Skip to main content
Proteomes logoLink to Proteomes
. 2015 Aug 14;3(3):184–235. doi: 10.3390/proteomes3030184

Immature Seed Endosperm and Embryo Proteomics of the Lotus (Nelumbo Nucifera Gaertn.) by One-Dimensional Gel-Based Tandem Mass Spectrometry and a Comparison with the Mature Endosperm Proteome

Carlo F Moro 1, Yoichiro Fukao 2,3, Junko Shibato 4, Randeep Rakwal 4,5,6,7,*, Ganesh Kumar Agrawal 6,7,*, Seiji Shioda 4, Yoshiaki Kouzuma 1, Masami Yonekura 1
Editor: Jacek R Wisniewski
PMCID: PMC5217381  PMID: 28248268

Abstract

Lotus (Nelumbo nucifera Gaertn.) seed proteome has been the focus of our studies, and we have recently established the first proteome dataset for its mature seed endosperm. The current study unravels the immature endosperm, as well as the embryo proteome, to provide a comprehensive dataset of the lotus seed proteins and a comparison between the mature and immature endosperm tissues across the seed’s development. One-dimensional gel electrophoresis (SDS-PAGE) linked with tandem mass spectrometry provided a protein inventory of the immature endosperm (122 non-redundant proteins) and embryo (141 non-redundant proteins) tissues. Comparing with the previous mature endosperm dataset (66 non-redundant proteins), a total of 206 non-redundant proteins were identified across all three tissues of the lotus seed. Results revealed some significant differences in proteome composition between the three lotus seed tissues, most notably between the mature endosperm and its immature developmental stage shifting the proteins from nutrient production to nutrient storage.

Keywords: 1-DGE, LC-MS/MS, lotus, seed, proteome analysis, plant proteomics

1. Introduction

Nelumbo nucifera (Gaertn.) is an aquatic perennial belonging to the family of Nelumbonaceae, whose most used common name is the lotus. The lotus typically grows in shallow ponds, with its rhizomes under the mud and its large leaves rising on stalks 1–2 m above the water surface. Flowers are white to rosy, sweet-scented, solitary, hermaphrodite and 10–25 cm in diameter, while its fruits are ovoid having nut like achenes. Seeds are black, hard and ovoid [1]. In its immature form, the lotus seed is initially of a yellowish color (early stages) and becomes green as it grows and matures. In its late immature stages, the seed is a 1.2–1.5 cm long ovoid covered in a soft green husk containing a moist and soft endosperm and the developing embryo. When the seed reaches maturity, the husk turns dark brown and hardens, and both the endosperm and embryo become considerably dry. The lotus embryo, or germ, is a small, stalk-like tissue at the core of the lotus seed. The embryo is green and yellow in color. In the mature seed, the embryo tissue is dry, and while inside an intact seed, it can remain viable for germination for more than a thousand years, making it the most durable seed known [2,3,4,5]. The immature seed, which is composed largely of the endosperm, has a water content of 77.5%, as opposed to the 13.1% water content of the mature seed. The immature seed also has lower protein and carbohydrate content, 5.9% and14.9%, respectively, compared to 19.1% and 62.6% for the mature seed [6].

The lotus seeds and rhizome are extensively consumed as food in China and Japan and regarded as a health food [7,8,9], and the plant is also utilized as a source of traditional medicine in India and China [1,10]. Furthermore, extracts from the lotus leaves, rhizomes, and seeds have been shown possess multiple health benefits and a diverse amount of secondary metabolites (more details are given in our review [11] and references therein). The genome of the lotus has only recently been sequenced [12], and a few targeted genome and transcriptome-level works have led to the identification of some functional proteins, as well as their successful cloning and transgenic expression [13,14,15,16]. Considering its documented health benefits and several desirable characteristics for nutritional, agricultural and scientific uses, such as its protein content, ability to be cultivated in flooded areas, growth and germination vigor, and extreme seed durability, the lotus plant would consist of an excellent candidate as a crop, source of recombinant genes, or even as potential model organism. However, despite these characteristics, proteome analysis of the plant is still at the initial stages of research. Figure 1 depicts the lotus fruit and seed, its importance and proteomic study goals.

Figure 1.

Figure 1

Overview of the significance and goals of the proteomic research of the lotus. The fruit (seedpod) with seeds from a lotus plant growing in Ibaraki University pond, and the open seed with endosperm and embryo is shown.

Aiming to develop a proteome catalogue of the lotus plant—starting with its seed, the nutrient rich food source—the first study by our research group has unraveled the mature endosperm proteome of the lotus seed, which included the establishment of protocols for protein extraction and analyses by one-dimensional gel electrophoresis (1-DGE) and by two-dimensional gel electrophoresis (2-DGE) in conjunction with mass spectrometry [17]. In the present work, we advance our study of the lotus seed by further analyzing the endosperm of the lotus seed in its immature stage and the embryo, the other prominent component of the mature seed, by utilizing 1-DGE linked with tandem mass spectrometry proteomic approach. The resulting proteome from each tissue (immature endosperm and embryo) is compared with the mature endosperm proteins in hope to bring to light any notable differences in protein content between the different tissue locations and developmental stages.

2. Experimental Section

2.1. Plant Material and Tissues (Immature Endosperm and Embryo of Lotus Seed) Preparation

Lotus seeds, both mature and immature, were obtained from a small cultivation pond in the Ibaraki University’s College of Agriculture campus in Ami town, Ibaraki, Japan [17]. The immature seed endosperm was collected from seeds extracted from the lotus seedpod in their post-pollination late immature stage. At the point of collection, the seeds were approximately 1.3 cm long, and the external husk was still green and soft. The seeds were washed and stored whole at −80 °C until tissue extraction. The seeds were cut open and the soft and white core was removed whole and then cut across its length. The translucent sheet around the core, any discernible embryo tissue, as well as the central portion of the core immediately around the embryo was removed. The remaining soft endosperm fragments were ground under liquid nitrogen and the resulting powder was stored in sterile BD Falcon tubes at −80 °C until extraction of protein. For embryo tissue sample preparation, the mature seeds (stored at room temperature) were cracked open in a clean environment and the endosperm and embryo portions were cleanly separated and stored in sterile BD Falcon tubes at −80 °C. The embryo fragments were ground into a fine powder in liquid nitrogen, with a pre-chilled mortar and pestle. Resulting powder was stored in sterile 2.0 mL microfuge tubes at −80 °C until further analysis.

2.2. Extraction of the Lotus Seed Immature Endosperm and Embryo Proteins

Proteins were extracted from the powdered samples using the Tris-buffered saline (TBS) extraction method described in a previous study [17]. Briefly, a 3:1 mixture of TBS-20 buffer [10 mM Tris-HCl, 150 mM NaCl, pH 7.4, 0.1% (v/v) Tween-20, plus one tablet of EDTA-free proteinase inhibitor (cOmplete Mini, Roche) per 50 mL] and SDS (sodium dodecyl sulfate) reducing buffer [62 mM Tris (pH 6.8), 10% (v/v) glycerol, 2.5% (w/v) SDS, 5% (v/v) 2-mercaptoethanol] was used to extract the powdered samples at 2 mL/100 mg. The sample/buffer mixtures were also subjected to several 30 s ultrasonic bath cycles and at 95 °C heating for 5 min to help extraction. The extract was separated by centrifugation, and its proteins precipitated and purified using the ProteoExtract kit (Calbiochem). The dry protein pellets obtained were either resolubilized in LB-TT (7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 18 mM Tris-HCl (pH 8.0), 14 mM Trizma base, 0.2% (v/v) Triton X-100 and 50 mM dithiothreitol) for immediate use or stored at −80 °C. Prior to use, protein content of the resolubilized extracts was measured by Bradford assay [18].

2.3. Extraction of the Lotus Seed Immature Endosperm and Embryo Proteins

Protein samples from both tissues were subjected to 1-DGE (SDS-PAGE, 12.5%), both for visualization of protein profiles (Figure 2) using Coomassie Brilliant Blue [19] staining, and prior to analysis by 1DGE-MS.

Figure 2.

Figure 2

1D SDS-PAGE of protein extracts from lotus seed mature endosperm (MtE), immature endosperm (ImE), and embryo (Emb). SDS-PAGE, 12.5%; Coomassie brilliant blue stained. Molecular weight markers are shown on left-hand side of each gel image.

The 1DGE-MS analyses followed the same methodology as with the previous lotus seed analyses [17]. The extracts were initially separated using SDS-PAGE. The resulting vertical protein lanes were sliced into eight pieces of equal length (regardless of apparent protein concentration) giving fraction 1: <120 kDa, fraction 2: 120–60 kDa, fraction 3: 60–40 kDa, fraction 4: 40–30 kDa, fraction 5: 30–22 kDa, fraction 6: 22–17 kDa, fraction 7: 17–14 kDa, and fraction 8: 14–10 kDa. Each fraction was digested with 1 µg of trypsin at 37 °C for 16 h [17,18,19,20]. Digested peptides were recovered twice with 20 µL of 5% (v/v) formic acid in 50% (v/v) acetonitrile. Extracted peptides were combined and then evaporated in a vacuum concentrator until liquid was dry. Dried peptides were dissolved into 20 µL of 5% acetonitrile/0.1% formic acid and then filtrated by the Ultrafree-MC Centrifugal Filters (Millipore, PVDF 0.45 µm, Darmstadt, Germany). Liquid chromatography–tandem mass spectrometry (MS/MS) analysis was performed using the LTQ-Orbitrap XL-HTC-PAL system (Thermo, Waltham, MA, USA). Trypsin digests were loaded on the column (100 µm internal diameter, 15 cm length, l-Column, CERI) using the Paradigm MS4 HPLC pump (Michrom BioResources, Auburn, AL, USA) and HTC-PAL Autosampler (CTC Analytics, Zwingen, Switzerland), and were eluted by a gradient of 5%–45% (v/v) acetonitrile in 0.1% (v/v) formic acid for 26 min. The eluted peptides were introduced directly into an LTQ-Orbitrap with a flow rate of 500 nL/min, and a spray voltage of 2.0 kV. The range of MS scan was m/z 450–1500. The top three peaks were subjected to MS/MS analysis. MS/MS spectra were analyzed by Mascot server (version 2.4.1, Matrix Science, Boston, MA, USA) in house (http://www.matrixscience.com/) and compared against proteins registered in the SwissProt (SwissProt_2012_03) database (total sequences: 428650; sequences after taxonomy filter (Viridiplantae): 27008; date: 26 July 2013). The Mascot search parameters were set as follows: threshold of the ion score cutoff, 0.05, peptide tolerance, 10 ppm, MS/MS tolerance, 0.5 Da, and peptide charge, 2+ or 3+. The search was also set to allow one missed cleavage by trypsin, a carboxymethylation modification of Cys residues, and a variable oxidation modification of Met residues. Gene ontology analysis on the data was performed using the Uniprot (www.uniprot.org) and the EMBL-EBI (www.ebi.ac.uk) databases.

3. Results and Discussion

3.1. Protein Content of the Immature Endosperm and Embryo Tissues

Protein extracts from the lotus immature seed endosperm presented very low protein yield (ca. 1.5% in the TBS method), requiring larger amounts of tissue to be extracted in order to obtain a suitable amount of protein. The reason for low protein yield lies in the high water content of the immature seed compared to its mature form. The lotus seed embryo showed a similar total protein yield to the endosperm extract [17] when extracted by the TBS/clean-up method (ca. 9%, compared to ca. 11% for the mature endosperm).

A comparison of the of the 1-D band profile on the SDS-PAGE of the embryo extract with the endosperm one showed many similarities, but also some noticeable differences, such as an absence of strongly stained bands at ca. 20 kDa and 40 kDa, and more numerous bands at low-molecular weights, under 30 and 20 kDa (see above, Figure 2). In the case of the immature endosperm, the 1-D profile is more similar to the mature endosperm than the embryo, but still was found to be different from both tissues profiles. Compared with the mature endosperm extract, the immature endosperm extract most notably does not present a high amount of protein bands around the 20 kDa range. The cluster of bands around 50 kDa is similar to that in both the endosperm and embryo, and the immature endosperms profile of bands in the 60–90 kDa range seems more similar to the mature endosperm than the embryo.

3.2. Lotus Immature Endosperm Proteins Identified by 1-DGE and MS/MS Analyses

The 1-DGE separation (SDS-PAGE) of proteins in an extract, followed by MS/MS analysis is part of the so-called “bottom-up” approach to proteomics, a methodology in which proteins are proteolytically digested into peptides prior to mass spectrometric analysis, and the ensuing peptide masses and sequences are used to identify corresponding proteins. This simple approach is a useful method for performing large-scale analyses of complex samples [21]. For the sample consisting of a purified extract of lotus immature endosperm proteins, after separation by SDS-PAGE, the sample was divided into eight fractions, analyzed by LC-MS/MS, and matched against a green plant database, as detailed in the Experimental Section. Results revealed more than 500 protein matches with at least two confirmed peptide fragment matches were identified amongst all fractions, and from these 333 unique protein matches were identified. Different database matches that were likely to refer to the same protein in the sample, such as two or more matches for the same protein but from different database organisms, were grouped together based on taxonomical proximity and similarity of identified peptide sequences. Finally, 122 non-redundant (nr) protein matches were listed, along with the number of repeated matches found for each one (Table 1), with the protein match listed being the one with the highest score amongst its group of similar proteins.

Table 1.

List of top-scored non-redundant (nr) protein matches of the lotus immature endosperm 1-D shotgun mass spectroscopy results, as matched to Green Plant proteome database (SwissProt 57.0, http://www.uniprot.org/statistics/UniProtKB%2015).

