tropical landbridge islands. Conservation Biology, 24 (5), 1290–1298. doi:10.1111/j.1523‐1739.2010.01495.x [DOI] [PubMed] [Google Scholar]
  486. Soh, M. C. K. , Sodhi, N. S. , & Lim, S. L. H. (2006). High sensitivity of montane bird communities to habitat disturbance in Peninsular Malaysia. Biological Conservation, 129(2), 149–166. doi:10.1016/j.biocon.2005.10.030 [Google Scholar]
  487. Sosa, R. A. , Benz, V. A. , Galea, J. M. , & Poggio Herrero, I. V . (2010) Efecto del grado de disturbio sobre el ensamble de aves en la reserva provincial Parque Luro, La Pampa, Argentina. Revista de la Asociación Argentina de Ecología de Paisajes, 1 (1), 101–110. [Google Scholar]
  488. de Souza, V. M. , de Souza, B. , & Morato, E. F. (2008). Effect of the forest succession on the anurans (Amphibia: Anura) of the Reserve Catuaba and its periphery, Acre, southwestern Amazonia. Revista Brasileira de Zoologia, 25(1), 49–57. [Google Scholar]
  489. Sridhar, H. , Raman, T. R. S. , & Mudappa, D. (2008). Mammal persistence and abundance in tropical rainforest remnants in the southern Western Ghats, India. Current Science, 94(6), 748–757. [Google Scholar]
  490. Steffen, W. , Richardson, K. , Rockström, J. , Cornell, S. E. , Fetzer, I. , Bennett, E. M. , … Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. doi:10.1126/science.1259855 [DOI] [PubMed] [Google Scholar]
  491. St‐Laurent, M. H. , Ferron, J. , Hins, C. , & Gagnon, R. (2007). Effects of stand structure and landscape characteristics on habitat use by birds and small mammals in managed boreal forest of eastern Canada. Canadian Journal of Forest Research‐Revue Canadienne de Recherche Forestiere, 37(8), 1298–1309. doi:10.1139/xo6‐295 [Google Scholar]
  492. Stouffer, P. C. , Johnson, E. I. , Bierregaard, J. , Richard, O. , & Lovejoy, T. E. (2011). Understory bird communities in Amazonian rainforest fragments: Species turnover through 25 years post‐isolation in recovering landscapes. PLoS One, 6(6), doi:10.1371/journal.pone.0020543 [DOI] [PMC free article] [PubMed] [Google Scholar]
  493. Strauch, A. M. , & Eby, S. (2012). The influence of fire frequency on the abundance of Maerua subcordata in the Serengeti National Park, Tanzania. Journal of Plant Ecology, 5(4), 400–406. doi:10.1093/jpe/rts008 [Google Scholar]
  494. Ström, L. , Hylander, K. , & Dynesius, M. (2009). Different long‐term and short‐term responses of land snails to clear‐cutting of boreal stream‐side forests. Biological Conservation, 142(8), 1580–1587. doi:10.1016/j.biocon.2009.02.028 [Google Scholar]
  495. Struebig, M. J. , Kingston, T. , Zubaid, A. , Mohd‐Adnan, A. , & Rossiter, S. J. (2008). Conservation value of forest fragments to Palaeotropical bats. Biological Conservation, 141(8), 2112–2126. doi:10.1016/j.biocon.2008.06.009 [Google Scholar]
  496. Su, Z. M. , Zhang, R. Z. , & Qiu, J. X. (2011). Decline in the diversity of willow trunk‐dwelling weevils (Coleoptera: Curculionoidea) as a result of urban expansion in Beijing, China. Journal of Insect Conservation, 15(3), 367–377. doi:10.1007/s10841‐010‐9310‐6 [Google Scholar]
  497. Suarez‐Rubio, M. , & Thomlinson, J. R. (2009). Landscape and patch‐level factors influence bird communities in an urbanized tropical island. Biological Conservation, 142(7), 1311–1321. doi:10.1016/j.biocon.2008.12.035 [Google Scholar]
  498. Sugiura, S. , Tsuru, T. , Yamaura, Y. , & Makihara, H. (2009). Small off‐shore islands can serve as important refuges for endemic beetle conservation. Journal of Insect Conservation, 13(4), 377–385. doi:10.1007/s10841‐008‐9185‐y [Google Scholar]
  499. Summerville, K. S. (2011). Managing the forest for more than the trees: Effects of experimental timber harvest on forest Lepidoptera. Ecological Applications, 21(3), 806–816. doi:10.1890/10‐0715.1 [DOI] [PubMed] [Google Scholar]