Fractions 1 Protein Accession Protein Description Similar 2 Score 3 Cover (%) PEPTIDE Sequences Sig. Peptide Number Func. Cat. 4
6,5,8,(7,4,3,1) ENO1_HEVBR Enolase 1 OS = Hevea brasiliensis 11 1471 43.4 TAIAK, YNQLLR, LTSEIGEK, ACNALLLK, DGGSDYLGK, AGWGVMASHR, EKACNALLLK, MGAEVYHHLK, RAGWGVMASHR, LGANAILAVSLAVCK, VQIVGDDLLVTNPK, AAVPSGASTGIYEALELR, LAMQEFMILPVGASSFK, SGETEDTFIADLSVGLATGQIK, YGQDATNVGDEGGFAPNIQENK, KYGQDATNVGDEGGFAPNIQENK, YGQDATNVGDEGGFAPNIQENKEGLELLK 17 II
7,8,6,5,1,4,2 G3PC_ANTMA Glyceraldehyde-3-phosphate dehydrogenase, cytosolic OS = Antirrhinum majus 23 1242 43.6 AAAHLK, KATYEQIK, AAIKEESEGK, AGIALNDNFVK, DAPMFVVGVNEK, AASFNIIPSSTGAAK, VPTVDVSVVDLTVR, DAPMFVVGVNEKEYK, VPTVDVSVVDLTVRLEK, FGIVEGLMTTVHSITATQK, GILGYTEDDVVSTDFVGDSR, LTGMSFRVPTVDVSVVDLTVR, LKGILGYTEDDVVSTDFVGDSR, VINDRFGIVEGLMTTVHSITATQK 14 II
4,8,6,7,5 HSP7D_ARATH Heat shock 70 kDa protein 4 OS = Arabidopsis thaliana 10 625 23.8 IEEVD, LSKEEIEK, ITITNDKGR, DAGVISGLNVMR, NALENYAYNMR, MVNHFVQEFKR, TTPSYVAFTDSER, IINEPTAAAIAYGLDK, ATAGDTHLGGEDFDNR, NAVVTVPAYFNDSQR, IINEPTAAAIAYGLDKK, EQIFSTYSDNQPGVLIQVYEGER 12 IX
4 HSP7E_SPIOL Chloroplast envelope membrane 70 kDa heat shock-related protein OS = Spinacia oleracea 1 580 21.7 LSKEEIEK, DAGVISGLNVMR, EIAEAYLGSTVK, NALENYAYNMR, TTPSYVAFTDSER, IINEPTAAAIAYGLDK, ATAGDTHLGGEDFDNR, NAVVTVPAYFNDSQR, IINEPTAAAIAYGLDKK, EQVFSTYSDNQPGVLIQVYEGER 10 IX
4 BIP4_TOBAC Luminal-binding protein 4 OS = Nicotiana tabacum 5 542 21.6 VQQLLK, NTVIPTKK, IMEYFIK, LSQEEIER, ITITNDKGR, DYFDGKEPNK, FEELNNDLFR, EAEEFAEEDKK, IVNKDGKPYIQVK, ARFEELNNDLFR, NGHVEIIANDQGNR, IINEPTAAAIAYGLDK, IINEPTAAAIAYGLDKK, IKDAVVTVPAYFNDAQR 14 IX
4,5,6,7,8 METE_ARATH 5-methyltetrahydropteroyltriglutamate—homocysteine methyltransferase OS = Arabidopsis thaliana 4 516 19.2 AAAALK, VVEVNALAK, SWLAFAAQK, AVNEYKEAK, YLFAGVVDGR, SDEKLLSVFR, FALESFWDGK, GNASVPAMEMTK, YGAGIGPGVYDIHSPR, GMLTGPVTILNWSFVR 10 I
6,1,5,(7,8,3,2,4) EF1A_TOBAC Elongation factor 1-alpha OS = Nicotiana tabacum 8 484 34.7 YDEIVK, GFVASNSK, QTVAVGVIK, EVSSYLKK, LPLQDVYK, ARYDEIVK, IGGIGTVPVGR, STNLDWYK, STTTGHLIYK, EHALLAFTLGVK, GFVASNSKDDPAK, YYCTVIDAPGHR, MIPTKPMVVETFSEYPPLGR, NMITGTSQADCAVLIIDSTTGGFEAGISK 14 V
4 HSP7L_ARATH Heat shock 70 kDa protein 12 OS = Arabidopsis thaliana 1 479 16.5 VQQLLK, NTVIPTKK, IMEYFIK, FDLTGVPPAPR, FEELNNDLFR, EAEEFAEEDKK, ARFEELNNDLFR, NGHVEIIANDQGNR, IINEPTAAAIAYGLDK, IINEPTAAAIAYGLDKK, IKDAVVTVPAYFNDAQR 11 IX
4,8,6 HSP7N_ARATH Heat shock 70 kDa protein 18 OS = Arabidopsis thaliana 1 474 18.5 ITITNDKGR, EIAEAYLGSSIK, MVNHFVQEFKR, TTPSYVAFTDSER, IINEPTAAAIAYGLDK, ATAGDTHLGGEDFDNR, NAVVTVPAYFNDSQR, IINEPTAAAIAYGLDKK 8 IX
7 MDHM_CITLA Malate dehydrogenase, mitochondrial OS = Citrullus lanatus 5 459 18.2 TFYAGK, LFGVTTLDVVR, TQDGGTEVVEAK, DDLFNINAGIVK, KLFGVTTLDVVR, RTQDGGTEVVEAK, VAVLGAAGGIGQPLALLMK, KVAVLGAAGGIGQPLALLMK 8 II
4,5 HSP80_SOLLC Heat shock cognate protein 80 OS = Solanum lycopersicum 1 427 20.9 AVENSPFLEK, LGIHEDSQNR, ADLVNNLGTIAR, KAVENSPFLEK, HFSVEGQLEFK, GIVDSEDLPLNISR, SLTNDWEEHLAVK, SGDEMTSLKDYVTR, KPEEITKEEYAAFYK, MKEGQNDIYYITGESK 10 IX
5 CH62_MAIZE Chaperonin CPN60-2, mitochondrial OS = Zea mays 6 422 23.3 VTDALNATK, GVEELADAVK, IGGASEAEVGEK, SVAAGMNAMDLR, IGGASEAEVGEKK, NVVIEQSFGAPK, AAVEEGIVPGGGVALLYASK, TPVHTIASNAGVEGAVVVGK, QRPLLIVAEDVESEALGTLIINK 9 IX
7,8,6,1 ACT_GOSHI Actin OS = Gossypium hirsutum 19 414 32.6 AGFAGDDAPR, GYSFTTTAER, EITALAPSSMK, DAYVGDEAQSK, AVFPSIVGRPR, DAYVGDEAQSKR, SYELPDGQVITIGAER, VAPEEHPVLLTEAPLNPK, TTGIVLDSGDGVSHTVPIYEGYALPHAILR 9 VII
5,8,7 ENO2_ARATH Bifunctional enolase 2/transcriptional activator OS = Arabidopsis thaliana 1 411 34.5 YNQLLR, DGGSDYLGK, ISGDALKDLYK, LGANAILAVSLAVCK, VNQIGSVTESIEAVK, TYDLNFKEENNNGSQK, SGETEDTFIADLAVGLSTGQIK, YGQDATNVGDEGGFAPNIQENK, YGQDATNVGDEGGFAPNIQENKEGLELLK 9 IV
4,5,6 HSP83_IPONI Heat shock protein 83 OS = Ipomoea nil 1 405 23 VIVTTK, VVVSDR, AILFVPK, DVDGEQLGR, APFDLFDTR, AVENSPFLER, LGIHEDSQNR, LDAQPELFIR, RAPFDLFDTR, ADLVNNLGTIAR, ELISNASDALDK, HFSVEGQLEFK, GVVDSDDLPLNISR, ELISNASDALDKIR, ITLFLKEDQLEYLEER 14 IX
7,6,1,2 ADH1_SOLTU Alcohol dehydrogenase 1 OS = Solanum tuberosum 7 390 23.7 ELELEK, SDIPSVVEK, FGVTEFVNPK, GTFFGNYKPR, THPMNLLNER, KFGVTEFVNPK, YMNKELELEK, TLKGTFFGNYKPR, GSSVAIFGLGAVGLAAAEGAR 9 II
4,5,7,8 ENPL_CATRO Endoplasmin homolog OS = Catharanthus roseus 3 387 10.5 FWNEFGK, ESFKELTK, YGWSSNMER, ELISNASDALDK, IMQSQTLSDASK, GLVDSDTLPLNVSR, ELISNASDALDKIR, VFISDEFDELLPK, RVFISDEFDELLPK 9 IX
7,(8,6) RBL_MAIZE Ribulose bisphosphate carboxylase large chain OS = Zea mays 52 382 27.5 AMHAVIDR, AQAETGEIK, DTDILAAFR, DDFIEKDR, VALEACVQAR, EITLGFVDLLR, LTYYTPEYETK, MSGGDHIHSGTVVGK, YGRPLLGCTIKPK, GGLDFTKDDENVNSQPFMR 10 I
6 SAHH_MEDSA Adenosylhomocysteinase OS = Medicago sativa 3 369 15.1 ATDVMIAGK, HSLPDGLMR, ITIKPQTDR, TEFGPSQPFK, VAVVCGYGDVGK, SKFDNLYGCR, IVGVSEETTTGVK, IVGVSEETTTGVKR 8 I
4,(5,6) HSP82_ORYSJ Heat shock protein 81-2 OS = Oryza sativa subsp. Japonica 2 368 21.5 VVVSDR, IAELLR, AILFVPK, APFDLFDTR, AVENSPFLEK, RAPFDLFDTR, KAVENSPFLEK, SDLVNNLGTIAR, HFSVEGQLEFK, GIVDSEDLPLNISR, SLTNDWEEHLAVK, HSEFISYPISLWTEK, KPEEITKEEYAAFYK 12 IX
4,6,7 HSP70_DAUCA Heat shock 70 kDa protein OS = Daucus carota 1 335 15.7 IEEVD, NALENYAYNMR, NQVAMNPSNTVFDAK, NQVAMNPSNTVFDAKR, SINPDEAVAYGAAVQAAILSGEGNER, EQIFSTYSDNQPGVLIQVYEGER 6 IX
5 CPNA1_ARATH Chaperonin 60 subunit alpha 1, chloroplastic OS = Arabidopsis thaliana 1 331 16.4 KVTISK, VVNDGVTIAR, NVVLDEFGSPK, VGAATETELEDR, GYISPQFVTNPEK, TNDSAGDGTTTASILAR 6 IX
4,5 HSP82_MAIZE Heat shock protein 82 OS = Zea mays 2 297 14.4 APFDLFDTR, AVENSPFLER, LGIHEDSQNR, RAPFDLFDTR, SDLVNNLGTIAR, ELISNASDALDK, HFSVEGQLEFK, GVVDSDDLPLNISR, ELISNASDALDKIR 9 IX
8,7 ALF_CICAR Fructose-bisphosphate aldolase, cytoplasmic isozyme OS = Cicer arietinum 2 289 14.2 ANSEATLGTYK, GILAADESTGTIGK, GILAADESTGTIGKR, YHDELIANAAYIGTPGK 4 II
4,(3,5) CD48A_ARATH Cell division control protein 48 homolog A OS = Arabidopsis thaliana 3 285 14 TLLAK, KGDLFLVR, ELVELPLR, LAEDVDLER, LAGESESNLR, GILLYGPPGSGK, IVSQLLTLMDGLK, ELVELPLRHPQLFK, NAPSIIFIDEIDSIAPK 9 III/IV
7,8,6,1 PGKH_TOBAC Phosphoglycerate kinase, chloroplastic OS = Nicotiana tabacum 6 284 15.4 AAVPTIK, AHASTEGVTK, FAVGTEAIAK, VILSSHLGRPK, GVTTIIGGGDSVAAVEK, LASLADLYVNDAFGTAHR, KLASLADLYVNDAFGTAHR 7 II
5,(4) PGMC_POPTN Phosphoglucomutase, cytoplasmic OS = Populus tremula 1 281 12.2 YLFEDGSR, FFEVPTGWK, LSGTGSEGATIR, SMPTSAALDVVAK, YDYENVDAGAAK, VETTPFGDQKPGTSGLR 6 II
4,(5) HS903_ARATH Heat shock protein 90-3 OS = Arabidopsis thaliana 3 269 20.2 IAELLR, AILFVPK, AVENSPFLEK, LGIHEDSQNR, ADLVNNLGTIAR, KAVENSPFLEK, HFSVEGQLEFK, GIVDSEDLPLNISR, HSEFISYPISLWIEK 9 IX
5,6 PMG2_ARATH Probable 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 2 OS = Arabidopsis thaliana 1 257 13.6 VHILTDGR, ARDAILSGK, LVDLALASGK, TFACSETVK, MKALEIAEK, GWDAQVLGEAPHK, RGWDAQVLGEAPHK, AVGPIVDGDAVVTFNFR 8 II
5,6 PMG1_ARATH 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1 OS = Arabidopsis thaliana 5 224 10.2 VHILTDGR, ARDAILSGK, LDQLQLLIK, GWDAQVLGEAPHK, RGWDAQVLGEAPHK, AVGPIVDGDAVVTFNFR 6 II
5 SSG1_HORVU Granule-bound starch synthase 1, chloroplastic/amyloplastic OS = Hordeum vulgare 5 214 7.5 FFHCYK, EALQAEVGLPVDR, FSLLCQAALEAPR, VAFCIHNISYQGR 4 I
6 RL4_PRUAR 60S ribosomal protein L4 OS = Prunus armeniaca 3 200 20.8 AGQGAFGNMCR, AGHQTSAESWGTGR, YAVVSAIAASAVPSLVLAR, AWYQTMISDSDYTEFDNFTK 4 V
8 H2B_GOSHI Histone H2B OS = Gossypium hirsutum 5 200 49 IYIFK, LVLPGELAK, AMGIMNSFINDIFEK 3 VII
5 RUBA_RICCO RuBisCO large subunit-binding protein subunit alpha (Fragment) OS = Ricinus communis 2 200 16 NVVLDEFGSPK VGAATETELEDR, GYISPQFVTNPEK, LGLLSVTSGANPVSIK 4 I
8 H2B1_MEDTR Probable histone H2B.1 OS = Medicago truncatula 2 199 45.3 IYIFK, LVLPGELAK, AMGIMNSFINDIFEK 3 VII
8 RL182_ARATH 60S ribosomal protein L18-2 OS = Arabidopsis thaliana 1 185 13.4 APLGQNTVLLR, AGGECLTFDQLALR 2 V
5 CALR_BERST Calreticulin OS = Berberis stolonifera 3 175 9.1 LAEETWGK, LLSGDVDQK, KLAEETWGK, TLVFQFSVK, LLSGDVDQKK, YVGIELWQVK 6 V
8 1433E_TOBAC 14-3-3-like protein E OS = Nicotiana tabacum 5 172 26.8 NVIGAR, NLLSVAYK, DSTLIMQLLR, TVDVEELTVEER, IISSIEQKEESR, SAQDIALAELAPTHPIR 6 VIII
8 H4_ARATH Histone H4 OS = Arabidopsis thaliana 1 160 45.6 TLYGFGG, IFLENVIR, DAVTYTEHAR, ISGLIYEETR, DNIQGITKPAIR 5 VII
6,5,8 KPYC_SOYBN Pyruvate kinase, cytosolic isozyme OS = Glycine max 2 157 9.2 KGSDLVNVR, GDLGMEIPVEK, VENQEGVLNFDEILR 3 II
8 RS6_ASPOF 40S ribosomal protein S6 OS = Asparagus officinalis 2 155 11.6 LVTPLTLQR, ISQEVSGDALGEEFK, ISQEVSGDALGEEFKGYVFK 3 V
5 TCPA_ARATH T-complex protein 1 subunit alpha OS = Arabidopsis thaliana 1 153 6.4 YFVEAGAIAVR, VLVELAELQDR, NKIHPTSIISGYR 3 V
1 ADT1_GOSHI ADP, ATP carrier protein 1, mitochondrial OS = Gossypium hirsutum 1 143 5.7 SSLDAFSQILK, LLIQNQDEMIK 2 VI
4 HSP7S_SPIOL Stromal 70 kDa heat shock-related protein, chloroplastic (Fragment) OS = Spinacia oleracea 2 142 7.2 QFAAEEISAQVLR, AVVTVPAYFNDSQR, IINEPTAASLAYGFEK 3 IX
7,8 GCST_PEA Aminomethyltransferase, mitochondrial OS = Pisum sativum 2 140 14.7 LYFGEFR, GGAIDDSVITK, SLLALQGPLAAPVLQHLTK, TGYTGEDGFEISVPSEHGVELAK 4 I
3,2 HSP7O_ARATH Heat shock 70 kDa protein 14 OS = Arabidopsis thaliana 1 139 7.7 ILSHAFDR, AVLDAATIAGLHPLR, AVEKEFEMALQDR, RAVLDAATIAGLHPLR 4 IX
4 HSP7F_ARATH Heat shock 70 kDa protein 6, chloroplastic OS = Arabidopsis thaliana 1 139 7.5 TTPSVVAYTK, QFAAEEISAQVLR, QAVVNPENTFFSVK, LSFKDIDEVILVGGSTR 4 IX
8 RS4_GOSHI 40S ribosomal protein S4 OS = Gossypium hirsutum 2 135 20.6 LSIIEEAR, LGNVFTIGK, FDVGNVVMVTGGR, LGGAFAPKPSSGPHK 4 V
3,4 CLPA_BRANA ATP-dependent Clp protease ATP-binding subunit clpA homolog, chloroplastic (Fragment) OS = Brassica napus 1 135 5.8 VIGQDEAVK, TAIAEGLAQR, YRGEFEER, VLELSLEEAR 4 I
4,5,8 EF2_BETVU Elongation factor 2 OS = Beta vulgaris 1 131 5.5 GGGQIIPTAR, EGALAEENMR, RVFYASQLTAKPR, LWGENFFDPATKK 4 V
8 RL12_PRUAR 60S ribosomal protein L12 OS = Prunus armeniaca 1 129 22.3 VSVVPSAAALVIK, VTGGEVGAASSLAPK 2 V
6,(7,8) ATPBM_NICPL ATP synthase subunit beta, mitochondrial OS = Nicotiana plumbaginifolia 4 129 12.5 VLNTGSPITVPVGR, TVLIMELINNVAK, IPSAVGYQPTLATDLGGLQER 3 I
4,(7) PHSH_SOLTU Alpha-glucan phosphorylase, H isozyme OS = Solanum tuberosum 6 125 5.6 AFATYTNAK, QLLNILGVIYR, HMEIIEEIDKR, TIAYTNHTVLPEALEK 4 II
6 RL3_ORYSJ 60S ribosomal protein L3 OS = Oryza sativa subsp. Japonica 2 124 6.9 VIAHTQIR, HGSLGFLPR, GKGYEGVVTR 3 V
8 TPIS_MAIZE Triosephosphate isomerase, cytosolic OS = Zea mays 2 124 11.9 FFVGGNWK, VAYALSQGLK, VIACVGETLEQR 3 VII
8 LE194_HORVU Late embryogenesis abundant protein B19.4 OS = Hordeum vulgare 1 121 9.2 GGLSTMNESGGER, KGGLSTMNESGGER 2 IX
1,(2) AVP_VIGRR Pyrophosphate-energized vacuolar membrane proton pump OS = Vigna radiata var. Radiata 2 117 3.3 AADVGADLVGK, YIEAGASEHAR, AADVGADLVGKVER 3 VI
8 RL6_MESCR 60S ribosomal protein L6 OS = Mesembryanthemum crystallinum 1 115 10.7 VDISGVNVEK, ASITPGTVLIILAGR 2 V
5 SSG1_ARATH Probable granule-bound starch synthase 1, chloroplastic/amyloplastic OS = Arabidopsis thaliana 1 115 3.9 FFHCYK, YGTVPIVASTGGLVDTVK 2 I
8 RL10_VITRI 60S ribosomal protein L10 OS = Vitis riparia 1 114 10.5 VSIGQVLLSVR, ENVSSEALEAAR 2 V
8 RS18_ARATH 40S ribosomal protein S18 OS = Arabidopsis thaliana 1 111 21.7 LRDDLER, VLNTNVDGK, IMFALTSIK, IPDWFLNR 4 V
7 AATM_LUPAN Aspartate aminotransferase P2, mitochondrial (Fragment) OS = Lupinus angustifolius 1 111 6.8 IADVIQEK, LNLGVGAYR, VATVQGLSGTGSLR 3 I
8 GBLPA_ORYSJ Guanine nucleotide-binding protein subunit beta-like protein A OS = Oryza sativa subsp. Japonica 1 110 9 DGVTLLWDLAEGK, FSPNTFQPTIVSGSWDR 2 VIII
8 H2AX_CICAR Histone H2AX OS = Cicer arietinum 1 108 15.1 AGLQFPVGR, GKGEIGSASQEF 2 VII
4 VATA_GOSHI V-type proton ATPase catalytic subunit A OS = Gossypium hirsutum 2 108 5 LAADTPLLTGQR, LVSQKFEDPAEGEEALVAK 2 VI
8 PARP3_SOYBN Poly [ADP-ribose] polymerase 3 OS = Glycine max 1 107 4.2 VLCSQEIYK, LEPLVANFMK, LFEEITGNEFEPWER 3 III
3,4,(5) CLPC1_ARATH Chaperone protein ClpC1, chloroplastic OS = Arabidopsis thaliana 5 106 5.4 TAIAEGLAQR, YRGEFEER, VLELSLEEAR 3 IX
8 NDK1_ARATH Nucleoside diphosphate kinase 1 OS = Arabidopsis thaliana 2 103 9.4 NVIHGSDSVESAR, NVIHGSDSVESARK 2 I
8 RL13_TOBAC 60S ribosomal protein L13 OS = Nicotiana tabacum 1 98 16.3 SLEGLQTNVQR, KLAPTIGIAVDHR 2 V
8 RS5_CICAR 40S ribosomal protein S5 (Fragment) OS = Cicer arietinum 2 95 15.2 GSSNSYAIK, AQCPIVER, VNQAIYLLTTGAR 3 V
5,6 PDC2_ORYSI Pyruvate decarboxylase isozyme 2 OS = Oryza sativa subsp. Indica 2 94 4.5 AVKPVLVGGPK, ILHHTIGLPDFSQELR 2 II
8 HSP14_SOYBN 17.5 kDa class I heat shock protein OS = Glycine max 4 92 24.7 AIEISG, ADIPGLK, VLQISGER, FRLPENAK 4 IX
6 AMPL1_ARATH Leucine aminopeptidase 1 OS = Arabidopsis thaliana 2 92 4.6 GLTFDSGGYNIK, TIEVNNTDAEGR 2 I/IX
6 ACT5_ARATH Putative actin-5 OS = Arabidopsis thaliana 1 92 15.9 AGFAGDDAPR, IWHHTFYNELR 2 VII
8 RS14_CHLRE 40S ribosomal protein S14 OS = Chlamydomonas reinhardtii 1 87 15.7 TPGPGAQSALR, IEDVTPIPTDSTR 2 V
8 RS3A1_VITVI 40S ribosomal protein S3a-1 OS = Vitis vinifera 2 86 6.5 TTDNYTLR, LRAEDVQGR 2 V
7 AAT3_ARATH Aspartate aminotransferase, chloroplastic OS = Arabidopsis thaliana 1 83 4.9 LNLGVGAYR, TEEGKPLVLNVVR 2 I
1 COB21_ORYSJ Coatomer subunit beta-1 OS = Oryza sativa subsp. Japonica 1 83 4.5 HNEIQTVNIK, DTNTFASASLDR 2 VI
8 GRDH1_ARATH Glucose and ribitol dehydrogenase homolog 1 OS = Arabidopsis thaliana 3 83 8 GAIVAFTR, EGSSIINTTSVNAYK 2 II
8 ANXD1_ARATH Annexin D1 OS = Arabidopsis thaliana 1 80 5 AQINATFNR, SKAQINATFNR 2 IX
7 PDI21_ORYSJ Protein disulfide isomerase-like 2-1 OS = Oryza sativa subsp. Japonica 1 80 10.9 KLAPEYEK, YGVSGFPTLK, YGVSGYPTIQWFPK 3 V
8,(6) ATPAM_NICPL ATP synthase subunit alpha, mitochondrial OS = Nicotiana plumbaginifolia 4 79 9.4 VVSVGDGIAR, TAIAIDTILNQK 2 I
8,(1) CB2_PHYPA Chlorophyll a-b binding protein, chloroplastic OS = Physcomitrella patens subsp. Patens 1 75 3.7 ELEVIHAR, NRELEVIHAR 2 II
8 HSP12_SOYBN Class I heat shock protein (Fragment) OS = Glycine max 1 75 18.9 AIEISG, ILQISGER 2 IX
8 BAS1_ORYSJ 2-Cys peroxiredoxin BAS1, chloroplastic OS = Oryza sativa subsp. Japonica 1 69 9.6 LSDYIGKK, SGGLGDLKYPLISDVTK 2 IX
8 RLA0_LUPLU 60S acidic ribosomal protein P0 OS = Lupinus luteus 1 69 7.5 VGSSEAALLAK, GTVEIITPVELIK 2 V
7 EF1G2_ORYSJ Elongation factor 1-gamma 2 OS = Oryza sativa subsp. Japonica 1 68 5 NPLDLLPPSK, SFTSEFPHVER 2 V
1 MDAR_SOLLC Monodehydroascorbate reductase OS = Solanum lycopersicum 1 68 9.7 AYLFPEGAAR, IVGAFLESGSPEENKAIAK 2 IX
7 RSSA_BRANA 40S ribosomal protein SA OS = Brassica napus 1 65 10.3 LLILTDPR, VIVAIENPQDIIVQSARPYGQR 2 V
6,8 IF4A1_ARATH Eukaryotic initiation factor 4A-1 OS = Arabidopsis thaliana 1 65 8.3 ELAQQIEK, VLITTDLLAR 2 V
7 HSP11_PEA 18.1 kDa class I heat shock protein OS = Pisum sativum 1 64 14.6 SIEISG, VLQISGER 2 IX
8 RS16_FRIAG 40S ribosomal protein S16 OS = Fritillaria agrestis 1 64 12.4 ALVAYYQK, AFEPILLLGR 2 V
8 RL51_ARATH 60S ribosomal protein L5-1 OS = Arabidopsis thaliana 1 64 7.3 KLTYEER, GALDGGLDIPHSDKR 2 V
4 HSP7M_PHAVU Heat shock 70 kDa protein, mitochondrial OS = Phaseolus vulgaris 1 64 6.1 HLNITLTR, SSGGLSEDEIEK 2 IX
8,7 HSP12_MEDSA 18.2 kDa class I heat shock protein OS = Medicago sativa 1 63 22.8 TIDISG, VLQISGER, FRLPENAK 3 IX
8 RS102_ARATH 40S ribosomal protein S10-2 OS = Arabidopsis thaliana 1 61 8.9 TYLNLPSEIVPATLK, TYLNLPSEIVPATLKK 2 V
8 RS193_ARATH 40S ribosomal protein S19-3 OS = Arabidopsis thaliana 1 60 15.4 DVSPHEFVK, ELAPYDPDWYYIR 2 V
1 CYF_AETCO Apocytochrome f OS = Aethionema cordifolium 2 60 8.7 NILVIGPVPGQK, SNNTVYNATAGGIISK 2 II
8 UBIQP_ACECL Polyubiquitin (Fragment) OS = Acetabularia cliftonii 1 60 8.7 IIFAGK, TLADYNIQK, ESTLHLVLR 3 V
8 RL40A_ARATH Ubiquitin-60S ribosomal protein L40-1 OS = Arabidopsis thaliana 1 60 37.5 LIFAGK, TLADYNIQK, ESTLHLVLR 3 V
3 UREA_CANEN Urease OS = Canavalia ensiformis 1 59 3 NYFLF, TIHTYHSEGAGGGHAPDIIK 2 I
8 RS13_PEA 40S ribosomal protein S13 OS = Pisum sativum 1 58 17.2 DSHGIAQVK, AHGLAPEIPEDLYHLIK 2 V
1,8 RAN_VICFA GTP-binding nuclear protein Ran/TC4 OS = Vicia faba 2 58 13.1 HLTGEFEK, NLQYYEISAK 2 III/VI
7 PYRB_ARATH Aspartate carbamoyltransferase, chloroplastic OS = Arabidopsis thaliana 1 57 5.4 GETLEDTIR, LGGEVLTTENAR 2 I
8 HSP11_CHERU 18.3 kDa class I heat shock protein OS = Chenopodium rubrum 1 52 18.6 FRLPENAK, IDWKETPEAHVFK 2 IX
5 CLAH1_ARATH Clathrin heavy chain 1 OS = Arabidopsis thaliana 1 51 0.9 ILALK, SPEQVSAAVK 2 VI
6 PDI_RICCO Protein disulfide-isomerase OS = Ricinus communis 1 49 4.2 FFNSPDAK, SEPIPEVNNEPVK 2 V
7 PDIA6_MEDSA Probable protein disulfide-isomerase A6 OS = Medicago sativa 1 48 7.4 KLAPEYEK, YGVSGYPTIQWFPK 2 V
4 SUSY_MEDSA Sucrose synthase OS = Medicago sativa 1 46 2.9 NITGLVEWYGK, SGFHIDPYHGDR 2 II
7 FKB62_ARATH Peptidyl-prolyl cis-trans isomerase FKBP62 OS = Arabidopsis thaliana 1 42 4.4 SDGVEFTVK, FTLGQGQVIK 2 V
5 DLDH2_ARATH Dihydrolipoyl dehydrogenase 2, mitochondrial OS = Arabidopsis thaliana 1 40 3.4 AAQLGLK, SLPGITIDEK 2 II
7 WIT2_ARATH WPP domain-interacting tail-anchored protein 2 OS = Arabidopsis thaliana 1 39 3.3 ELELEK, AESGEAKIK 2 III
8 TBA_PRUDU Tubulin alpha chain OS = Prunus dulcis 2 37 7.8 DVNAAVATIK, LVSQVISSLTASLR 2 VII
7 PER1B_ARMRU Peroxidase C1B OS = Armoracia rusticana 1 35 5.7 VPLGR, MGNITPLTGTQGEIR 2 IX
7,(8,6) YCF1_IPOPU Putative membrane protein ycf1 OS = Ipomoea purpurea 3 35 1.3 ALILK, IVIEK, VIQEKER 3 X
6 RFS_ORYSJ Galactinol--sucrose galactosyltransferase OS = Oryza sativa subsp. Japonica 1 27 2.8 VELAK, LMEEK 2 II
7 Y1497_ARATH Probable receptor-like protein kinase At1g49730 OS = Arabidopsis thaliana 1 20 1.7 FLLAK, NLVALK 2 V