  500. Summerville, K. S. , Conoan, C. J. , & Steichen, R. M. (2006). Species traits as predictors of lepidopteran composition in restored and remnant tallgrass prairies. Ecological Applications, 16(3), 891–900. doi:10.1890/1051-0761(2006)016[0891:stapol]2.0.co;2 [DOI] [PubMed] [Google Scholar]
  501. Summerville, K. S. , & Crist, T. O. (2002). Effects of timber harvest on forest Lepidoptera: Community, guild and species responses. Ecological Applications, 12(3), 820–835. doi:10.1890/1051-0761(2002)012[0820:eothof]2.0.co;2 [Google Scholar]
  502. Sung, Y. H. , Karraker, N. E. , & Hau, B. C. H. (2012). Terrestrial herpetofaunal assemblages in secondary forests and exotic Lophostemon confertus plantations in South China. Forest Ecology and Management, 270, 71–77. doi:10.1016/j.foreco.2012.01.011 [Google Scholar]
  503. Sutrisno, H. (2010). The impact of human activities to dynamic of insect communities: A case study in Gunung Salak, West Java. HAYATI Journal of Biosciences, 17(4), 161–166. doi:10.4308/hjb.17.4.161 [Google Scholar]
  504. Svenning, J. C. (1998). The effect of land‐use on the local distribution of palm species in an Andean rain forest fragment in northwestern Ecuador. Biodiversity and Conservation, 7(12), 1529–1537. doi:10.1023/a:1008831600795 [Google Scholar]
  505. The BioTIME Research Group (2016). The BioTIME database. http://synergy.st-andrews.ac.uk/biotime/
  506. The Nature Conservancy (2009). Terrestrial ecoregions of the world. http://maps.tnc.org/gis.data.html
  507. Theoharides, K. A. , & Dukes, J. S. (2007). Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176(2), 256–273. doi:10.1111/j.1469‐8137.2007.02207.x [DOI] [PubMed] [Google Scholar]
  508. Thibault, K. M. , Supp, S. R. , Giffin, M. , White, E. P. , & Ernest, S. K. M. (2011). Species composition and abundance of mammalian communities. Ecology, 92(2316), 2316. doi:10.1890/11‐0262.1. [Google Scholar]
  509. de Thoisy, B. , Richard‐Hansen, C. , Goguillon, B. , Joubert, P. , Obstancias, J. , Winterton, P. , & Brosse, S. (2010). Rapid evaluation of threats to biodiversity: Human footprint score and large vertebrate species responses in French Guiana. Biodiversity and Conservation, 19(6), 1567–1584. doi:10.1007/s10531‐010‐9787‐z [Google Scholar]
  510. Threlfall, C. G. , Law, B. , & Banks, P. B. (2012). Sensitivity of insectivorous bats to urbanization: Implications for suburban conservation planning. Biological Conservation, 146(1), 41–52. doi:10.1016/j.biocon.2011.11.026 [Google Scholar]
  511. Tittensor, D. P. , Walpole, M. , Hill, S. L. , Boyce, D. G. , Britten, G. L. , Burgess, N. D. , … Ye, Y. (2014). A mid‐term analysis of progress toward international biodiversity targets. Science, 346(6206), 241–244. doi:10.1126/science.1257484 [DOI] [PubMed] [Google Scholar]
  512. Todd, J. H. , Malone, L. A. , McArdle, B. H. , Benge, J. , Poulton, J. , Thorpe, S. , & Beggs, J. R. (2011). Invertebrate community richness in New Zealand kiwifruit orchards under organic or integrated pest management. Agriculture, Ecosystems & Environment, 141(1–2), 32–38. doi:10.1016/j.agee.2011.02.007 [Google Scholar]
  513. Tonietto, R. , Fant, J. , Ascher, J. , Ellis, K. , & Larkin, D. (2011). A comparison of bee communities of Chicago green roofs, parks and prairies. Landscape and Urban Planning, 103(1), 102–108. doi:10.1016/j.landurbplan.2011.07.004 [Google Scholar]
  514. Torre, I. , Bros, V. , & Santos, X. (2014). Assessing the impact of reforestation on the diversity of Mediterranean terrestrial Gastropoda. Biodiversity and Conservation, 23(10), 2579–2589. doi:10.1007/s10531‐014‐0740‐4 [Google Scholar]