1 Fraction corresponding to slice of the 1-D gel in which matches for the protein were found. Numbers in parenthesis indicate fractions where additional similar matches (see 2.) were found. 2 Number of protein matches of high taxonomical and sequence similarity grouped together with this match. (Match displayed was the top-scored one.) 3 MASCOT score. 4 I: metabolism, II: energy, III: cell growth/division, IV: transcription, V: protein synthesis/destination, VI: transporters, VII: cell structure, VIII: signal transduction, IX: disease/stress defense, and X: unclassified.

3.3. Lotus Embryo Proteins Identified by 1-DGE and MS/MS Analyses

The 1-DGE-MS analysis of the lotus embryo protein extract was performed following the same methodology, green plant database, and same parameters as for the immature endosperm extract. For the sample consisting of a purified extract of lotus embryo proteins, after separation by SDS-PAGE, the sample was divided into eight fractions, analyzed by LC-MS/MS, and matched against a green plant database, as above. From the initial results, 500+ protein matches with at least two confirmed peptide fragment matches were identified. After removing duplicate results from different gel fractions, there were 373 unique protein matches remaining. After grouping results likely to be the same protein in the sample, based on protein taxonomy and similarity of identified peptide sequences, 141 nr protein matches were listed (Table 2).

Table 2.

List of top-scored non-redundant (nr) protein matches of the lotus embryo 1-D shotgun mass spectroscopy results, as matched to Green Plant proteome database (SwissProt 57.0).

Fractions 1 Protein Accession Protein Description Similar 2 Score 3 Cover (%) Peptide sequences Sig. Peptide Number Func. Cat. 4
6,(5,2,1,7,3) ENO1_HEVBR Enolase 1 OS = Hevea brasiliensis 19 1125 42 TAIAK, YNQLLR, LTSEIGEK, DGGSDYLGK, AGWGVMASHR, MGAEVYHHLK, DGGSDYLGKGVSK, VQIVGDDLLVTNPK, VNQIGSVTESIEAVK, EAMKMGAEVYHHLK, AAVPSGASTGIYEALELR, LAMQEFMILPVGASSFK, SGETEDTFIADLSVGLATGQIK, YGQDATNVGDEGGFAPNIQENK, KYGQDATNVGDEGGFAPNIQENK, YGQDATNVGDEGGFAPNIQENKEGLELLK 16 II
4,(1,2,3,5) HSP7C_PETHY Heat shock cognate 70 kDa protein OS = Petunia hybrida 33 922 33.6 IEEVD, DISGNPR, NTTIPTKK, ITITNDKGR, DAGVIAGLNVMR, MVNHFVQEFK, NALENYAYNMR, MVNHFVQEFKR, TTPSYVGFTDTER, ARFEELNMDLFR, IINEPTAAAIAYGLDK, NQVAMNPINTVFDAK ATAGDTHLGGEDFDNR, NQVAMNPINTVFDAK, NAVVTVPAYFNDSQR, EQVFSTYSDNQPGVLIQVYEGER 16 IX
1,2,3,4,5,6,7 ACT_GOSHI Actin OS = Gossypium hirsutum 14 903 50.7 DLTDALMK, AGFAGDDAPR, IKVVAPPER, GYSFTTTAER, HTGVMVGMGQK, EITALAPSSMK, DAYVGDEAQSK, AVFPSIVGRPR, IWHHTFYNELR, LDLAGRDLTDALMK, GYSFTTTAEREIVR, SYELPDGQVITIGAER, VAPEEHPVLLTEAPLNPK, VAPEEHPVLLTEAPLNPK, TTGIVLDSGDGVSHTVPIYEGYALPHAILR 15 VII
6,(1,2,3,7) ACT12_SOLTU Actin-100 (Fragment) OS = Solanum tuberosum 5 872 53.5 AGFAGDDAPR, IKVVAPPER, HTGVMVGMGQK, EITALAPSSMK, DAYVGDEAQSK, AVFPSIVGRPR, DAYVGDEAQSKR, GEYDESGPSIVHR, IWHHTFYNELR, SYELPDGQVITIGAER, LAYVALDYEQELETAK, YPIEHGIVSNWDDMEK, TTGIVLDSGDGVSHTVPIYEGYALPHAILR 13 VII
7,(8,2) G3PC_ANTMA Glyceraldehyde-3-phosphate dehydrogenase, cytosolic OS = Antirrhinum majus 20 749 43.6 VALQR, SSIFDAK, KATYEQIK, AAIKEESEGK, AGIALNDNFVK, DAPMFVVGVNEK, AASFNIIPSSTGAAK, VPTVDVSVVDLTVR, VPTVDVSVVDLTVRLEK, FGIVEGLMTTVHSITATQK, GILGYTEDDVVSTDFVGDSR, LTGMSFRVPTVDVSVVDLTVR, LKGILGYTEDDVVSTDFVGDSR, VINDRFGIVEGLMTTVHSITATQK 14 II
4,(1,5,2) HSP83_IPONI Heat shock protein 83 OS = Ipomoea nil 4 717 31 VIVTTK, VVVSDR, KLVSATK, AILFVPK, EMLQQNK, DVDGEQLGR, FESLTDKSK, APFDLFDTR, AVENSPFLER, LGIHEDSQNR, DIYYITGESK, LDAQPELFIR, RAPFDLFDTR, ADLVNNLGTIAR, ELISNASDALDK, KAVENSPFLER, HFSVEGQLEFK, GVVDSDDLPLNISR, ELISNASDALDKIR, SGDELTSLKDYVTR, KPEEITKEEYASFYK, HSEFISYPIYLWTEK, ITLFLKEDQLEYLEER 23 IX
6 ATPBM_MAIZE ATP synthase subunit beta, mitochondrial OS = Zea mays 3 712 31.8 IGLFGGAGVGK, VVDLLAPYQR, TIAMDGTEGLVR, AHGGFSVFAGVGER, VGLTGLTVAEHFR, VLNTGSPITVPVGR, TVLIMELINNVAK, FTQANSEVSALLGR, QISELGIYPAVDPLDSTSR, EAPAFVEQATEQQILVTGIK, IPSAVGYQPTLATDLGGLQER 11 I
4,(5,2,1,3) HSP7E_SPIOL Chloroplast envelope membrane 70 kDa heat shock-related protein OS = Spinacia oleracea 5 631 31.2 NTTIPTKK, LSKEEIEK, TRDNNLLGK, DAGVISGLNVMR, EIAEAYLGSTVK, NALENYAYNMR, TTPSYVAFTDSER, IINEPTAAAIAYGLDK, ATAGDTHLGGEDFDNR, NQVAMNPINTVFDAK, NAVVTVPAYFNDSQR, EQVFSTYSDNQPGVLIQVYEGER 12 IX
4,(2,1,5) HSP81_ORYSI Heat shock protein 81-1 OS = Oryza sativa subsp. Indica 9 610 35.1 NLVKK, VVVTTK, IAELLR, KLVSATK, EMLQQNK, FESLTDKSK, APFDLFDTR, DSSMAGYMSSK, RAPFDLFDTR, KAVENSPFLEK, SDLVNNLGTIAR, HFSVEGQLEFK, EVSHEWSLVNK, GIVDSEDLPLNISR, SLTNDWEEHLAVK, SGDELTSLKDYVTR, LDAQPELFIHIVPDK, HSEFISYPISLWTEK, KPEEITKEEYAAFYK, MKEGQNDIYYITGESK, KHSEFISYPISLWTEK 21 IX
6,(3,1,2) TBB_HORVU Tubulin beta chain OS = Hordeum vulgare 21 583 39.1 YLTASAMFR, IREEYPDR, LAVNLIPFPR, VSEQFTAMFR, YTGTSDLQLER, MMLTFSVFPSPK, EVDEQMINVQNK, LHFFMVGFAPLTSR, AVLMDLEPGTMDSVR, LHFFMVGFAPLTSR, NSSYFVEWIPNNVK, ALTVPELTQQMWDAK, GHYTEGAELIDSVLDVVRK, TGPYGQIFRPDNFVFGQSGAGNNWAK 14 VII
6,(1,7,3,4,2) EF1A_TOBAC Elongation factor 1-alpha OS = Nicotiana tabacum 17 574 38.5 YDEIVK, GFVASNSK, EVSSYLK, QTVAVGVIK, EVSSYLKK, RGFVASNSK, LPLQDVYK, ARYDEIVK, IGGIGTVPVGR, STNLDWYK, STTTGHLIYK, EHALLAFTLGVK, GFVASNSKDDPAK, YYCTVIDAPGHR, YDEIVKEVSSYLK, YYCTVIDAPGHRDFIK, MIPTKPMVVETFSEYPPLGR, NMITGTSQADCAVLIIDSTTGGFEAGISK 18 V
4,(1,2,5,4) HS901_ARATH Heat shock protein 90-1 OS = Arabidopsis thaliana 6 539 26.4 VVVTTKVVVTTK, VVVSDR, KLVSATK, AILFVPK, FESLTDKSK, APFDLFDTR, AVENSPFLER, LGIHEDSQNR, DSSMSGYMSSK, RAPFDLFDTR, ADLVNNLGTIAR, KAVENSPFLER, HFSVEGQLEFK, TLSIIDSGIGMTK, GVVDSDDLPLNISR, KPEEITKEEYAAFYK, HSEFISYPIYLWTEK 17 IX
4,(2,1,3) METE_ARATH 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase OS = Arabidopsis thaliana 12 536 20.9 AAAALK, VVEVNALAK, SWLAFAAQK, AVNEYKEAK, YLFAGVVDGR, SDEKLLSVFR, FALESFWDGK, GNASVPAMEMTK, YGAGIGPGVYDIHSPR, GMLTGPVTILNWSFVR 10 I
4 ENPL_CATRO Endoplasmin homolog OS = Catharanthus roseus 3 472 12.6 NLGTIAK, FWNEFGK, YGWSSNMER, ELISNASDALDK, IMQSQTLSDASK, GLVDSDTLPLNVSR, ELISNASDALDKIR, VFISDEFDELLPK, RVFISDEFDELLPK, LMDIIINSLYSNKDIFLR 10 IX
4,(5,2) BIP4_TOBAC Luminal-binding protein 4 OS = Nicotiana tabacum 6 454 21 LIGEAAK, NTVIPTKK, IMEYFIK, LSQEEIER, ITITNDKGR, ALSSQHQVR, EAEEFAEEDKK, IVNKDGKPYIQVK, ARFEELNNDLFR, IINEPTAAAIAYGLDK, IKDAVVTVPAYFNDAQR 11 IX
4,(1,3,2,7) EF2_BETVU Elongation factor 2 OS = Beta vulgaris 6 454 16.6 DLYVK, VASDLPK, GGGQIIPTAR, MIPASDKGR, IRPVLTVNK, EGALAEENMR, NMSVIAHVDHGK, FGVDESKMMER, VFYASQLTAKPR, LWGENFFDPATK, IRPVLTVNKMDR, RVFYASQLTAKPR, GHVFEEMQRPGTPLYNIK, RGHVFEEMQRPGTPLYNIK 15 V
4,(1,2,3) HSP82_MAIZE Heat shock protein 82 OS = Zea mays 5 429 16.1 VVVSDR, KLVSATK, APFDLFDTR, AVENSPFLER, LGIHEDSQNR, RAPFDLFDTR, SDLVNNLGTIAR, ELISNASDALDK, KAVENSPFLER, HFSVEGQLEFK, GVVDSDDLPLNISR, ELISNASDALDKIR, HSEFISYPIYLWTEK 13 IX
6,(2,3) IF4A1_ORYSJ Eukaryotic initiation factor 4A-1 OS = Oryza sativa subsp. Japonica 4 418 31.4 ALGDYLGVK, ELAQQIEK, KGVAINFVTR, VLITTDLLAR, QSLRPDYIK, RDELTLEGIK, GLDVIQQAQSGTGK, GIYAYGFEKPSAIQQR, GFKDQIYDIFQLLPSK 9 V
3,(2,1) CAPPC_FLATR Phosphoenolpyruvate carboxylase 2 OS = Flaveria trinervia 32 417 18 GIAAGMQNTG, MNIGSRPSK, VILGDVRDK, KPSGGIESLR, LSAAWQLYK, SPEEVFDALK, RPLFGPDLPK, TPPTPQDEMR, QVSTFGLSLVR, VTIDLVEMVFAK, AGMSYFHETIWK, AIPWIFAWTQTR, VPYNAPLIQFSSWMGGDRDGNPR 13 I
6,(2) ENO2_ARATH Bifunctional enolase 2/transcriptional activator OS = Arabidopsis thaliana 2 391 33.3 YNQLLR, DGGSDYLGK, ISGDALKDLYK, DGGSDYLGKGVSK, VNQIGSVTESIEAVK, IVLPVPAFNVINGGSHAGNK, SGETEDTFIADLAVGLSTGQIK, YGQDATNVGDEGGFAPNIQENK, KYGQDATNVGDEGGFAPNIQENK, YGQDATNVGDEGGFAPNIQENKEGLELLK 10 IV
5,(2) CH61_CUCMA Chaperonin CPN60-1, mitochondrial OS = Cucurbita maxima 6 387 33.33 ISSINAVVK, VTDALNATK, VTKDGVTVAK, KISSINAVVK, IGGASEAEVGEK, IGVQIIQNALK, IGGASEAEVGEKK, GYISPYFITNQK, AAVEEGIVPGGGVALLYASK, TPVHTIASNAGVEGAVVVGK 10 IX
4 HSP7L_ARATH Heat shock 70 kDa protein 12 OS = Arabidopsis thaliana 1 382 16.8 NTVIPTKK, IMEYFIK, ALSSQHQVR, EAEEFAEEDKK, ARFEELNNDLFR, ARFEELNNDLFR, IINEPTAAAIAYGLDK, IKDAVVTVPAYFNDAQR 8 IX
2,(1) CLAH1_ARATH Clathrin heavy chain 1 OS = Arabidopsis thaliana 4 374 10.3 TVDNDLALK, SPEQVSAAVK, VANVELYYK, DPTLAVVAYR, FQELFAQTK, VEEDAVWSQVAK, GNLPGAENLVVQR, EGLVSDAIESFIR, GNMQLFSVDQQR, KNLLENWLAEDK, RGNLPGAENLVVQR, QLIDQVVSTALPESK, YKEAAELAAESPQGILR 13 VI
6,(2,5,1) ATPAM_PEA ATP synthase subunit alpha, mitochondrial OS = Pisum sativum 1 364 29.4 VVSVGDGIAR, TGSIVDVPAGK, AAELTTLLESR, VVDALGVPIDGR, TAIAIDTILNQK, KSVHEPMQTGLK, GIRPAINVGLSVSR, EAFPGDVFYLHSR, ITNFYTNFQVDEIGR, LTEVLKQPQYAPLPIEK, EVAAFAQFGSDLDAATQALLNR 11 I
5 RUBB_PEA RuBisCO large subunit-binding protein subunit beta, chloroplastic OS = Pisum sativum 2 357 23.98 IAALK, VVLTK, NVVLESK, VEDALNATK, IVNDGVTVAK, KGVVTLEEGK, LADLVGVTLGPK, GYISPYFVTDSEK, EVELEDPVENIGAK, TNDLAGDGTTTSVVLAQGLIAEGVK, IVNDGVTVAKEVELEDPVENIGAK 11 I
5,(2) PGMC_PEA Phosphoglucomutase, cytoplasmic OS = Pisum sativum 5 333 41.16 YLFEDGSR, FFEVPTGWK, LSGTGSEGATIR, SMPTSAALDVVAK, YDYENVDAGAAK 5 II
6,(2) SAHH_MESCR Adenosylhomocysteinase OS = Mesembryanthemum crystallinum 6 330 11.1 ATDVMIAGK, HSLPDGLMR, ITIKPQTDR, TEFGPSQPFK, LVGVSEETTTGVK, TEFGPSQPFKGAK, LVGVSEETTTGVKR 7 I
7 PGKY_TOBAC Phosphoglycerate kinase, cytosolic OS = Nicotiana tabacum 7 302 21.7 LAELSGK, YSLKPLVPR, YLKPAVAGFLMQK, GVSLLLPTDVVIADK, GVTTIIGGGDSVAAVEK, LASLADLYVNDAFGTAHR, KLASLADLYVNDAFGTAHR 7 II
4 SUSY_SOYBN Sucrose synthase OS = Glycine max 12 295 13.4 YLEMFYALK, VVHGIDVFDPK, NITGLVEWYGK, ELVNLVVVAGDR, LLPDAVGTTCGQR, SGFHIDPYHGDR, LGVTQCTIAHALEK 7 II
5 CPNB3_ARATH Chaperonin 60 subunit beta 3, chloroplastic OS = Arabidopsis thaliana 1 292 25.35 VVLTK, NVVLESK, VEDALNATK, KGVVTLEEGK, LADLVGVTLGPK, GYISPYFVTDSEK, EVELEDPVENIGAK, TNDLAGDGTTTSVVLAQGLIAEGVK 8 IX
7,(8) MDHC2_ARATH Malate dehydrogenase, cytoplasmic 2 OS = Arabidopsis thaliana 2 288 23.2 GAAIIK, NVSIYK, SQASALEK, EFAPSIPEK, MELVDAAFPLLK, VLVVANPANTNALILK, VLVTGAAGQIGYALVPMIAR 7 II
8,(1) 1433E_TOBAC 14-3-3-like protein E OS = Nicotiana tabacum 19 284 29.8 NVIGAR, VFYLK, YLAEFK, MKGDYHR, NLLSVAYK, IISSIEQK, TVDVEELTVEER, IISSIEQKEESR, SAQDIALAELAPTHPIR 9 VIII
5 VATA_GOSHI V-type proton ATPase catalytic subunit A OS = Gossypium hirsutum 2 272 49.1 SGDVYIPR, TVISQALSK, LAADTPLLTGQR, LAEMPADSGYPAYLAAR, LTTFEDSEKESEYGYVR, LVSQKFEDPAEGEEALVAK 6 VI
4,(3,2,1) CD48A_ARATH Cell division control protein 48 homolog A OS = Arabidopsis thaliana 3 265 18.5 TLLAK, KGDLFLVR, RSVSDADIR, DFSTAILER, LAEDVDLER, GILLYGPPGSGK, LAGESESNLRK, IVSQLLTLMDGLK, ELVELPLRHPQLFK, NAPSIIFIDEIDSIAPK 10 III/IV
7 ALF_CICAR Fructose-bisphosphate aldolase, cytoplasmic isozyme OS = Cicer arietinum 1 245 11.1 GILAADESTGTIGK, GILAADESTGTIGKR, YHDELIANAAYIGTPGK 3 II
7 MDHM_CITLA Malate dehydrogenase, mitochondrial OS = Citrullus lanatus 2 235 17.6 LFGVTTLDVVR, TQDGGTEVVEAK, DDLFNINAGIVK, RTQDGGTEVVEAK, VAVLGAAGGIGQPLALLMK 5 II
6,7 ACT5_ARATH Putative actin-5 OS = Arabidopsis thaliana 1 213 20.4 AGFAGDDAPR, IKVVAPPER, IWHHTFYNELR, TTGIVLDSGDGVSHTVPIYEGYALPHAILR 4 VII
6 UGPA_MUSAC UTP--glucose-1-phosphate uridylyltransferase OS = Musa acuminata 3 199 18 VANFLSR, GGTLISYEGR, VLQLETAAGAAIR, FFDHAIGINVPR, LQSAVAELNQISENEK 5 II
8 ADT1_GOSHI ADP, ATP carrier protein 1, mitochondrial OS = Gossypium hirsutum 2 194 8.8 SSLDAFSQILK, LLIQNQDEMIK, YFPTQALNFAFK 3 VI
8 RAN_VICFA GTP-binding nuclear protein Ran/TC4 OS = Vicia faba 1 193 26.2 NVPTWHR, HLTGEFEK, AKQVTFHR, LVIVGDGGTGK, NLQYYEISAK, SNYNFEKPFLYLAR 6 VIII
3 CLPB1_ARATH Chaperone protein ClpB1 OS = Arabidopsis thaliana 2 192 11.1 TAVVEGLAQR, YRGEFEER, TKNNPVLIGEPGVGK, KVESASGDTNFQALK, VQLDSQPEEIDNLER, LIGAPPGYVGHEEGGQLTEAVR 6 IX
5 CPNA1_ARATH Chaperonin 60 subunit alpha 1, chloroplastic OS = Arabidopsis thaliana 1 189 82.82 VVNDGVTIAR, NVVLDEFGSPK, VGAATETELEDR 3 IX
3 ACOC_CUCMA Aconitate hydratase, cytoplasmic OS = Cucurbita maxima 6 187 9.2 NFEGR, ILLESAIR, STYESITK, DFNSYGSR, RGNDEVMAR, TSLAPGSGVVTK, ATIANMSPEYGATMGFFPVDHVTLQYLK 7 II
3 SYA_ARATH Alanine--tRNA ligase OS = Arabidopsis thaliana 1 181 5.4 LTSVLQNK, HVDTGMGFER, ESDGSLKPLPAK, AFALLSEEGIAK, AVFGEVYPDPVR 5 IV
6,(7) PRS6A_SOLLC 26S protease regulatory subunit 6A homolog OS = Solanum lycopersicum 4 170 8.5 IIKEELQR, GVLLYGPPGTGK, LAGPQLVQMFIGDGAK 3 I
7 AATM_LUPAN Aspartate aminotransferase P2, mitochondrial (Fragment) OS = Lupinus angustifolius 1 170 10.8 IADVIQEK, NLGLYAER, LNLGVGAYR, ISLAGLSLAK, VATVQGLSGTGSLR 5 I
6 UGDH_SOYBN UDP-glucose 6-dehydrogenase OS = Glycine max 1 168 6.5 IAILGFAFK, LAANAFLAQR, AADLTYWESAAR 3 II
2,8 ANX4_FRAAN Annexin-like protein RJ4 OS = Fragaria ananassa 1 163 9.6 VGTDEDALTR, LLVALVTAYR 2 IX
8 RS4_GOSHI 40S ribosomal protein S4 OS = Gossypium hirsutum 4 163 22.9 LSIIEEAR, LGNVFTIGK, GIPYLNTYDGR, LGGAFAPKPSSGPHK, TDKTYPAGFMDVVSIPK 5 V