  515. Travis, J. M. J. (2003). Climate change and habitat destruction: A deadly anthropogenic cocktail. Proceedings of the Royal Society B – Biological Sciences, 270(1514), 467–473. doi:10.1098/rspb.2002.2246 [DOI] [PMC free article] [PubMed] [Google Scholar]
  516. Tuck, S. L. , Phillips, H. R. P. , Hintzen, R. E. , Scharlemann, J. P. W. , Purvis, A. , & Hudson, L. N. (2014). MODISTools‐downloading and processing MODIS remotely sensed data in R. Ecology and Evolution, 4(24), 4658–4668. doi:10.1002/ece3.1273 [DOI] [PMC free article] [PubMed] [Google Scholar]
  517. Turner, E. C. , & Foster, W. A. (2009). The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. Journal of Tropical Ecology, 25, 23–30. doi:10.1017/s0266467408005658 [Google Scholar]
  518. Tylianakis, J. M. , Klein, A. M. , & Tscharntke, T. (2005). Spatiotemporal variation in the diversity of hymenoptera across a tropical habitat gradient. Ecology, 86(12), 3296–3302. doi:10.1890/05‐0371 [DOI] [PubMed] [Google Scholar]
  519. Uehara‐Prado, M. (2005). Effects of land use on ant species composition and diaspore removal in exotic grasslands in the Brazilian Pantanal (Hymenoptera: Formicidae). Sociobiology, 45(3), 915–923. [Google Scholar]
  520. Uehara‐Prado, M. , Brown, K. S. Jr., & Lucci Freitas, A. V. (2007). Species richness, composition and abundance of fruit‐feeding butterflies in the Brazilian Atlantic Forest: Comparison between a fragmented and a continuous landscape. Global Ecology and Biogeography, 16(1), 43–54. doi:10.1111/j.1466‐822x.2006.00267.x [Google Scholar]
  521. Uehara‐Prado, M. , Fernandes, J. D. , Bello, A. D. , Machado, G. , Santos, A. J. , Vaz‐de‐Mello, F. Z. , & Freitas, A. V. L. (2009). Selecting terrestrial arthropods as indicators of small‐scale disturbance: A first approach in the Brazilian Atlantic Forest. Biological Conservation, 142(6), 1220–1228. doi:10.1016/j.biocon.2009.01.008 [Google Scholar]
  522. Urbina‐Cardona, J. N. , Londoño‐Murcia, M. C. , & García‐Ávila, D. G. (2008). Spatio‐temporal dymanics of snake diversity in four habitats with different degrees of anthropogenic disturbance in the Gorgona Island National Natural Park in the Colombian Pacific. Caldasia, 30(2), 479–493. [Google Scholar]
  523. Urbina‐Cardona, J. N. , Olivares‐Perez, M. , & Reynoso, V. H. (2006). Herpetofauna diversity and microenvironment correlates across a pasture‐edge‐interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Reserve of Veracruz, Mexico. Biological Conservation, 132(1), 61–75. doi:10.1016/j.biocon.2006.03.014 [Google Scholar]
  524. Vallan, D. (2002). Effects of anthropogenic environmental changes on amphibian diversity in the rain forests of eastern Madagascar. Journal of Tropical Ecology, 18, 725–742. doi:10.1017/s026646740200247x [Google Scholar]
  525. Vanbergen, A. J. , Woodcock, B. A. , Watt, A. D. , & Niemela, J. (2005). Effect of land‐use heterogeneity on carabid communities at the landscape scale. Ecography, 28(1), 3–16. doi:10.1111/j.0906‐7590.2005.03991.x [Google Scholar]
  526. VanDerWal, J. , Shoo, L. P. , Johnson, C. N. , & Williams, S. E. (2009). Abundance and the environmental niche: Environmental suitability estimated from niche models predicts the upper limit of local abundance. The American Naturalist, 174(2), 282–291. doi:10.1086/600087 [DOI] [PubMed] [Google Scholar]
  527. Vasconcelos, H. L. (1999). Effects of forest disturbance on the structure of ground‐foraging ant communities in central Amazonia. Biodiversity and Conservation, 8(3), 409–420. [Google Scholar]
  528. Vasconcelos, H. L. , Pacheco, R. , Silva, R. C. , Vasconcelos, P. B. , Lopes, C. T. , Costa, A. N. , & Bruna, E. M. (2009). Dynamics of the leaf‐litter arthropod fauna following fire in a neotropical woodland savanna. PLoS One, 4(11), 9. doi:10.1371/journal.pone.0007762 [DOI] [PMC free article] [PubMed] [Google Scholar]