7,(8) RSSA_SOYBN 40S ribosomal protein SA OS = Glycine max 2 161 19 LLILTDPR, YVDIGIPANNK, HTPGTFTNQLQTSFSEPR, VIVAIENPQDIIVQSARPYGQR 4 V
8 RAA1D_ARATH Ras-related protein RABA1d OS = Arabidopsis thaliana 9 161 26.6 AITSAYYR, VVLIGDSGVGK, STIGVEFATR, HSTFENVER, AQIWDTAGQER 5 VIII
8 RS18_ARATH 40S ribosomal protein S18 OS = Arabidopsis thaliana 1 155 23.7 LRDDLER, VLNTNVDGK, IPDWFLNR, YSQVVSNALDMK 4 V
1 AVP_VIGRR Pyrophosphate-energized vacuolar membrane proton pump OS = Vigna radiata var. Radiata 1 151 9.5 TDALDAAGNTTAAIGK, AAVIGDTIGDPLKDTSGPSLNILIK 2 VI
5 ILV5_ARATH Ketol-acid reductoisomerase, chloroplastic OS = Arabidopsis thaliana 1 150 27.45 SDIVVK, SVVLAGR, QIGVIGWGSQGPAQAQNLR 3 I
7 AATC_DAUCA Aspartate aminotransferase, cytoplasmic OS = Daucus carota 2 149 10.4 ISMAGLSSR, LNLGVGAYR, LIFGADSPAIQENR 3 I
8 RL13_TOBAC 60S ribosomal protein L13 OS = Nicotiana tabacum 1 149 23.3 GFSLEELK, TWFNQPAR, SLEGLQTNVQR, KLAPTIGIAVDHR 4 V
5 ACLB1_ORYSJ ATP-citrate synthase beta chain protein 1 OS = Oryza sativa subsp. Japonica 1 148 35.6 FNNIPQVK, FGGAIDDAAR, SEVQFGHAGAK, SIGLIGHTFDQKR, VVAIIAEGVPESDTK 5 I
2,(3) COPA1_ARATH Coatomer subunit alpha-1 OS = Arabidopsis thaliana 3 147 4.4 VWDIGALR, YVLEGHDR, AWEVDTLR, VVIFDLQQR, TLDVPIYITK, QDIIVSNSEDK 6 VI
6 CATA2_RICCO Catalase isozyme 2 OS = Ricinus communis 2 146 9.3 FSTVIHER, APGVQTPVIVR, EGNFDIVGNNFPVFFIR 3 IX
8 RAN3_ORYSI GTP-binding nuclear protein Ran-3 OS = Oryza sativa subsp. Indica 1 145 14.2 HITGEFEK, NLQYYEISAK, SNYNFEKPFLYLAR 3 III/VI
6 MDAR_SOLLC Monodehydroascorbate reductase OS = Solanum lycopersicum 1 139 12.5 AYLFPEGAAR, LSDFGVQGADSK, IVGAFLESGSPEENKAIAK 3 IX
6,(1) RL3_ORYSJ 60S ribosomal protein L3 OS = Oryza sativa subsp. Japonica 4 138 9.3 VIAHTQIR, HGSLGFLPR, LALEEIKLK, GKGYEGVVTR 4 V
5 PMGI_RICCO 2,3-bisphosphoglycerate-independent phosphoglycerate mutase OS = Ricinus communis 4 136 43.5 ARDAILSGK, LVDLALASGK, LDQLQLLLK, AHGTAVGLPTEDDMGNSEVGHNALGAGR 4 II
5 RUBA_RICCO RuBisCO large subunit-binding protein subunit alpha (Fragment) OS = Ricinus communis 2 134 71.19 NVVLDEFGSPK, VGAATETELEDR, LGLLSVTSGANPVSIK 3 I
7 RL4_PRUAR 60S ribosomal protein L4 OS = Prunus armeniaca 1 134 14.5 AGHQTSAESWGTGR, YAVVSAIAASAVPSLVLAR 2 V
5 G6PI_SPIOL Glucose-6-phosphate isomerase, cytosolic OS = Spinacia oleracea 2 131 27 SQQPVYLK, FLANVDPIDVAK, TFTTAETMLNAR 3 II
8 RS8_MAIZE 40S ribosomal protein S8 OS = Zea mays 1 130 21.7 LDTGNYSWGSEAVTR, ILDVVYNASNNELVR 2 V
8 RL11_MEDSA 60S ribosomal protein L11 OS = Medicago sativa 1 129 17.7 YEGVILNK, AMQLLESGLK, VLEQLSGQTPVFSK 3 V
8,(7) H4_ARATH Histone H4 OS = Arabidopsis thaliana 2 128 46.6 TLYGFGG, IFLENVIR, DAVTYTEHAR, ISGLIYEETR 4 VII
5 TCPE_ARATH T-complex protein 1 subunit epsilon OS = Arabidopsis thaliana 1 123 73.41 IAEGYEMASR, QQQILLATQVVK 2 V
5 TCPA_ARATH T-complex protein 1 subunit alpha OS = Arabidopsis thaliana 1 119 71.23 YFVEAGAIAVR, NKIHPTSIISGYR 2 V
4 TKTC_SPIOL Transketolase, chloroplastic OS = Spinacia oleracea 4 118 6.1 FLAIDAVEK, ALPTYTPETPGDATR, VIPGLLGGSADLASSNMTLLK 3 II
8 TPIS_MAIZE Triosephosphate isomerase, cytosolic OS = Zea mays 1 117 11.9 FFVGGNWK, VAYALSQGLK, VIACVGETLEQR 3 VII
8 PROF3_ARATH Profilin-3 OS = Arabidopsis thaliana 2 117 17.2 LGDYLLEQGL, YMVIQGEPGAVIR 2 VII
8 RS92_ARATH 40S ribosomal protein S9-2 OS = Arabidopsis thaliana 1 115 19.3 LVGEYGLR, ERLDAELK, RPYEKER, RLQTIVFK, IFEGEALLR 5 V
6 VATB1_ARATH V-type proton ATPase subunit B1 OS = Arabidopsis thaliana 1 115 10.5 YQEIVNIR, TVSGVAGPLVILDK, QIYPPINVLPSLSR 3 VI
6 ERF1X_ARATH Eukaryotic peptide chain release factor subunit 1-1 OS = Arabidopsis thaliana 1 113 9.9 GFGGIGGILR, QSVLGAITSAQQR 2 V
5 HSP7M_PHAVU Heat shock 70 kDa protein, mitochondrial OS = Phaseolus vulgaris 3 111 24.87 HLNITLTR, VIENSEGAR, TTPSVVAFNQK, SSGGLSEDEIEK 4 IX
8 ANXD1_ARATH Annexin D1 OS = Arabidopsis thaliana 1 110 5 AQINATFNR, SKAQINATFNR 2 IX
8 RS16_FRIAG 40S ribosomal protein S16 OS = Fritillaria agrestis 3 109 13.8 ALVAYYQK, AFEPILLLGR, YKAFEPILLLGR 3 V
8 RS5_CICAR 40S ribosomal protein S5 (Fragment) OS = Cicer arietinum 1 108 15.7 IGSAGVVRR, GSSNSYAIK, VNQAIYLLTTGAR 3 V
8 ARF_VIGUN ADP-ribosylation factor OS = Vigna unguiculata 1 104 28.7 ILMVGLDAAGK, NISFTVWDVGGQDK 2 VIII
4 SYGM1_ARATH Glycine--tRNA ligase 1, mitochondrial OS = Arabidopsis thaliana 1 103 5.1 LFYIPSFK, VFTPSVIEPSFGIGR 2 IV/VI
7 RGP1_ORYSJ UDP-arabinopyranose mutase 1 OS = Oryza sativa subsp. Japonica 1 101 6.9 ILGPK, ASNPFVNLK, ASNPFVNLKK, YVDAVMTVPK 4 I
3 HSP7O_ARATH Heat shock 70 kDa protein 14 OS = Arabidopsis thaliana 1 101 5.1 ILSHAFDR, NAVESYVYDMR, AVLDAATIAGLHPLR 3 IX
8 RS15A_DAUCA 40S ribosomal protein S15a OS = Daucus carota 1 100 29.2 VSVLNDALK, HGYIGEFEYVDDHR 2 V
8 RS61_ARATH 40S ribosomal protein S6-1 OS = Arabidopsis thaliana 2 100 18 LVTPLTLQR, KGENDLPGLTDTEKPR, ISQEVSGDALGEEFKGYVFK 3 V
6 ACCC2_POPTR Biotin carboxylase 2, chloroplastic OS = Populus trichocarpa 1 97 7.8 LLEEAPSPALTPELR, ALDDTVITGVPTTIDYHK 2 I
8 RLA2_PARAR 60S acidic ribosomal protein P2 OS = Parthenium argentatum 1 97 10.5 DITELIASGR, GKDITELIASGR 2 V
8 RS33_ARATH 40S ribosomal protein S3-3 OS = Arabidopsis thaliana 3 96 10.9 ELAEDGYSGVEVR, FKFPQDSVELYAEK 2 V
5 KPYC_SOYBN Pyruvate kinase, cytosolic isozyme OS = Glycine max 1 94 55.66 KGSDLVNVR, STPLPMSPLESLASSAVR 2 II
7 GMD1_ARATH GDP-mannose 4,6 dehydratase 1 OS = Arabidopsis thaliana 2 93 5 RGENFVTR, LFLGNIQASR 2 II
4 HSP7S_SPIOL Stromal 70 kDa heat shock-related protein, chloroplastic (Fragment) OS = Spinacia oleracea 2 93 5.3 HIETTLTR, IINEPTAASLAYGFEK 2 IX
6 EF1G2_ORYSJ Elongation factor 1-gamma 2 OS = Oryza sativa subsp. Japonica 3 93 16.7 EVAIK, LYSNTK, NPLDLLPPSK, MILDEWKR, SFTSEFPHVER 5 V
8 RLA0_LUPLU 60S acidic ribosomal protein P0 OS = Lupinus luteus 1 90 9.9 EYLKDPSK, VGSSEAALLAK 2 V
7 GCST_PEA Aminomethyltransferase, mitochondrial OS = Pisum sativum 1 89 8.3 GGAIDDSVITK, TGYTGEDGFEISVPSEHGVELAK 2 I
8 APX1_ORYSJ L-ascorbate peroxidase 1, cytosolic OS = Oryza sativa subsp. Japonica 1 89 15.2 TGGPFGTMK, LSELGFADA, ALLSDPAFRPLVEK 3 IX
8 RS193_ARATH 40S ribosomal protein S19-3 OS = Arabidopsis thaliana 1 88 23.1 AYAAHLKR, TVKDVSPHEFVK, ELAPYDPDWYYIR 3 V
1,(2) RPN1A_ARATH 26S proteasome non-ATPase regulatory subunit 2 1A OS = Arabidopsis thaliana 3 87 5.5 VGQAVDVVGQAGRPK, NLAGEIAQEYTKR 2 I
4,(3) PPDK_FLABR Pyruvate, phosphate dikinase, chloroplastic OS = Flaveria brownii 8 87 2.9 SDFEGIFR, AALIADEIAK, AMDGLPVTIR 3 II
8 RS13_PEA 40S ribosomal protein S13 OS = Pisum sativum 1 87 25.8 DSHGIAQVK, GLTPSQIGVILR, KGLTPSQIGVILR, AHGLAPEIPEDLYHLIK 4 V
8 RS14_CHLRE 40S ribosomal protein S14 OS = Chlamydomonas reinhardtii 1 85 18.3 TPGPGAQSALR, IEDVTPIPTDSTRR 2 V
6 VATB2_GOSHI V-type proton ATPase subunit B 2 (Fragment) OS = Gossypium hirsutum 1 84 10.1 FVTQGAYDTR, QIYPPINVLPSLSR 2 VI
8,(5) CYPH_MAIZE Peptidyl-prolyl cis-trans isomerase OS = Zea mays 3 83 16.3 SGKPLHYK, VFFDMTVGGAPAGR 2 V
8 NDK1_ARATH Nucleoside diphosphate kinase 1 OS = Arabidopsis thaliana 1 82 9.4 NVIHGSDSVESAR, NVIHGSDSVESARK 2 I
7 GLN11_ORYSJ Glutamine synthetase cytosolic isozyme 1-1 OS = Oryza sativa subsp. Japonica 1 79 7.6 DIVDSHYK, HKEHISAYGEGNER 2 I
7 SERC_SPIOL Phosphoserine aminotransferase, chloroplastic OS = Spinacia oleracea 1 79 5.3 FGLIYAGAQK, NVGPSGVTIVIVR 2 I
7 PDI21_ARATH Protein disulfide-isomerase like 2-1 OS = Arabidopsis thaliana 1 78 8.9 KLAPEYEK, YGVSGFPTLK, YGVSGYPTIQWFPK 3 V
8 RS254_ARATH 40S ribosomal protein S25-4 OS = Arabidopsis thaliana 2 76 29.6 LITPSILSDR, MVAAHSSQQIYTR 2 V
6 IDHC_TOBAC Isocitrate dehydrogenase [NADP] OS = Nicotiana tabacum 2 75 7.5 HAFGDQYR, DLALIIHGSK, TIEAEAAHGTVTR 3 II
6 OPD22_ARATH Dihydrolipoyllysine-residue acetyltransferase component 2 of pyruvate dehydrogenase complex, mitochondrial OS = Arabidopsis thaliana 1 73 3.9 ISVNDLVIK, VIDGAIGAEWLK 2 II
8 RL40A_ARATH Ubiquitin-60S ribosomal protein L40-1 OS = Arabidopsis thaliana 1 70 45.3 ESTLHLVLR, TITLEVESSDTIDNVK 2 V
8 RL24_PRUAV 60S ribosomal protein L24 OS = Prunus avium 1 69 7 SIVGATLEVIQK, SIVGATLEVIQKR 2 V
7,(5) SAPK6_ORYSJ Serine/threonine-protein kinase SAPK6 OS = Oryza sativa subsp. Japonica 2 68 7.4 DIGSGNFGVAR, STVGTPAYIAPEVLSR 2 III
6 GME2_ORYSJ GDP-mannose 3,5-epimerase 2 OS = Oryza sativa subsp. Japonica 1 67 7 NSDNTLIKEK, ISITGAGGFIASHIAR 2 II
8 EF1D1_ORYSJ Elongation factor 1-delta 1 OS = Oryza sativa subsp. Japonica 2 66 7.9 LVPVGYGIK, KLDEYLLTR 2 V
8 IF5A1_ARATH Eukaryotic translation initiation factor 5A-1 OS = Arabidopsis thaliana 1 64 12 VVEVSTSK, TYPQQAGTIR, TYPQQAGTIRK 3 V
8 H2B11_ARATH Histone H2B.11 OS = Arabidopsis thaliana 1 62 30 LVLPGELAK, QVHPDIGISSK, YNKKPTITSR 3 VII
8 PSA3_ARATH Proteasome subunit alpha type-3 OS = Arabidopsis thaliana 1 60 7.6 VFQIEYAAK, VPDDLLEEAK 2 I
7 AAT3_ARATH Aspartate aminotransferase, chloroplastic OS = Arabidopsis thaliana 1 60 4.9 LNLGVGAYR, TEEGKPLVLNVVR 2 I
1 PDR4_ORYSJ Pleiotropic drug resistance protein 4 OS = Oryza sativa subsp. Japonica 1 60 1.5 TTLLLALAGK, VTTGEMLVGPAR 2 IX
2,(8) UBQ12_ARATH Polyubiquitin 12 OS = Arabidopsis thaliana 3 60 23.9 MQIFLKTLTGK, IQDKEGIPPDQQR, TITLEVESSDTIDNVK 3 V
2,(1) UBIQ_AVESA Ubiquitin OS = Avena sativa 1 60 57.9 TLADYNIQK, IQDKEGIPPDQQR, TITLEVESSDTIDNVK 3 V
5,(1) DIM_PEA Delta(24)-sterol reductase OS = Pisum sativum 2 59 45.72 NILDIDKER, SDLEAPLRPK 2 I
8 HSP11_PEA 18.1 kDa class I heat shock protein OS = Pisum sativum 2 56 8.9 SIEISG, VLQISGER 2 IX
6 MPPA_SOLTU Mitochondrial-processing peptidase subunit alpha OS = Solanum tuberosum 1 52 3.4 QLLTYGER, MVASEDIGR 2 I
8 RL17_MAIZE 60S ribosomal protein L17 OS = Zea mays 1 52 10.5 NAESNADVK, YLEDVIAHK 2 V
8 RL51_ARATH 60S ribosomal protein L5-1 OS = Arabidopsis thaliana 2 52 9.3 VFGALK, KLTYEER, GALDGGLDIPHSDKR 3 V
3 PHSL1_SOLTU Alpha-1,4 glucan phosphorylase L-1 isozyme, chloroplastic/amyloplastic OS = Solanum tuberosum 1 50 1.8 NDVSYPIK, AFATYVQAK 2 II
6 PRS4A_ARATH 26S proteasome regulatory subunit 4 homolog A OS = Arabidopsis thaliana 1 49 9.5 VVGSELIQK, GVILYGEPGTGK 2 II
8 YPTC1_CHLRE GTP-binding protein YPTC1 OS = Chlamydomonas reinhardtii 2 49 17.2 TITSSYYR, LLLIGDSGVGK 2 III/VI
4 HSP7G_ARATH Heat shock 70 kDa protein 7, chloroplastic OS = Arabidopsis thaliana 1 47 9.5 HIETTLTR, TTPSVVAYTK, QAVVNPENTFFSVKR 3 IX
8 SODM_HEVBR Superoxide dismutase [Mn], mitochondrial OS = Hevea brasiliensis 1 46 11.2 HHQTYITNYNK, LVVETTANQDPLVTK 2 IX
5 CALX2_ARATH Calnexin homolog 2 OS = Arabidopsis thaliana 2 45 30.3 NPAYK, SEGHDDYGLLVSEK 2 V
8 RS30_ARATH 40S ribosomal protein S30 OS = Arabidopsis thaliana 1 44 30.6 GKVHGSLAR, FVTAVVGFGK 2 V
8 RL7A1_ARATH 60S ribosomal protein L7a-1 OS = Arabidopsis thaliana 1 44 9.3 TLDKNLATSLFK, LKVPPALNQFTK 2 V
7 METK4_POPTR S-adenosylmethionine synthase 4 OS = Populus trichocarpa 1 42 12.3 FVIGGPHGDAGLTGR, VLVNIEQQSPDIAQGVHGHLTK 2 I
8 RL18A_CASSA 60S ribosomal protein L18a OS = Castanea sativa 1 41 9.6 ASRPNLFM, FHQYQVVGR 2 V
7 EFTM_ARATH Elongation factor Tu, mitochondrial OS = Arabidopsis thaliana 1 41 9.7 QAILK, VLAEEGKAK, GITIATAHVEYETAKR 3 V
1 CALSB_ARATH Callose synthase 11 OS = Arabidopsis thaliana 1 38 1.5 ILFNEAFSR, LGEGKPENQNHALIFTR 2 IX
3 APBLB_ARATH Beta-adaptin-like protein B OS = Arabidopsis thaliana 1 27 2 EAENIVER, DSQDPNPLIR 2 VII