  529. Vasconcelos, H. L. , Vilhena, J. M. S. , & Caliri, G. J. A. (2000). Responses of ants to selective logging of a central Amazonian forest. Journal of Applied Ecology, 37(3), 508–514. doi:10.1046/j.1365-2664.2000.00512.x [Google Scholar]
  530. Vassilev, K. , Pedashenko, H. , Nikolov, S. C. , Apostolova, I. , & Dengler, J. (2011). Effect of land abandonment on the vegetation of upland semi‐natural grasslands in the Western Balkan Mts., Bulgaria. Plant Biosystems, 145(3), 654–665. doi:10.1080/11263504.2011.601337 [Google Scholar]
  531. Vellend, M. , Baeten, L. , Myers‐Smith, I. H. , Elmendorf, S. C. , Beauséjour, R. , Brown, C. D. , … Wipf, S. (2013). Global meta‐analysis reveals no net change in local‐scale plant biodiversity over time. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19456–19459. doi:10.1073/pnas.1312779110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  532. Verboven, H. A. F. , Brys, R. , & Hermy, M. (2012). Sex in the city: Reproductive success of Digitalis purpurea in a gradient from urban to rural sites. Landscape and Urban Planning, 106(2), 158–164. doi:10.1016/j.landurbplan.2012.02.015 [Google Scholar]
  533. Verdasca, M. J. , Leitao, A. S. , Santana, J. , Porto, M. , Dias, S. , & Beja, P. (2012). Forest fuel management as a conservation tool for early successional species under agricultural abandonment: The case of Mediterranean butterflies. Biological Conservation, 146(1), 14–23. doi:10.1016/j.biocon.2011.10.031 [Google Scholar]
  534. Verdú, J. R. , Moreno, C. E. , Sánchez‐Rojas, G. , Numa, C. , Galante, E. , & Halffter, G. (2007). Grazing promotes dung beetle diversity in the xeric landscape of a Mexican Biosphere Reserve. Biological Conservation, 140(3–4), 308–317. doi:10.1016/j.biocon.2007.08.015 [Google Scholar]
  535. Vergara, C. H. , & Badano, E. I. (2009). Pollinator diversity increases fruit production in Mexican coffee plantations: The importance of rustic management systems. Agriculture Ecosystems & Environment, 129(1–3), 117–123. doi:10.1016/j.agee.2008.08.001 [Google Scholar]
  536. Vergara, P. M. , & Simonetti, J. A. (2004). Avian responses to fragmentation of the Maulino Forest in central Chile. Oryx, 38(4), 383–388. doi:10.1017/s0030605304000742 [Google Scholar]
  537. Verhulst, J. , Báldi, A. , & Kleijn, D. (2004). Relationship between land‐use intensity and species richness and abundance of birds in Hungary. Agriculture Ecosystems & Environment, 104(3), 465–473. doi:10.1016/j.agee.2004.01.043 [Google Scholar]
  538. Virgilio, M. , Backeljau, T. , Emeleme, R. , Juakali, J. , & De Meyer, M. (2011). A quantitative comparison of frugivorous tephritids (Diptera: Tephritidae) in tropical forests and rural areas of the Democratic Republic of Congo. Bulletin of Entomological Research, 101(5), 591–597. doi:10.1017/s0007485311000216 [DOI] [PubMed] [Google Scholar]
  539. Visconti, P. , Bakkenes, M. , Baisero, D. , Brooks, T. , Butchart, S. H. , Joppa, L. , … Rondinini, C. (2015). Projecting global biodiversity indicators under future development scenarios. Conservation Letters, 9(1), 5–13. doi:10.1111/conl.12159 [Google Scholar]
  540. Vu, L. V . (2005) Unpublished data of diversity and similarity of butterfly communities in five different habitat types at Tam Dao National Park, Vietnam.
  541. Vu, L. V. (2009). Diversity and similarity of butterfly communities in five different habitat types at Tam Dao National Park, Vietnam. Journal of Zoology, 277(1), 15–22. doi:10.1111/j.1469‐7998.2008.00498.x [Google Scholar]
  542. Waite, E. M . (2012) The role of large, isolated trees in supporting urban biodiversity. PhD thesis, University of Otago, New Zealand, Dunedin, New Zealand.
  543. Waite, E. M. , Closs, G. , Van Heezik, Y. , Berry, C. , & Dickinson, K. (2012). Arboreal arthropod sampling methods for urban trees. Journal of Insect Conservation, 16(6), 931–939. doi:10.1007/s10841‐012‐9480‐5 [Google Scholar]
  544. Waite, E. , Closs, G. P. , van Heezik, Y. , & Dickinson, K. J. M. (2013). Resource availability and foraging of Silvereyes (Zosterops lateralis) in urban trees. Emu, 113(1), 26–32. doi:10.1071/mu11093 [Google Scholar]
  545. Walker, T. R. , Crittenden, P. D. , Young, S. D. , & Prystina, T. (2006). An assessment of pollution impacts due to the oil and gas industries in the Pechora basin, north‐eastern European Russia. Ecological Indicators, 6, 369–387. doi:10.1016/j.ecolind.2005.03.015 [Google Scholar]
  546. Walker, S. , Wilson, D. J. , Norbury, G. , Monks, A. , & Tanentzap, A. J. (2014). Complementarity of indigenous flora in shrublands and grasslands in a New Zealand dryland landscape. New Zealand Journal of Ecology, 38(2), 230–241. [Google Scholar]
  547. Wang, Y. , Bao, Y. , Yu, M. , Xu, G. , & Ding, P. (2010). Nestedness for different reasons: The distributions of birds, lizards and small mammals on islands of an inundated lake. Diversity and Distributions, 16(5), 862–873. doi:10.1111/j.1472‐4642.2010.00682.x [Google Scholar]
  548. Wang, H. F. , Lencinas, M. V. , Ross Friedman, C. , Wang, X. K. , & Qiu, J. X. (2011). Understory plant diversity assessment of Eucalyptus plantations over three vegetation types in Yunnan, China. New Forests, 42(1), 101–116. doi:10.1007/s11056‐010‐9240‐x [Google Scholar]
  549. Watling, J. I. , Gerow, K. , & Donnelly, M. A. (2009). Nested species subsets of amphibians and reptiles on Neotropical forest islands. Animal Conservation, 12(5), 467–476. doi:10.1111/j.1469-1795.2009.00274.x [Google Scholar]
  550. Weller, B. , & Ganzhorn, J. U. (2004). Carabid beetle community composition, body size, and fluctuating asymmetry along an urban‐rural gradient. Basic and Applied Ecology, 5(2), 193–201. doi:10.1078/1439‐1791‐00220 [Google Scholar]
  551. Wells, K. , Kalko, E. K. V. , Lakim, M. B. , & Pfeiffer, M. (2007). Effects of rain forest logging on species richness and assemblage composition of small mammals in Southeast Asia. Journal of Biogeography, 34(6), 1087–1099. doi:10.1111/j.1365-2699.2006.01677.x [Google Scholar]
  552. Wiafe, E. D. , & Amfo‐Otu, R. (2012). Forest duiker (Cephalophus spp.) abundance and hunting activities in the Kakum conservation area, Ghana. Journal of Ecology and the Natural Environment, 4(4), 114–118. doi:10.5897/jene11.144 [Google Scholar]
  553. Williams, C. D. , Sheahan, J. , & Gormally, M. J. (2009). Hydrology and management of turloughs (temporary lakes) affect marsh fly (Sciomyzidae: Diptera) communities. Insect Conservation and Diversity, 2(4), 270–283. doi:10.1111/j.1752-4598.2009.00064.x [Google Scholar]
  554. Willig, M. R. , Presley, S. J. , Bloch, C. P. , Hice, C. L. , Yanoviak, S. P. , Diaz, M. M. , … Weaver, S. C. (2007). Phyllostomid bats of lowland Amazonia: Effects of habitat alteration on abundance. Biotropica, 39(6), 737–746. doi:10.1111/j.1744‐7429.2007.00322.x [Google Scholar]
  555. Wilman, H. , Belmaker, J. , Simpson, J. , de la Rosa, C. , Rivadeneira, M. M. , & Jetz, W. (2014). EltonTraits 1.0: Species‐level foraging attributes of the world's birds and mammals. Ecology, 95(7), 2027. doi:10.1890/13‐1917.1 [Google Scholar]
  556. Winfree, R. , Griswold, T. , & Kremen, C. (2007). Effect of human disturbance on bee communities in a forested ecosystem. Conservation Biology, 21(1), 213–223. doi:10.1111/j.1523-1739.2006.00574.x [DOI] [PubMed] [Google Scholar]