1 Fraction corresponding to slice of the 1-D gel in which matches for the protein were found. Numbers in parenthesis indicate fractions where additional similar matches (see 2) were found. 2 Number of protein matches of high taxonomical and sequence similarity grouped together with this match. (Match displayed was the top-scored one.) 3 MASCOT score. 4 I: metabolism, II: energy, III: cell growth/division, IV: transcription, V: protein synthesis/destination, VI: transporters, VII: cell structure, VIII: signal transduction, IX: disease/stress defense, and X: unclassified

3.4. Comparative Analysis of Lotus Seed (Immature Endosperm, Mature Endosperm, and Embryo) Proteins

As is to be expected, there were many proteins in common found among the immature endosperm and embryo tissues, as well as with the mature endosperm previously analyzed [17]. Amongst all three seed tissues, a total of 206 nr proteins were identified against the plant database (Figure 3). Of these, 31 (15%) were common to all three tissues, 40 (19%) were unique to the immature endosperm, and 65 (32%) were unique to the embryo; only 14 (7%) were exclusively found in the mature endosperm. To note, the larger share of embryo-only proteins is a consequence of the embryo tissue being much more involved in plant metabolism, and therefore is expected to express a larger number of functional proteins than the endosperm, which, especially in its mature phase, has nutrient storage as its primary function. The immature endosperm, as a developing tissue, also expresses a larger number of proteins than its mature form, and also shares a significant number of proteins with the embryo—35 (17%) of the identified ones. Common proteins between mature and immature endosperm only amounted to 5% of the identified ones (same as for between the mature endosperm and embryo). Although, considering that both immature endosperm and immature embryo are much softer and with a higher water content than their mature stages, there is a possibility that some of the proteins in common with the embryo identified in the immature endosperm might have originated from the embryo and diffused through the endosperm, despite the care taken to remove embryo fragments and the endosperm immediately around them in the sample preparation.

Figure 3.

Figure 3

Venn diagram displaying distribution of non-redundant (nr) proteins amongst lotus seed immature endosperm (ImE), mature endosperm (MtE), and embryo (Emb) (a); Listing of the total and nr protein matches found for each lotus seed tissue analyzed (b); * see reference [17].

3.5. Functional Significance of the Identified Seed Proteins

Gene ontology data (biological processes, molecular functions and cellular localization) for all identified proteins were obtained from the UniProtKB database, using the EMBL-EBI (www.ebi.ac.uk) search tool (Table 3).

Table 3.

List of all 206 non-redundant (nr) proteins found across the three tissues of the lotus seed (embryo, immature endosperm and mature endosperm).

Protein Accession Protein Description Tissues 1
1433E_TOBAC 14-3-3-like protein E OS = Nicotiana tabacum M/I/E
HSP14_SOYBN 17.5 kDa class I heat shock protein OS = Glycine max I
HSP11_SOLLC 17.8 kDa class I heat shock protein OS = Solanum lycopersicum M
HSP11_PEA 18.1 kDa class I heat shock protein OS = Pisum sativum M/I/E
HSP12_MEDSA 18.2 kDa class I heat shock protein OS = Medicago sativa M/I
HSP11_CHERU 18.3 kDa class I heat shock protein OS = Chenopodium rubrum I
PMG1_ARATH 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1 OS = Arabidopsis thaliana M/I/E
PRS6A_SOLLC 26S protease regulatory subunit 6A homolog OS = Solanum lycopersicum E
RPN1A_ARATH 26S proteasome non-ATPase regulatory subunit 2 1A OS = Arabidopsis thaliana E
PRS4A_ARATH 26S proteasome regulatory subunit 4 homolog A OS = Arabidopsis thaliana E
BAS1_ORYSJ 2-Cys peroxiredoxin BAS1, chloroplastic OS = Oryza sativa subsp. Japonica I
RS102_ARATH 40S ribosomal protein S10-2 OS = Arabidopsis thaliana I
RS13_PEA 40S ribosomal protein S13 OS = Pisum sativum I/E
RS14_CHLRE 40S ribosomal protein S14 OS = Chlamydomonas reinhardtii I/E
RS15A_DAUCA 40S ribosomal protein S15a OS = Daucus carota E
RS16_FRIAG 40S ribosomal protein S16 OS = Fritillaria agrestis I/E
RS18_ARATH 40S ribosomal protein S18 OS = Arabidopsis thaliana I/E
RS193_ARATH 40S ribosomal protein S19-3 OS = Arabidopsis thaliana I/E
RS254_ARATH 40S ribosomal protein S25-4 OS = Arabidopsis thaliana E
RS30_ARATH 40S ribosomal protein S30 OS = Arabidopsis thaliana E
RS33_ARATH 40S ribosomal protein S3-3 OS = Arabidopsis thaliana E
RS3A1_VITVI 40S ribosomal protein S3a-1 OS = Vitis vinifera I
RS4_GOSHI 40S ribosomal protein S4 OS = Gossypium hirsutum I/E
RS5_CICAR 40S ribosomal protein S5 (fragment) OS = Cicer arietinum I/E
RS6_ASPOF 40S ribosomal protein S6 OS = Asparagus officinalis I
RS61_ARATH 40S ribosomal protein S6-1 OS = Arabidopsis thaliana E
RS8_MAIZE 40S ribosomal protein S8 OS = Zea mays E
RS91_ARATH 40S ribosomal protein S9-1 OS = Arabidopsis thaliana M
RS92_ARATH 40S ribosomal protein S9-2 OS = Arabidopsis thaliana E
RSSA_SOYBN 40S ribosomal protein SA OS = Glycine max I/E
METE_ARATH 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase OS = Arabidopsis thaliana M/I/E
RLA0_LUPLU 60S acidic ribosomal protein P0 OS = Lupinus luteus I/E
RLA2_PARAR 60S acidic ribosomal protein P2 OS = Parthenium argentatum E
RL10_VITRI 60S ribosomal protein L10 OS = Vitis riparia I
RL11_MEDSA 60S ribosomal protein L11 OS = Medicago sativa E
RL12_PRUAR 60S ribosomal protein L12 OS = Prunus armeniaca I
RL13_TOBAC 60S ribosomal protein L13 OS = Nicotiana tabacum I/E
RL17_MAIZE 60S ribosomal protein L17 OS = Zea mays E
RL182_ARATH 60S ribosomal protein L18-2 OS = Arabidopsis thaliana I
RL18A_CASSA 60S ribosomal protein L18a OS = Castanea sativa E
RL24_PRUAV 60S ribosomal protein L24 OS = Prunus avium E
RL3_ORYSJ 60S ribosomal protein L3 OS = Oryza sativa subsp. Japonica I/E
RL4_PRUAR 60S ribosomal protein L4 OS = Prunus armeniaca I/E
RL51_ARATH 60S ribosomal protein L5-1 OS = Arabidopsis thaliana I/E
RL6_MESCR 60S ribosomal protein L6 OS = Mesembryanthemum crystallinum I
RL7A1_ARATH 60S ribosomal protein L7a-1 OS = Arabidopsis thaliana E
ACOC_CUCMA Aconitate hydratase, cytoplasmic OS = Cucurbita maxima M/E
ACT_GOSHI Actin OS = Gossypium hirsutum I/E
ACT1_ORYSI Actin-1 OS = Oryza sativa subsp. Indica M
ACT12_SOLTU Actin-100 (fragment) OS = Solanum tuberosum M/E
ACT1_SOLLC Actin-41 (fragment) OS = Solanum lycopersicum M
ACT7_ARATH Actin-7 OS = Arabidopsis thaliana M
SAHH_MEDSA Adenosylhomocysteinase OS = Medicago sativa M/I/E
ADT1_GOSHI ADP, ATP carrier protein 1, mitochondrial OS = Gossypium hirsutum M/I/E
ARF_VIGUN ADP-ribosylation factor OS = Vigna unguiculata E
SYA_ARATH Alanine--tRNA ligase OS = Arabidopsis thaliana E
ADH1_SOLTU Alcohol dehydrogenase 1 OS = Solanum tuberosum M/I
PHSL_IPOBA Alpha-1,4 glucan phosphorylase L isozyme, chloroplastic/amyloplastic OS = Ipomoea batatas M/E
PHSH_ARATH Alpha-glucan phosphorylase, H isozyme OS = Arabidopsis thaliana M/I
GCST_PEA Aminomethyltransferase, mitochondrial OS = Pisum sativum I/E
ANXD1_ARATH Annexin D1 OS = Arabidopsis thaliana M/I/E
ANX4_FRAAN Annexin-like protein RJ4 OS = Fragaria ananassa E
CYF_AETCO Apocytochrome f OS = Aethionema cordifolium I
AATM_LUPAN Aspartate aminotransferase P2, mitochondrial (fragment) OS = Lupinus angustifolius E
AATM_LUPAN Aspartate aminotransferase P2, mitochondrial (fragment) OS = Lupinus angustifolius I
AAT3_ARATH Aspartate aminotransferase, chloroplastic OS = Arabidopsis thaliana I/E
AATC_DAUCA Aspartate aminotransferase, cytoplasmic OS = Daucus carota E
PYRB_ARATH Aspartate carbamoyltransferase, chloroplastic OS = Arabidopsis thaliana I
ATPAM_HELAN ATP synthase subunit alpha, mitochondrial OS = Helianthus annuus M/I/E
ATPBM_NICPL ATP synthase subunit beta, mitochondrial OS = Nicotiana plumbaginifolia M/I/E
ACLB1_ORYSJ ATP-citrate synthase beta chain protein 1 OS = Oryza sativa subsp. Japonica E
CLPA_BRANA ATP-dependent Clp protease ATP-binding subunit clpA homolog, chloroplastic (fragment) OS = Brassica napus I
APBLB_ARATH Beta-adaptin-like protein B OS = Arabidopsis thaliana E
ENO2_ARATH Bifunctional enolase 2/transcriptional activator OS = Arabidopsis thaliana I/E
ACCC2_POPTR Biotin carboxylase 2, chloroplastic OS = Populus trichocarpa E
CALSB_ARATH Callose synthase 11 OS = Arabidopsis thaliana E
CALX2_ARATH Calnexin homolog 2 OS = Arabidopsis thaliana E
CALR_BERST Calreticulin OS = Berberis stolonifera I
CATA2_RICCO Catalase isozyme 2 OS = Ricinus communis E
CD48A_ARATH Cell division control protein 48 homolog A OS = Arabidopsis thaliana M/I/E
CLPB1_ARATH Chaperone protein ClpB1 OS = Arabidopsis thaliana E
CLPC1_ARATH Chaperone protein ClpC1, chloroplastic OS = Arabidopsis thaliana I
CPNA1_ARATH Chaperonin 60 subunit alpha 1, chloroplastic OS = Arabidopsis thaliana I/E
CPNB3_ARATH Chaperonin 60 subunit beta 3, chloroplastic OS = Arabidopsis thaliana E
CH60A_ARATH Chaperonin CPN60, mitochondrial OS = Arabidopsis thaliana M/I/E
CB2_PHYPA Chlorophyll a-b binding protein, chloroplastic OS = Physcomitrella patens subsp. patens I
HSP7E_SPIOL Chloroplast envelope membrane 70 kDa heat shock-related protein OS = Spinacia oleracea M/I/E
HSP12_SOYBN Class I heat shock protein (fragment) OS = Glycine max I
CLAH1_ARATH Clathrin heavy chain 1 OS = Arabidopsis thaliana I/E
COPA1_ARATH Coatomer subunit alpha-1 OS = Arabidopsis thaliana E
COB21_ORYSJ Coatomer subunit beta-1 OS = Oryza sativa subsp. Japonica I
RH2_ORYSJ DEAD-box ATP-dependent RNA helicase 2 OS = Oryza sativa subsp. Japonica M
DIM_PEA Delta(24)-sterol reductase OS = Pisum sativum E
DLDH2_ARATH Dihydrolipoyl dehydrogenase 2, mitochondrial OS = Arabidopsis thaliana I
OPD22_ARATH Dihydrolipoyllysine-residue acetyltransferase component 2 of pyruvate dehydrogenase complex, mitochondrial OS = Arabidopsis thaliana E
EF1A_TOBAC Elongation factor 1-alpha OS = Nicotiana tabacum M/I/E
EF1D1_ORYSJ Elongation factor 1-delta 1 OS = Oryza sativa subsp. Japonica E
EF1G2_ORYSJ Elongation factor 1-gamma 2 OS = Oryza sativa subsp. Japonica M/I/E
EF2_BETVU Elongation factor 2 OS = Beta vulgaris M/I/E
EFTM_ARATH Elongation factor Tu, mitochondrial OS = Arabidopsis thaliana E
ENPL_CATRO Endoplasmin homolog OS = Catharanthus roseus M/I/E
ENO1_HEVBR Enolase 1 OS = Hevea brasiliensis M/I/E
IF4A1_ARATH Eukaryotic initiation factor 4A-1 OS = Arabidopsis thaliana M/I/E
ERF1X_ARATH Eukaryotic peptide chain release factor subunit 1-1 OS = Arabidopsis thaliana E
IF5A1_ARATH Eukaryotic translation initiation factor 5A-1 OS = Arabidopsis thaliana E
ALF_CICAR Fructose-bisphosphate aldolase, cytoplasmic isozyme OS = Cicer arietinum M/I/E
RFS_ORYSJ Galactinol--sucrose galactosyltransferase OS = Oryza sativa subsp. Japonica I
GME2_ORYSJ GDP-mannose 3,5-epimerase 2 OS = Oryza sativa subsp. Japonica E
GMD1_ARATH GDP-mannose 4,6 dehydratase 1 OS = Arabidopsis thaliana E
GRDH1_ARATH Glucose and ribitol dehydrogenase homolog 1 OS = Arabidopsis thaliana M/I
GLGS_BETVU Glucose-1-phosphate adenylyltransferase small subunit, chloroplastic/amyloplastic (fragment) OS = Beta vulgaris M
G6PI2_CLACO Glucose-6-phosphate isomerase, cytosolic 2 OS = Clarkia concinna M/E
GPT2_ARATH Glucose-6-phosphate/phosphate translocator 2, chloroplastic OS = Arabidopsis thaliana M
GLN11_ORYSJ Glutamine synthetase cytosolic isozyme 1-1 OS = Oryza sativa subsp. Japonica E
G3PC_ANTMA Glyceraldehyde-3-phosphate dehydrogenase, cytosolic OS = Antirrhinum majus M/I/E
SYGM1_ARATH Glycine--tRNA ligase 1, mitochondrial OS = Arabidopsis thaliana E
SSG1_HORVU Granule-bound starch synthase 1, chloroplastic/amyloplastic OS = Hordeum vulgare M/I
RAN_VICFA GTP-binding nuclear protein Ran/TC4 OS = Vicia faba M/I/E
RAN3_ORYSI GTP-binding nuclear protein Ran-3 OS = Oryza sativa subsp. Indica E
YPTC1_CHLRE GTP-binding protein YPTC1 OS = Chlamydomonas reinhardtii E
GBLPA_ORYSJ Guanine nucleotide-binding protein subunit beta-like protein A OS = Oryza sativa subsp. Japonica I
HSP7L_ARATH Heat shock 70 kDa protein 12 OS = Arabidopsis thaliana I/E
HSP7O_ARATH Heat shock 70 kDa protein 14 OS = Arabidopsis thaliana I/E
HSP7N_ARATH Heat shock 70 kDa protein 18 OS = Arabidopsis thaliana I
HSP7D_ARATH Heat shock 70 kDa protein 4 OS = Arabidopsis thaliana I
HSP7F_ARATH Heat shock 70 kDa protein 6, chloroplastic OS = Arabidopsis thaliana I
HSP7G_ARATH Heat shock 70 kDa protein 7, chloroplastic OS = Arabidopsis thaliana E
HSP70_DAUCA Heat shock 70 kDa protein OS = Daucus carota M/I/E
HSP7M_PHAVU Heat shock 70 kDa protein, mitochondrial OS = Phaseolus vulgaris I/E
HSP80_SOLLC Heat shock cognate protein 80 OS = Solanum lycopersicum M/I
HS101_ARATH Heat shock protein 101 OS = Arabidopsis thaliana M
HS101_ORYSJ Heat shock protein 101 OS = Oryza sativa subsp. Japonica M
HSP81_ORYSI Heat shock protein 81-1 OS = Oryza sativa subsp. Indica M/I/E
HSP82_TOBAC Heat shock protein 82 (fragment) OS = Nicotiana tabacum M
HSP82_MAIZE Heat shock protein 82 OS = Zea mays M/I/E
HSP83_IPONI Heat shock protein 83 OS = Ipomoea nil M/I/E
HS901_ARATH Heat shock protein 90-1 OS = Arabidopsis thaliana E
HS903_ARATH Heat shock protein 90-3 OS = Arabidopsis thaliana I
H2AX_CICAR Histone H2AX OS = Cicer arietinum I
H2B_GOSHI Histone H2B OS = Gossypium hirsutum I/E
H4_ARATH Histone H4 OS = Arabidopsis thaliana I/E
IDHC_TOBAC Isocitrate dehydrogenase [NADP] OS = Nicotiana tabacum E
ILV5_ARATH Ketol-acid reductoisomerase, chloroplastic OS = Arabidopsis thaliana E
APX1_ORYSJ L-ascorbate peroxidase 1, cytosolic OS = Oryza sativa subsp. Japonica E
LE194_HORVU Late embryogenesis abundant protein B19.4 OS = Hordeum vulgare I
AMPL1_ARATH Leucine aminopeptidase 1 OS = Arabidopsis thaliana M/I
BIP4_TOBAC Luminal-binding protein OS = Nicotiana tabacum M/I/E
MDHC2_ARATH Malate dehydrogenase, cytoplasmic 2 OS = Arabidopsis thaliana M/E
MDHM_CITLA Malate dehydrogenase, mitochondrial OS = Citrullus lanatus M/I/E
MPPA_SOLTU Mitochondrial-processing peptidase subunit alpha OS = Solanum tuberosum E
MDAR_SOLLC Monodehydroascorbate reductase OS = Solanum lycopersicum I/E
MAOX_POPTR NADP-dependent malic enzyme OS = Populus trichocarpa M
NDK1_ARATH Nucleoside diphosphate kinase 1 OS = Arabidopsis thaliana M/I/E
FKB62_ARATH Peptidyl-prolyl cis-trans isomerase FKBP62 OS = Arabidopsis thaliana I/E
PER1B_ARMRU Peroxidase C1B OS = Armoracia rusticana I
CAPPC_FLATR Phosphoenolpyruvate carboxylase 2 OS = Flaveria trinervia E
PGMC_PEA Phosphoglucomutase, cytoplasmic OS = Pisum sativum M/I/E
PGKH_TOBAC Phosphoglycerate kinase, chloroplastic OS = Nicotiana tabacum M/I
PGKY_TOBAC Phosphoglycerate kinase, cytosolic OS = Nicotiana tabacum M/E
SERC_SPIOL Phosphoserine aminotransferase, chloroplastic OS = Spinacia oleracea E
PDR4_ORYSJ Pleiotropic drug resistance protein 4 OS = Oryza sativa subsp. Japonica E
PARP3_SOYBN Poly [ADP-ribose] polymerase 3 OS = Glycine max I
UBIQP_ACECL Polyubiquitin (fragment) OS = Acetabularia cliftonii I
UBQ12_ARATH Polyubiquitin 12 OS = Arabidopsis thaliana E
PMG2_ARATH Probable 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 2 OS = Arabidopsis thaliana M/I
SSG1_ARATH Probable granule-bound starch synthase 1, chloroplastic/amyloplastic OS = Arabidopsis thaliana I
H2B1_MEDTR Probable histone H2B.1 OS = Medicago truncatula I
PDIA6_MEDSA Probable protein disulfide-isomerase A6 OS = Medicago sativa I
Y1497_ARATH Probable receptor-like protein kinase At1g49730 OS = Arabidopsis thaliana I
PROF3_ARATH Profilin-3 OS = Arabidopsis thaliana E
PSA3_ARATH Proteasome subunit alpha type-3 OS = Arabidopsis thaliana E
PDI21_ORYSJ Protein disulfide isomerase-like 2-1 OS = Oryza sativa subsp. Japonica I
PDI21_ARATH Protein disulfide-isomerase like 2-1 OS = Arabidopsis thaliana M/I/E
ACT5_ARATH Putative actin-5 OS = Arabidopsis thaliana I/E
YCF1_IPOPU Putative membrane protein ycf1 OS = Ipomoea purpurea M/I
AVP_VIGRR Pyrophosphate-energized vacuolar membrane proton pump OS = Vigna radiata var. radiata I/E
PDC1_TOBAC Pyruvate decarboxylase isozyme 1 (fragment) OS = Nicotiana tabacum M/I
KPYC_SOYBN Pyruvate kinase, cytosolic isozyme OS = Glycine max M/I/E
PPDK2_ORYSJ Pyruvate, phosphate dikinase 2 OS = Oryza sativa subsp. Japonica M
PPDK_FLABR Pyruvate, phosphate dikinase, chloroplastic OS = Flaveria brownii M/E
RAA1D_ARATH Ras-related protein RABA1d OS = Arabidopsis thaliana E
RBL_MAIZE Ribulose bisphosphate carboxylase large chain OS = Zea mays I
RUBA_RICCO RuBisCO large subunit-binding protein subunit alpha (fragment) OS = Ricinus communis I/E
RUBB_PEA RuBisCO large subunit-binding protein subunit beta, chloroplastic OS = Pisum sativum E
METK4_POPTR S-adenosylmethionine synthase 4 OS = Populus trichocarpa E
SAPK6_ORYSJ Serine/threonine-protein kinase SAPK6 OS = Oryza sativa subsp. Japonica E
HSP7S_SPIOL Stromal 70 kDa heat shock-related protein, chloroplastic (fragment) OS = Spinacia oleracea I/E
SUSY_SOYBN Sucrose synthase OS = Glycine max I/E
SODM_HEVBR Superoxide dismutase [Mn], mitochondrial OS = Hevea brasiliensis E
TCPA_ARATH T-complex protein 1 subunit alpha OS = Arabidopsis thaliana I/E
TCPE_ARATH T-complex protein 1 subunit epsilon OS = Arabidopsis thaliana M/E
TKTC_SPIOL Transketolase, chloroplastic OS = Spinacia oleracea E
TCTP_TOBAC Translationally-controlled tumor protein homolog OS = Nicotiana tabacum M
TPIS_MAIZE Triosephosphate isomerase, cytosolic OS = Zea mays I/E
TBA_PRUDU Tubulin alpha chain OS = Prunus dulcis I
TBB_HORVU Tubulin beta chain OS = Hordeum vulgare E
UBIQ_ARATH Ubiquitin OS = Arabidopsis thaliana M/E
RL40A_ARATH Ubiquitin-60S ribosomal protein L40-1 OS = Arabidopsis thaliana I/E
RGP1_ORYSJ UDP-arabinopyranose mutase 1 OS = Oryza sativa subsp. Japonica E
UGDH_SOYBN UDP-glucose 6-dehydrogenase OS = Glycine max E
UREA_CANEN Urease OS = Canavalia ensiformis I
UGPA1_ARATH UTP--glucose-1-phosphate uridylyltransferase 1 OS = Arabidopsis thaliana M/E
VATA_GOSHI V-type proton ATPase catalytic subunit A OS = Gossypium hirsutum I/E
VATB2_GOSHI V-type proton ATPase subunit B 2 (fragment) OS = Gossypium hirsutum E
VATB1_ARATH V-type proton ATPase subunit B1 OS = Arabidopsis thaliana E
WIT2_ARATH WPP domain-interacting tail-anchored protein 2 OS = Arabidopsis thaliana I

1 M: Mature endosperm; I: Immature endosperm; E: Embryo

Analysis of the annotations referent to the immature endosperm revealed that functions related to protein synthesis (translation, protein folding and polymerization, etc.), general metabolism (amino acid, carbon fixation) and carbohydrate metabolism (glycolysis, etc.) are all considerably represented, with the proteins in the first category being relatively more numerous (Figure 4).

Figure 4.

Figure 4

Distribution of the top gene ontology (GO) data for lotus immature endosperm proteome based on 1-DGE-MS analysis.

On the other hand, the embryo proteome shows considerable prevalence of proteins involved in protein synthesis, followed then by carbohydrate and general metabolism processes (Figure 5).

Figure 5.

Figure 5

Distribution of the top gene ontology (GO) data for lotus embryo proteome based on 1-DGE-MS analysis.

3.6. Biological Function of the Identified Seed Proteins

Furthermore, the nr protein matches were also classified according to their broader biological function [22,23], divided into 10 categories: metabolism, energy, cell growth/division, transcription, protein synthesis/destination, transporters, cell structure, signal transduction, stress response, and unclassified (Figure 6).