  557. Woinarski, J. C. Z. , & Ash, A. J. (2002). Responses of vertebrates to pastoralism, military land use and landscape position in an Australian tropical savanna. Austral Ecology, 27(3), 311–323. doi:10.1046/j.1442-9993.2002.01182.x [Google Scholar]
  558. Woinarski, J. C. Z. , Rankmore, B. , Hill, B. , Griffiths, A. D. , Stewart, A. , & Grace, B. (2009). Fauna assemblages in regrowth vegetation in tropical open forests of the Northern Territory, Australia. Wildlife Research, 36(8), 675–690. doi:10.1071/wr08128 [Google Scholar]
  559. Woodcock, B. A. , Potts, S. G. , Pilgrim, E. , Ramsay, A. J. , Tscheulin, T. , Parkinson, A. , … Tallowin, J. R. (2007). The potential of grass field margin management for enhancing beetle diversity in intensive livestock farms. Journal of Applied Ecology, 44(1), 60–69. doi:10.1111/j.1365-2664.2006.01258.x [Google Scholar]
  560. Wronski, T. , Gilbert, K. , Long, E. , Micha, B. , Quinn, R. , & Hausdorf, B. (2014). Species richness and meta‐community structure of land snails along an altitudinal gradient on Bioko Island, Equatorial Guinea. Journal of Molluscan Studies, 80, 161–168. doi:10.1093/mollus/eyu008 [Google Scholar]
  561. Wu, J. H. , Fu, C. Z. , Chen, S. S. , & Chen, J. K. (2002). Soil faunal response to land use: Effect of estuarine tideland reclamation on nematode communities. Applied Soil Ecology, 21(2), 131–147. doi:10.1016/s0929‐1393(02)00065‐3 [Google Scholar]
  562. Wunderle, J. M. , Henriques, L. M. P. , & Willig, M. R. (2006). Short‐term responses of birds to forest gaps and understory: An assessment of reduced‐impact logging in a lowland Amazon forest. Biotropica, 38(2), 235–255. doi:10.1111/j.1744-7429.2006.00138.x [Google Scholar]
  563. WWF International (2014) Living Planet Report. p. 180.
  564. Yamaura, Y. , Royle, J. A. , Shimada, N. , Asanuma, S. , Sato, T. , Taki, H. , & Makino, S. (2012). Biodiversity of man‐made open habitats in an underused country: A class of multispecies abundance models for count data. Biodiversity and Conservation, 21(6), 1365–1380. doi:10.1007/s10531‐012‐0244‐z [Google Scholar]
  565. Yoshikura, S. , Yasui, S. , & Kamijo, T. (2011). Comparative study of forest‐dwelling bats’ abundances and species richness between old‐growth forests and conifer plantations in Nikko National Park, central Japan. Mammal Study, 36(4), 189–198. doi:10.3106/041.036.0402 [Google Scholar]
  566. Zaitsev, A. S. , Chauvat, M. , Pug, A. , & Wolters, V. (2002). Oribatid mite diversity and community dynamics in a spruce chronosequence. Soil Biology & Biochemistry, 34(12), 1919–1927. doi:10.1016/s0038‐0717(02)00208‐0 [Google Scholar]
  567. Zaitsev, A. S. , Wolters, V. , Waldhardt, R. , & Dauber, J. (2006). Long‐term succession of oribatid mites after conversion of croplands to grasslands. Applied Soil Ecology, 34(2–3), 230–239. doi:10.1016/j.apsoil.2006.01.005 [Google Scholar]
  568. Zeidler, J. , Hanrahan, S. , & Scholes, M. (2002). Land‐use intensity affects range condition in arid to semi‐arid Namibia. Journal of Arid Environments, 52(3), 389–403. doi:10.1006/jare.2002.0990 [Google Scholar]
  569. Zhang, J. N. , Li, Q. , & Liang, W. J. (2010). Effect of acetochlor and carbofuran on soil nematode communities in a Chinese soybean field. African Journal of Agricultural Research, 5(20), 2787–2794. [Google Scholar]
  570. Zimmerman, G. , Bell, F. W. , Woodcock, J. , Palmer, A. , & Paloniemi, J. (2011). Response of breeding songbirds to vegetation management in conifer plantations established in boreal mixedwoods. The Forestry Chronicle, 87(2), 217–224. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

 


Articles from Ecology and Evolution are provided here courtesy of Wiley

RESOURCES