Figure 6.

Figure 6

Bar charts displaying the division according to functional categories, of the non-redundant (nr) protein matches found in the lotus seed embryo, immature endosperm, and mature endosperm, as determined by 1-DGE-MS.

A comparison of the distribution of protein functionality between the seed immature endosperm and embryo, and the previous results obtained from the mature endosperm shows that immature endosperm and embryo have a quite similar functionality profile of the mature endosperm. However, in the embryo the identified proteins related to general cell housekeeping functions (non-energy metabolism, cell growth, transcription, transport, and signaling) were slightly more apparent than in the immature endosperm. In contrast with the mature endosperm, both immature endosperm and embryo show a larger percentage of the identified proteins related to protein synthesis. This correlated well with the fact that the tissues are either in a growing phase, i.e., immature endosperm or have growth as their main function, i.e., embryo. The mature endosperm, on the other hand, having its primary function as energy and nutrient storage, has the larger share of its proteins related to energy metabolism. A common element for all the lotus seed tissues is the large presence of stress-/defense-related proteins across all samples.

3.7. Lotus Seed Proteome Compared with Other Seed Proteomes

Unlike some seeds, such as tomato, where non-germinating embryo and endosperm were shown to have very similar proteomes [24], the analysis of lotus seed proteomes showed some remarkable difference in proteins identified/function between the non-germinating embryo and mature endosperm. Contrary to other seed proteomes like Jatropha curcas [23] and sugarbeet [25], the lotus embryo in its pre-germination stage did not seem to have a considerably higher expression of metabolism- and energy-related proteins compared to the mature endosperm. Structural proteins, however, did seem to be at least slightly more represented in the endosperm, as in the case of J. curcas. Compared with other embryo proteomes, such as Brassica campestri [26], and sugarbeet, the lotus embryo appears to have a larger percentage of proteins related to protein synthesis in comparison to primary and energy metabolism, as well as a much greater presence of defense related proteins. We further discuss below the key proteins identified in this study.

3.8. Key Proteins of the Lotus Immature Seed Endosperm

Contrary to the mature endosperm, the key functional proteins identified in the lotus immature endosperm mostly consisted of proteins related to plant growth and development (Figure 7).

Figure 7.

Figure 7

Key functional proteins identified in the lotus seed immature endosperm, and subdivided according to their role in plant metabolism.

Amongst the identified proteins were several transcription proteins (cell division control and transcription factors), translation (ribosomal) proteins, post-translational modification proteins (elongation factors and ubiquitins) and nutrient production proteins (RuBisCO subunits and sucrose synthase). Many stress response- and plant defense-related proteins were also present in the immature endosperm. Of these, the largest subgroup is the heat shock response proteins (high- and low-molecular weight heat shock proteins (HSPs), as well as chaperone and annexin proteins). Anti-oxidative stress (peroxidases, endoplasmin, and monodehydroascorbate reductase) are also present, more so than in the mature endosperm (see below section). Proteins related to carbohydrate metabolism are also present in the immature endosperm, but in a smaller number.

3.9. Key Proteins Previously Identified in the Lotus Mature Seed Endosperm

In the case of mature endosperm proteome [17], the two most significant groups of proteins identified were related to energy/carbohydrate metabolism, and stress response and plant protection (Figure 8). In the first group, several proteins that are part of glycolysis, gluconeogenesis, citric acid cycle and starch metabolism including other carbohydrate metabolism proteins, were identified. Of the stress response proteins, HSPs, along with other heat response proteins (chaperones, annexin), constituted the most numerous category. Anti-oxidative stress proteins were not greatly represented. Of note is the identification of storage proteins (such as globulins, castanins) for the mature endosperm by 2-D MS and N-terminal sequencing, but not by 1-D MS [17,27], which might indicate a possible detection gap of this technique.

Figure 8.

Figure 8

Key functional proteins identified in the lotus seed mature endosperm, and subdivided according to their role in plant metabolism. * for original protein lists, see reference [17].

3.10. Proteome Changes between Mature and Immature Stages of the Endosperm

Despite constituting the endosperm tissue samples, protein extracts from the mature and immature seed presented a notably different proteome composition (Figure 9).

Figure 9.

Figure 9

Depiction of the changes in biological function, nutrient content and functional proteome composition from the immature (left) to the mature (right) endosperm in the lotus seed.

This reflects the changes the endosperm undergoes during the maturation process, where it develops from a soft wet tissue to a dry one with a large amount per weight of both carbohydrates and proteins [6]. The endosperm’s main role in the seed is as a nutrient storage tissue, so it is expected that during the maturation phase, these nutrients are going to be produced for later storage, hence the larger number of functional proteins related to the protein and carbohydrate synthesis categories. In the mature endosperm, a large percentage of the total protein content is expected to be seed storage proteins (SSPs). Although not many SSPs were identified by MS analysis of the mature endosperm, several possible matches were found by N-terminal sequencing analysis [27]. The prevalence of carbohydrate metabolism proteins amongst the identified functional proteins in the mature endosperm could be a result of production in the late maturation stage, with such proteins playing a quasi-dormant role in managing the nutrient content of the seed before and during germination.

3.11. Key Proteins of the Lotus Seed Embryo

In the case of the embryo proteins identified by database matching, the distribution of key proteins was similar to that of the immature endosperm, in that they can be divided in the same main groups: proteins related to plant growth, and proteins responsible for plant protection and germination vigor (Figure 10). Of the first group, those also include the same subgroups of transcription, translation, and post-translation proteins as well as nutrient production proteins. In the case of stress/defense-related proteins, the embryo was also found to possess the largest number heat shock response proteins (12 HSPs, mostly of high-molecular weight, five chaperone proteins and two annexins). However, the embryo also contained a larger number of anti-oxidative stress proteins, including l-ascorbate peroxidase, catalase, monodehydroascorbate reductase, superoxide dismutase [Mn], and endoplasmin. S-adenosylmethionine synthase and adenosylhomocysteinase (also found in the endosperm tissues), and two proteins from the active methyl cycle, which is of great importance to plant metabolism as well as their nutritional value [28], were also identified in the lotus embryo.

Figure 10.

Figure 10

Key functional proteins identified in the lotus seed embryo, and subdivided according to their role in plant metabolism.

4. Conclusions

Analysis of protein extracts from the lotus seed embryo and immature seed endosperm was performed following 1-DGE separation in conjunction with LC-MS/MS analysis. This “bottom-up” proteomics analysis, represented by the SDS-PAGE technique, has been shown to be a good approach for identifying the lotus seed proteins [17]. For both tissues, a great number of proteins were identified by database matching. A total of 141 nr protein matches were identified in the embryo, and 122 in the immature endosperm. Together with the 66 proteins previously identified for the mature endosperm, a total of 206 nr proteins have been identified to date.

Combined datasets are a resource in itself towards complete proteomics analysis of lotus seeds and plants. By producing more extensive datasets, these results help toward forming a complete proteomic picture of the lotus seeds. The analysis of protein makeup and functionality across different tissues within the seed also permits a comparison of metabolic functions across different tissues and developmental stages of the lotus seed, as well as allowing for the comparison with similar tissues from other plants. Furthermore, the identification of proteins of interest—such as key proteins in the metabolism, proteins that confer resistance against stress or germination vigor—opens up several possibilities for more specific studies on these proteins and their possible use in producing transgenic varieties of interest.

Future work will both strive to expand the lotus proteome to other developmentally important tissues, such as seedling and rhizome, as well as to isolate and characterize functional proteins of interest in the seed proteome. Moreover, 2-DGE-MS analysis of individual proteins, especially by de novo proteome analysis techniques, coupled with genome comparison, can help obtain more detailed sequences of lotus-specific proteins, since the high taxonomical distance of the lotus in relation to other modern plants hinders the achievement of higher homology values when database-matching proteins.

Acknowledgments

CFM greatly appreciates and acknowledges the financial support of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) in the conducting this research. Authors appreciate the International Plant Proteomics Organization (INPPO) initiative (www.inppo.com) for connecting plant proteomic researchers between Brazil and Japan, and continuing collaborations between INPPO-India-Nepal chapter and INPPO-Japan.

Author Contributions

C.F.M., R.R., G.K.A., S.S., Y.K. and M.Y. were responsible for the conception of the study; C.F.M. and J.S. performed sample preparation and gel analysis; C.F.M. and Y.F. were responsible for mass spectrometry analyses; C.F.M. and R.R. performed the data analysis; C.F.M., R.R., G.K.A. and M.Y. wrote or contributed to the manuscript; figures and tables were prepared by C.F.M. and R.R. All authors read and approved the final version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  • 1.Sridhar K.R., Rajeev B. Lotus—A potential nutraceutical source. J. Agric. Technol. 2007;3:143–155. [Google Scholar]
  • 2.Pandey B.P. Economic Botany. 5th ed. Chand (S.) & Co. Ltd.; New Delhi, India: 1999. p. 61. [Google Scholar]
  • 3.Loewer H.P. Seeds: The Definitive Guide to Growing, History and Lore. 1st ed. Timber Press; Cambridge, UK: 2005. p. 56. [Google Scholar]
  • 4.Shen-Miller J., Schopf J.W., Harbottle G., Cao R.J., Ouyang S., Zhou K.S., Southon J.R., Liu G.H. Long-living lotus: germination and soil γ-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring. Am. J. Bot. 2002;89:236–247. doi: 10.3732/ajb.89.2.236. [DOI] [PubMed] [Google Scholar]
  • 5.Shen-Miller J., Aung L.H., Turek J., Schopf J.W., Tholandi M., Yang M., Czaja M. Centuries-old viable fruit of sacred lotus Nelumbo nucifera Gaertn var. China antique. Trop. Plant Biol. 2013;6:53–68. doi: 10.1007/s12042-013-9125-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.MEXT—Ministry of Education, Culture, Sports, Science and Technology . Standard Tables of Food Composition in Japan. 5th ed. MEXT; Tokyo, Japan: 2000. [Google Scholar]
  • 7.Guo H.B. Cultivation of lotus (Nelumbo nucifera Gaertn. ssp. nucifera) and its utilization in China. Gen. Res. Crop Evol. 2009;56:323–330. doi: 10.1007/s10722-008-9366-2. [DOI] [Google Scholar]
  • 8.Komatsu E., Tsukahara A., Amagaya H., Okazawa N., Noguchi T., Okuyama T. Lotus. In: Izaki M., editor. The Cultivation and Management in Aquatic Vegetables. Volume 1. Ie-No-Hikari Kyokai Press; Tokyo, Japan: 1975. pp. 9–94. [Google Scholar]
  • 9.Ling Z.Q., Xie B.J., Yang E.L. Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J. Agric. Food Chem. 2005;53:2441–2445. doi: 10.1021/jf040325p. [DOI] [PubMed] [Google Scholar]
  • 10.Ou M. Chinese-English Manual of Commonly-Used in Traditional Chinese Medicine. Joint Publishing Co. Ltd.; Hong Kong, China: 1989. [Google Scholar]
  • 11.Moro C.F., Yonekura M., Kouzuma Y., Agrawal G.K., Rakwal R. Lotus—A source of food and medicine: Current status and future perspectives in context of the seed proteomics. Int. J. Life Sci. 2013;7:1–5. doi: 10.3126/ijls.v7i1.6394. [DOI] [Google Scholar]
  • 12.Ming R., Vanburen R., Liu Y., Yang M., Han Y., Li L.T., Zhang Q., Kim M.J., Schatz M.C., Campbell M., et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.) Genome Bio. 2013;14 doi: 10.1186/gb-2013-14-5-r41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Dong C., Zheng X., Li G., Zhu H., Zhou M., Hu Z. Molecular cloning and expression of two cytosolic copper–zinc superoxide dismutases genes from Nelumbo nucifera. Appl. Biochem. Biotechnol. 2010;163:679–691. doi: 10.1007/s12010-010-9074-1. [DOI] [PubMed] [Google Scholar]
  • 14.Zhou Y., Chen H., Chu P., Li Y., Tan B., Ding Y., Tsang E.W.T., Jiang L., Wu K., Huang S. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep. 2012;31:379–389. doi: 10.1007/s00299-011-1173-0. [DOI] [PubMed] [Google Scholar]
  • 15.Liu Z., Gu G., Chen F., Yang D., Wu K., Chen S., Jiang J., Zhang Z. Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana. Appl. Biochem. Biotechnol. 2012;166:722–734. doi: 10.1007/s12010-011-9461-2. [DOI] [PubMed] [Google Scholar]
  • 16.Chu P., Chen H., Zhou Y., Li Y., Ding Y., Jiang L., Tsang E.W., Wu K., Huang S. 2012. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta. 2012;235:1271–1288. doi: 10.1007/s00425-011-1573-y. [DOI] [PubMed] [Google Scholar]
  • 17.Moro C.F., Fukao Y., Shibato J., Rakwal R., Timperio A.M., Zolla L., Agrawal G.K., Shioda S., Kouzuma Y., Yonekura M. Unraveling the seed endosperm proteome of the lotus (Nelumbo nucifera Gaertn.) utilizing 1DE and 2DE separation in conjunction with tandem mass spectrometry. Proteomics. 2015;15:1717–1735. doi: 10.1002/pmic.201400406. [DOI] [PubMed] [Google Scholar]
  • 18.Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  • 19.Wang X., Li X., Li Y. A modified Coomassie Brilliant Blue staining method at nanogram sensitivity compatible with proteomic analysis. Biotech. Lett. 2007;29:1599–1603. doi: 10.1007/s10529-007-9425-3. [DOI] [PubMed] [Google Scholar]
  • 20.Horie K., Rakwal R., Hirano M., Shibato J., Nam H.W., Kim Y.S., Kouzuma Y., Agrawal G.K., Masuo Y., Yonekura M. Proteomics of two cultivated mushrooms Sparassis crispa and Hericium erinaceum provides insight into their numerous functional protein components and diversity. J. Proteome Res. 2008;7:1819–1835. doi: 10.1021/pr070369o. [DOI] [PubMed] [Google Scholar]
  • 21.Yates J.R., Ruse C.I., Nakorchevsky A. Proteomics by mass spectrometry: Approaches, advances, and applications. Ann. Rev. Biomed. Eng. 2009;11:49–79. doi: 10.1146/annurev-bioeng-061008-124934. [DOI] [PubMed] [Google Scholar]
  • 22.Bevan M., Bancroft I., Bent E., Love K., Goodman H., Dean C., Bergkamp R., Dirkse W., van Staveren M., Stiekema W., et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 1998;391:485–488. doi: 10.1038/35140. [DOI] [PubMed] [Google Scholar]
  • 23.Liu H., Yang Z., Yang M, Shen S. The differential proteome of endosperm and embryo from mature seed of Jatropha curcas. Plant Sci. 2011;181:660–666. doi: 10.1016/j.plantsci.2011.03.012. [DOI] [PubMed] [Google Scholar]
  • 24.Sheoran I.S., Olson D.J., Ross A.R., Sawhney V.K. Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics. 2005;5:3752–3764. doi: 10.1002/pmic.200401209. [DOI] [PubMed] [Google Scholar]
  • 25.Catusse J., Strub J.M., Job C., Dorsselaer A., Job D. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proc. Natl. Acad. Sci. U.S.A. 2008;105:10262–10267. doi: 10.1073/pnas.0800585105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Li W., Gao Y., Xu H., Zhang Y., Wang J. A proteomic analysis of seed development in Brassica campestri L. PLoS ONE. 2012;7:e50290. doi: 10.1371/journal.pone.0050290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Moro C.F. Ph.D. Thesis. Tokyo University of Agriculture and Technology; Tokyo, Japan: Mar, 2015. Study of the Lotus (Nelumbo nucifera Gaertn.) Seed Proteome. [Google Scholar]
  • 28.Ravanel S., Gakière B., Job D., Douce R. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. U.S.A. 1998;95:7805–7812. doi: 10.1073/pnas.95.13.7805. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proteomes are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES