Skip to main content
Studies in Mycology logoLink to Studies in Mycology
. 2016 Nov 22;85:159–198. doi: 10.1016/j.simyco.2016.11.004

The forgotten Calonectria collection: Pouring old wine into new bags

L Lombard 1,, MJ Wingfield 2, AC Alfenas 3, PW Crous 1,2,4,
PMCID: PMC5220189  PMID: 28082759

Abstract

The genus Calonectria with its Cylindrocladium asexual morphs has been subject to several taxonomic revisions in the past. These have resulted in the recognition of 116 species, of which all but two species (C. hederae and C. pyrochroa) are supported by ex-type cultures and supplemented with DNA barcodes. The present study is based on a large collection of unidentified Calonectria isolates that have been collected over a period of 20 years from various substrates worldwide, which has remained unstudied in the basement of the CBS-KNAW Fungal Biodiversity Centre. Employing a polyphasic approach, the identities of these isolates were resolved and shown to represent many new phylogenetic species. Of these, 24 are newly described, while C. uniseptata is reinstated at species level. We now recognise 141 species that include some of the most important plant pathogens globally.

Key words: Cylindrocladium, Cryptic species, Phylogeny, Taxonomy

Taxonomic novelties: New species: Calonectria amazonica L. Lombard & Crous, C. amazoniensis L. Lombard & Crous, C. brasiliana L. Lombard & Crous, C. brassicicola L. Lombard & Crous, C. brevistipitata L. Lombard & Crous, C. cliffordiicola L. Lombard & Crous, C. ericae L. Lombard & Crous, C. indonesiana L. Lombard & Crous, C. lageniformis L. Lombard & Crous, C. machaerinae L. Lombard & Crous, C. multilateralis L. Lombard & Crous, C. paracolhounii L. Lombard & Crous, C. parva L. Lombard & Crous, C. plurilateralis L. Lombard & Crous, C. pseudoecuadoriae L. Lombard & Crous, C. pseudouxmalensis L. Lombard & Crous, C. putriramosa L. Lombard & Crous, C. stipitata L. Lombard & Crous, C. syzygiicola L. Lombard & Crous, C. tereticornis L. Lombard & Crous, C. terricola L. Lombard & Crous, C. tropicalis L. Lombard & Crous, C. uxmalensis L. Lombard & Crous, C. venezuelana L. Lombard Crous

Introduction

The genus Calonectria, first introduced in 1867 (Rossman 1979), has been the subject of numerous taxonomic studies since the 1990s (Crous & Wingfield 1994, Crous, 2002, Lombard et al., 2010b, Lombard et al., 2015a, Alfenas et al., 2015). These studies have resulted in the recognition of 116 species, of which all but two (C. hederae and C. pyrochroa) are supported by ex-type cultures and supplemented by DNA barcodes (Crous, 2002, Lechat et al., 2010, Lombard et al., 2010b). This large number of species has arisen mainly due to the introduction of DNA sequence data and subsequent phylogenetic inference enabling delimitation of numerous previously unrecognised cryptic taxa. These species often share the same plant hosts, informing knowledge of the epidemiology and fungicide resistance (Graça et al., 2009, Vitale et al., 2013, Gehesquière et al., 2016).

Calonectria spp. are characterised by sexual morphs that have yellow to dark red perithecia, with scaly to warty ascocarp walls, and Cylindrocladium asexual morphs in which the cylindrical and septate conidia are produced from phialides clustered below and surrounding a stipe extention terminating in variously shaped vesicles (Rossman, 1993, Crous, 2002, Lombard et al., 2010b, Lombard et al., 2010c). For many years these fungi were best known by their Cylindrocladium names associated with important plant diseases (Crous and Wingfield, 1994, Crous, 2002, Lombard et al., 2010c). Following convention that only one scientific name should be used for a fungal species (Hawksworth, 2011, Hawksworth, 2012, Hawksworth et al., 2011, McNeill et al., 2012), Calonectria has been chosen (Rossman et al. 2013). This newly adopted convention should resolve confusion regarding their names (Wingfield et al. 2011). However, it is important to recognise that the asexual Cylindrocladium morph represents the life phase most commonly found in nature and many species are known only in this form, which also plays a major role in the dissemination of Calonectria spp.

Calonectria spp. cause important diseases in numerous plant hosts worldwide. This includes leaf blight, cutting rot, damping-off and root rot (Crous, 2002, Lombard et al., 2010c, Lombard et al., 2015a, Vitale et al., 2013, Alfenas et al., 2015). The majority of the diseases caused by Calonectria spp. are associated with forestry-related plants (see Lombard et al. 2010c), where Calonectria leaf blight (CLB) is an important constraint to plantation productivity in South America (Rodas et al., 2005, Alfenas et al., 2015) and Southeast Asia (Crous and Kang, 2001, Old et al., 2003, Chen et al., 2011, Lombard et al., 2015a). In other regions, such as southern Africa and Australia, Calonectria spp. appear mostly to be limited to forestry nurseries (Crous, 2002, Lombard et al., 2009, Lombard et al., 2010a, Lombard et al., 2010b, Lombard et al., 2010c). In agricultural and horticultural crops, Calonectria spp. have chiefly been reported only from South America and the Northern Hemisphere, where they are mostly associated with nursery diseases (Lombard et al., 2010c, Vitale et al., 2013), Cylindrocladium black rot of peanut (Bell and Sobers, 1966, Beute and Rowe, 1973, Hollowell et al., 1998) and box blight of Buxus spp. (Henricot et al., 2000, Crepel and Inghelbrecht, 2003, Brand, 2005, Saracchi et al., 2008, Saurat et al., 2012, Mirabolfathy et al., 2013, Gehesquière et al., 2016).

The present study is based on a large collection of unidentified Calonectria isolates that were collected over a period of 20 years from various substrates worldwide. This collection of isolates, deposited in the CBS-KNAW culture collection in 2002 has remained unstudied in the basement of the institute and hence, the title of this study “the forgotten basement collection”. The large majority of these isolates were initially identified based solely on morphology and at a time when robust and multigene DNA sequence data were not commonly available. This implied that cryptic species could not be resolved (Lombard et al., 2010b, Lombard et al., 2015a, Alfenas et al., 2015). The aim of the present study was to employ a polyphasic approach to identify these isolates.

Materials and methods

Isolates

Calonectria strains were obtained from the culture collection of the CBS-KNAW Fungal Biodiversity Centre (CBS), Utrecht, The Netherlands and the working collection of the senior author (CPC) housed at the CBS (Table 1).

Table 1.

Calonectria spp. used in phylogenetic analyses.

Species Isolate nr.1 Substrate Locality GenBank accession no.2
tub2 cmdA tef1
Calonectria acicola CBS 114812 Phoenix canariensis New Zealand DQ190590 GQ267359 GQ267291
CBS 114813 P. canariensis New Zealand DQ190591 GQ267360 GQ267292
C. aconidialis CBS 136086; CMW 35174; CERC 1850 Soil in Eucalyptus plantation Hainan, China KJ463017 KJ462785
CBS 136091; CMW 35384; CERC1886 Soil in Eucalyptus plantation Hainan, China KJ462786
C. amazonica CBS 115486; CPC 3894 E. tereticornis Brazil KX784611 KX784554 KX784681
CBS 116250; CPC 3534 E. tereticornis Brazil KX784612 KX784555 KX784682
C. amazoniensis CBS 115438; CPC 3890 E. tereticornis Brazil KX784613 KX784556 KX784683
CBS 115439; CPC 3889 E. tereticornis Brazil KX784614 KX784557 KX784684
CBS 115440; CPC 3885 E. tereticornis Brazil KX784615 KX784558 KX784685
C. angustata CBS 109065; CPC 2347 Tillandsia capitata USA AF207543 GQ267361 FJ918551
CBS 112133; CPC 3152 T. capitata USA DQ190593 GQ267362 FJ918552
C. arbusta CBS 136079; CMW 31370; CERC1705 Soil in Eucalyptus plantation Guangxi, China KJ462904 KJ463018 KJ462787
CBS 136098; CPC 23519; CMW37981; CERC 1944 Soil in Eucalyptus plantation Guangxi, China KJ463019 KJ462788
C. asiatica CBS 112711; CPC 3898 Leaf litter Thailand AY725613 AY725738 AY725702
CBS 114073; CPC 3900 Leaf litter Thailand AY725616 AY725741 AY725705
C. australiensis CBS 112954 Ficus pleurocarpa Australia DQ190596 GQ267363 GQ267293
C. blephiliae CBS 136425; CPC 21859 Blephilia cliata USA KF777246 KF777243
C. brachiatica CBS 123700; CMW 25298 Pinus maximinoi Buga, Colombia FJ696388 GQ267366 GQ267296
CBS134665; LPF305 Soil in Eucalyptus plantation Monte Dourado, Pará, Brazil KM395933 KM396020 KM395846
C. brasiliana CBS 111484; CPC 1924 Soil Brazil KX784616 KX784559 KX784686
CBS 111485; CPC 1929 Soil Brazil KX784617 KX784560 KX784687
C. brasiliensis CBS 230.51; CPC 2390 Anacardium sp. Brazil GQ267241 GQ267421 GQ267328
CBS 114257; CPC 1944 Eucalyptus leaf Brazil GQ267242 GQ267422 GQ267329
C. brassiana CBS 134855 Soil Teresina, Piauí, Brazil KM395969 KM396056 KM395882
CBS 134856 Soil Teresina, Piauí, Brazil KM395970 KM396057 KM395883
C. brassicae CBS 111478; CPC 1921 Soil Brazil DQ190611 GQ267383 FJ918568
CBS 111869; CPC 2409 Argyeia splendens Indonesia AF232857 GQ267382 FJ918567
C. brassicicola CBS 112756; CPC 4502 Brassica sp. Indonesia KX784618 KX784688
CBS 112841; CPC 4552 Brassica sp. Indonesia KX784619 KX784561 KX784689
CBS 112947; CPC 4668 New Zealand KX784620 KX784562 KX784690
C. brevistipitata CBS 110837; CPC 913 Soil Mexico KX784621 KX784563 KX784691
CBS 110928; CPC 951 Soil Mexico KX784622 KX784564 KX784692
CBS 115671; CPC 949 Soil Mexico KX784623 KX784565 KX784693
C. canadania CBS 110817; CPC 499 Canada AF348212 AY725743 GQ267297
C. candelabrum CPC 1675 Eucalyptus sp. Amazonas, Brazil FJ972426 GQ267367 FJ972525
CMW 31001 Eucalyptus sp. Amazonas, Brazil GQ421779 GQ267368 GQ267298
C. cerciana CBS 123693; CMW 25309 Eucalyptus cutting Zhanjiang, China FJ918510 GQ267369 FJ918559
CBS 123695; CMW 25290 Eucalyptus cutting Zhanjiang, China FJ918511 GQ267370 FJ918560
C. chinensis CBS 112744; CPC 4104 Soil Hong Kong, China AY725618 AY725746 AY725709
CBS 114827; CPC 4101 Soil Hong Kong, China AY725619 AY725747 AY725710
C. clavata CBS 114557; ATCC 66389; CPC 2536 Callistemon viminalis USA AF333396 GQ267377 GQ267305
CBS 114666; CMW 30994; CPC 2537 Root debris in peat USA DQ190549 GQ267378 GQ267306
C. cliffordiicola CBS 111812; CPC 2631 Cliffordia feruginea South Africa KX784624 KX784566 KX784694
CBS 111814; CPC 2617 Prunus avium South Africa KX784625 KX784567 KX784695
CBS 111819; CPC 2604 P. avium South Africa KX784626 KX784568 KX784696
C. colhounii CBS 293.79 Camellia sinensis Bandung, Indonesia DQ190564 GQ267373 GQ267301
CBS 114704 Arachis pintoi Australia DQ190563 GQ267372 GQ267300
Ca. colombiana CBS 115127; CPC 1160 Soil La Selva, Colombia FJ972423 GQ267455 FJ972492
CBS 115638; CPC 1161 Soil La Selva, Colombia FJ972422 GQ267456 FJ972491
C. colombiensis CBS 112220; CPC 723 Soil La Selva, Colombia GQ267207 AY725748 AY725711
CBS 112221; CPC 724 Eucalyptus grandis La Selva, Colombia AY725620 AY725749 AY725712
C. crousiana CBS 127198; CMW 27249 E. grandis Fujian, China HQ285794 HQ285822
CBS 127199; CMW 27253 E. grandis Fujian, China HQ285795 HQ285823
C. cylindrospora CBS 110666; CPC 496 USA FJ918509 GQ267423 FJ918557
CBS 119670; CPC 12766 Pistacia lentiscus Italy DQ521600 GQ421797
C. densa CBS 125249; CMW 31184 Soil Las Golondrinas, Pichincha, Ecuador GQ267230 GQ267442 GQ267350
CBS 125261; CMW 31182 Soil Las Golondrinas, Pichincha, Ecuador GQ267232 GQ267444 GQ267352
C. duoramosa CBS 134656; LPF434 Soil Monte Dourado, Pará, Brazil KM395940 KM396027 KM395853
LPF453 Soil in Eucalyptus plantation Monte Dourado, Pará, Brazil KM395941 KM396028 KM395854
C. ecuadoriae CBS 111406; CPC 1635 Soil Ecuador DQ190600 GQ267375 GQ267303
CBS 111394; CPC 1628 Soil Ecuador DQ190599 GQ267376 GQ267304
C. ericae CBS 114456; CPC 1984 Erica sp. USA KX784627 KX784569 KX784697
CBS 114457; CPC 1985 Erica sp. USA KX784628 KX784570 KX784698
CBS 114458; CPC 2019 Erica sp. USA KX784629 KX784571 KX784699
C. eucalypti CBS 125273; CMW 14890 E. grandis Indonesia GQ267217 GQ267429 GQ267337
CBS 125275; CMW 18444 E. grandis Indonesia GQ267218 GQ267430 GQ267338
C. eucalypticola CBS 134846 Eucalyptus leaf Eunápolis, Bahia, Brazil KM395963 KM396050 KM395876
CBS 134847 Eucalyptus seedling Santa Bárbara, Minas Gerais, Brazil KM395964 KM396051 KM395877
C. expansa CBS 136078; CMW 31441; CERC 1776 Soil in Eucalyptus plantation Guangdong, China KJ462913 KJ463028 KJ462797
CBS 136247; CMW 31392; CERC 1727 Soil in Eucalyptus plantation Guangxi, China KJ462914 KJ463029 KJ462798
C. foliicola CBS 136641; CMW 31393; CERC 1728 E. urophylla × E. grandis clone leaf Guangxi, China KJ462916 KJ463031 KJ462800
CMW 31394; CERC 1729 E. urophylla × E. grandis clone leaf Guangxi, China KJ462917 KJ463032 KJ462801
C. fujianensis CBS 127200; CMW 27254 E. grandis Fujian, China HQ285791 HQ285819
CBS 127201; CMW 27257 E. grandis Fujian, China HQ285792 HQ285820
C. glaeboicola CBS 134852 Soil Martinho Campos, Minas Gerais, Brazil KM395966 KM396053 KM395879
CBS 134853 Soil Bico do Papagaio, Tocantins, Brazil KM395967 KM396054 KM395880
C. gordoniae CBS 112142; CPC 3136; ATCC 201837 Gordonia liasanthus USA AF449449 GQ267381 GQ267309
C. gracilipes CBS 111141 Soil La Selva, Colombia DQ190566 GQ267385 GQ267311
CBS 115674 Soil La Selva, Colombia AF333406 GQ267384 GQ267310
C. gracilis CBS 111284 Soil Brazil DQ190567 GQ267408 GQ267324
CBS 111807 Manilkara zapota Belém, Pará, Brazil AF232858 GQ267407 GQ267323
C. guangxiensis CBS 136092; CMW 35409; CERC 1900 Soil in Eucalyptus plantation Guangxi, China KJ462919 KJ463034 KJ462803
CBS 136094; CMW 35411; CERC 1902 Soil in Eucalyptus plantation Guangxi, China KJ462920 KJ463035 KJ462804
C. hainanensis CBS 136248; CMW 35187; CERC 1863 Soil in Eucalyptus plantation Hainan, China KJ463036 KJ462805
C. hawksworthii CBS 111870; CPC 2405; MUCL 30866 Nelumbo nucifera Mauritius AF333407 GQ267386 FJ918558
C. henricotiae CB041 Buxus sempervirens Belgium KF815129 KF815156
CBS 138102; CB045 B. sempervirens Belgium JX535308 KF815157
C. hodgesii CBS 133609; LPF 245 Anadenanthera peregrina Viçosa, Brazil KC491228 KC491222 KC491225
CBS 133610; LPF 261 Azadirachta indica Viçosa, Brazil KC491229 KC491223 KC491226
C. hongkongensis CBS 114711; CPC 686 Soil Hong Kong, China AY725621 AY725754 AY725716
CBS 114828; CPC 4670 Soil Hong Kong, China AY725622 AY725755 AY725717
C. humicola CBS 125251 Soil Las Golondrinas, Pichincha, Ecuador GQ267233 GQ267445 GQ267353
CBS 125269 Soil Las Golondrinas, Pichincha, Ecuador GQ267235 GQ267447 GQ267355
C. hurae CBS 114182; CPC 1714 Rumohra adiantiformis Brazil DQ190618
CBS 114551; CPC 2344 R. adiantiformis USA AF333408 GQ267387 FJ918548
C. ilicicola CBS 190.50; CMW 30998; IMI 299389 Solanum tuberosum Bogor, Indonesia AY725631 AY725764 AY725726
CBS 115897; CPC 493; UFV 108 Anacardium sp. Brazil AY725647 GQ267403 AY725729
C. indonesiae CBS 112823; CPC 4508 Soil Warambunga, Indonesia AY725623 AY725756 AY725718
CBS 112840; CPC 4554 Syzygium aromaticum Indonesia AY725625 AY725758 AY725720
C. indonesiana CBS 112826; CPC 4519 Indonesia KX784630 KX784572 KX784700
CBS 112936; CPC 4504 Indonesia KX784631 KX784573 KX784701
C. indusiata CBS 144.36 Camellia sinensis Sri lanka GQ267239 GQ267453 GQ267332
CBS 114684 Rhododendron sp. USA AF232862 GQ267454 GQ267333
C. insularis CBS 114558; CPC 768 Soil Tamatave, Madagascar AF210861 GQ267389 FJ918556
CBS 114559; CPC 954 Soil Tamatave, Madagascar AF210862 GQ267390 FJ918555
C. kyotensis CBS 114525; CPC 2367; ATCC 18834 Acacia dealbata Japan
CBS 114542; CPC 2352 Soil China KX784649 KX784720
CBS 114550; CPC 2351 Soil China KX784650 KX784587 KX784721
CBS 114692; CPC 2478; ATCC 18882 Prunus sp. USA KX784651 KX784588 KX784722
C. lageniformis CBS 111324; CPC 1473 Eucalyptus sp. Mauritius KX784632 KX784574 KX784702
CBS 112685; CPC 3418 Eucalyptus sp. Brazil KX784633 KX784575 KX784703
C. lateralis CBS 136629; CMW 31412; CERC 1747 Soil in Eucalyptus plantation Fangchenggang, Guangxi, China KJ462955 KJ463070 KJ462840
C. lauri CBS 749.70 Ilex aquifolium Netherlands GQ267210 GQ267388 GQ267312
C. leucothoes CBS 109166; CPC 2385; ATCC 64824 Leucothoe axillaris Gainsville, Florida, USA FJ918508 GQ267392 FJ918553
C. machaerinae CBS 123183; CPC 15378 Machaerina sinclairii New Zealand KX784636 KX784706
C. madagascariensis CBS 114571; CPC 2253 Soil Madagascar DQ190571 GQ267395 GQ267315
CBS 114572; CPC 2252 Soil Madagascar DQ190572 GQ267394 GQ267314
C. macroconidialis CBS 114880; CPC 307 E. grandis South Africa AF232855 GQ267393 GQ267313
C. magnispora CBS 136249; CMW 35184; CERC 1860 Soil in Eucalyptus plantation Guangxi, China KJ462956 KJ463071 KJ462841
C. malesiana CBS 112710; CPC 3899 Leaf litter Thailand AY725626 AY725759 AY725721
CBS 112752; CPC 4223 Soil Sumatra, Indonesia AY725627 AY725760 AY725722
C. maranhensis CBS 134811 Eucalyptus sp. Açailândia, Maranhão, Brazil KM395948 KM396035 KM395861
CBS 134812 Eucalyptus sp. Açailândia, Maranhão, Brazil KM395949 KM396036 KM395862
C. metrosideri CBS 133603; LPF101 Metrosideros polymorpha Viçosa, Brazil KC294313 KC294304 KC294310
CBS 133604; LPF 103 M. polymorpha Viçosa, Brazil KC294314 KC294305 KC294311
C. mexicana CBS 110918; CPC 927 Soil Mexico AF210863 GQ267396 FJ972526
C. microconidialis CBS 136636; CMW 31475; CERC 1810 E. urophylla × E. grandis clone seedling leaf CERC Nursery, Zhanjiang, Guangdong, China KJ462959 KJ463074 KJ462844
CBS 136638; CMW 31487; CERC 1822 E. urophylla × E. grandis clone seedling leaf CERC Nursery, Zhanjiang, Guangdong, China KJ462960 KJ463075 KJ462845
C. monticola CBS 140645; CPC 28835 Soil Thailand KT964769 KT964771 KT964773
CPC 28836 Soil Thailand KT964770 KT964772 KT964774
C. mossambicensis CBS 137243; CMW 36327 E. grandis × E. camaldulensis cutting Mozambique JX570722 JX570718
C. multilateralis CBS 110926: CPC 947 Soil Mexico KX784639 KX784578 KX784709
CBS 110927; CPC 948 Soil Mexico KX784640 KX784579 KX784710
CBS 110931; CPC 956 Soil Mexico KX784641 KX784711
CBS 110932; CPC 957 Soil Mexico KX784642 KX784580 KX784712
CBS 115606
CBS 115615; CPC 915 Soil Mexico KX784643 KX784581 KX784713
C. multinaviculata CBS 134858; LPF233 Soil in Eucalyptus plantation Mucuri, Bahia, Brazil KM395985 KM396072 KM395898
CBS 134859; LPF418 Soil in Eucalyptus plantation Monte Dourado, Pará, Brazil KM395986 KM396073 KM395899
C. multiphialidica CBS 112678 Soil Cameroon AY725628 AY725761 AY725723
C. multiseptata CBS 112682 Eucalyptus sp. Indonesia DQ190573 GQ267397 FJ918535
C. naviculata CBS 101121 Leaf litter João Pessoa, Brazil GQ267211 GQ267399 GQ267317
CBS 116080 Soil Amazonas, Brazil AF333409 GQ267398 GQ267316
C. nemicola CBS 134837 Soil Araponga, Minas Gerais, Brazil KM395979 KM396066 KM395892
CBS 134838 Soil Araponga, Minas Gerais, Brazil KM395980 KM396067 KM395893
C. orientalis CBS 125259 Soil Teso East, Indonesia GQ267237 GQ267449 GQ267357
CBS 125260 Soil Lagan, Indonesia GQ267236 GQ267448 GQ267356
C. ovata CBS 111299 E. tereticornis Tucuruí, Pará, Brazil GQ267212 GQ267400 GQ267318
CBS 111307 E. tereticornis Tucuruí, Pará, Brazil AF210868 GQ267401 GQ267319
C. pacifica CBS 109063; CPC 2534; IMI 354528 Araucaria heterophylla Hawaii, USA GQ267213 AY725762 AY725724
CBS 114038; CPC 10717 Ipomoea aquatica Auckland, New Zealand AY725630 GQ267402 GQ267320
C. papillata CBS 136096; CMW 37972; CERC 1935 Soil in Eucalyptus plantation Guangdong, China KJ462963 KJ463078 KJ462848
CBS 136097; CMW 37976; CERC 1939 Soil in Eucalyptus plantation Guangdong, China KJ462964 KJ463079 KJ462849
C. paracolhounii CBS 114679; CPC 2445 USA KX784644 KX784582 KX784714
CBS 114705; CPC 2423 USA KX784645 KX784715
C. paraensis CBS 134669; LPF430 Soil in Eucalyptus plantation Monte Dourado, Pará, Brazil KM395924 KM396011 KM395837
LPF306 Soil in Eucalyptus plantation Monte Dourado, Pará, Brazil KM395925 KM396012 KM395838
C. parakyotensis CBS 136085; CMW 35169; CERC 1845 Soil in Eucalyptus plantation Guangdong, China KJ463081 KJ462851
CBS 136095; CMW 35413; CERC 1904 Soil in Eucalyptus plantation Guangxi, China KJ463082 KJ462852
C. parva CBS 110798; CPC 410 Soil South Africa KX784646 KX784583 KX784716
C. pauciramosa CBS 138824; CMW 5683 E. grandis South Africa FJ918514 GQ267405 FJ918565
CMW 30823 E. grandis South Africa FJ918515 GQ280404 FJ918566
C. penicilloides CBS 174.55; IMI 299375 Prunus sp. Japan AF333414 GQ267406 GQ267322
C. pentaseptata CBS 136087; CMW 35177; CERC 1853 Eucalyptus leaf Hainan, China KJ462966 KJ463083 KJ462853
CBS 136089; CMW 35377; CERC 1879 Eucalyptus leaf Hainan, China KJ462967 KJ463084 KJ462854
C. piauiensis CBS 134849 Soil Serra das Confusões, Piauí KM395972 KM396059 KM395885
CBS 134850 Soil Teresina, Piauí, Brazil KM395973 KM396060 KM395886
C. pini CBS 123698 Pinus patula Buga, Colombia GQ267224 GQ267436 GQ267344
CBS 125253 P. patula Buga, Colombia GQ267225 GQ267437 GQ267345
C. polizzi CBS 125270; CMW 7804 Callistemon citrinus Messina, Sicily, Italy FJ972417 GQ267461 FJ972486
CBS 125271; CMW 10151 Arbustus unedo Catania, Sicily, Italy FJ972418 GQ267462 FJ972487
C. plurilateralis CBS 111401; CPC 1637 Ecuador KX784648 KX784586 KX784719
C. pluriramosa CBS 136976; CMW 31440; CERC 1774 Soil in Eucalyptus plantation Fangchenggang, Guangxi, China KJ462995 KJ463112 KJ462882
C. propaginicola CBS 134815; LPF220 Eucalyptus sp. Santana, Pará, Brazil KM395953 KM396040 KM395866
CBS 134816; LPF222 Eucalyptus sp. Santana, Pará, Brazil KM395954 KM396041 KM395867
C. pseudobrassicae CBS 134661; LPF260 Soil in Eucalyptus plantation Santana, Pará, Brazil KM395935 KM396022 KM395848
CBS 134662; LPF280 Soil in Eucalyptus plantation Santana, Pará, Brazil KM395936 KM396023 KM395849
C. pseudocerciana CBS 134823 Eucalyptus sp. Santana, Pará, Brazil KM395961 KM396048 KM395874
CBS 134824 Eucalyptus seedling Santana, Pará, Brazil KM395962 KM396049 KM395875
C. pseudocolhounii CBS 127195; CMW 27209 E. dunnii Fujian, China HQ285788 HQ285816
CBS 127196; CMW 27213 E. dunnii Fujian, China HQ285789 HQ285817
C. pseudoecuadoriae CBS 111402; CPC 1639 Ecuador KX784652 KX784589 KX784723
CBS 111412; CPC 1648 Soil Ecuador DQ190601 KX784590 KX784724
C. pseudohodgesii CBS 134818 Azadirachta indica Viçosa, Minas Gerais, Brazil KM395905 KM395991 KM395817
CBS 134819 A. indica Viçosa, Minas Gerais, Brazil KM395906 KM395992 KM395818
C. pseudokyotensis CBS 137332; CMW 31439; CERC 1774 Soil in Eucalyptus plantation Fangchenggang, Guangxi, China KJ462994 KJ463111 KJ462881
C. pseudometrosideri CBS 134844 Eucalyptus sp. Açailândia, Maranhão, Brazil KM395908 KM395994 KM395820
CBS 134845 Soil Maceió, Alagoas, Brazil KM395909 KM395995 KM395821
C. pseudomexicana CBS 130354 Callistemon sp. Tunisia JN607281 JN607496
CBS 130355 Callistemon sp. Tunisia JN607282 JN607497
Ca. pseudonaviculata CBS 114417; CPC 10926 Buxus sempervirens West Auckland, New Zealand GQ267214 GQ267409 GQ267325
CBS 116251; CPC 3399 B. sempervirens New Zealand AF449455 KM396000 KM395826
C. pseudopteridis CBS 163.28; IMI 299579 Washingtonia robusta USA KM396076 KM395902
C. pseudoreteaudii CBS 123694; CMW 25310 Eucalyptus hybrid cutting Guangdong, China FJ918504 GQ267411 FJ918541
CBS 123696; CMW 25292 Eucalyptus hybrid cutting Guangdong, China FJ918505 GQ267410 FJ918542
C. pseudoscoparia CBS 125255; CMW 15216 E. grandis Pichincha, Ecuador GQ267227 GQ267439 GQ267347
CBS 125256; CMW 15216 E. grandis Pichincha, Ecuador GQ267228 GQ267440 GQ267348
C. pseudospathiphylli CBS 109165; CPC 1623 Soil Ecuador FJ918513 GQ267412 FJ918562
C. pseudospathulata CBS 134840 Soil Araponga, Minas Gerais, Brazil KM395982 KM396069 KM395895
CBS 134841 Soil Araponga, Minas Gerais, Brazil KM395983 KM396070 KM395896
C. pseudouxmalensis CBS 110923; CPC 941 Soil Mexico KX784653 KX784725
CBS 110924; CPC 942 Soil Mexico KX784654 KX784726
CBS 115677; CPC 943 Soil Mexico KX784655 KX784727
C. pseudovata CBS 134674; LPF267 Soil in Eucalyptus plantation Santana, Pará, Brazil KM395945 KM396032 KM395858
CBS 134675; LPF285 Soil in Eucalyptus plantation Santana, Pará, Brazil KM395946 KM396033 KM395859
C. pteridis CBS 111793; ATCC 34395; CPC 2372 Arachnoides adiantiformis USA DQ190578 GQ267413 FJ918563
CBS 111871; CPC 2443 Pinus sp. Spain DQ190579 GQ267414 FJ918564
C. putriramosa CBS 111449; CPC 1951 Eucalyptus cutting Brazil KX784656 KX784591 KX784728
CBS 111470; CPC 1940 Soil Brazil KX784657 KX784592 KX784729
CBS 111477; CPC 1928 Soil Brazil KX784658 KX784593 KX784730
CBS 116076; CPC 604 Eucalyptus cutting Brazil GQ421776 GQ421792
C. queenslandica CBS 112146; CPC 3213 E. urophylla Australia AF389835 GQ267415 FJ918543
CBS 112155; CPC 3210 E. pellita Australia AF389834 GQ267416 FJ918544
C. quinqueramosa CBS 134654; LPF065 Soil in Eucalyptus plantation Monte Dourado, Pará, Brazil KM395942 KM396029 KM395855
CBS 134655; LPF281 Soil in Eucalyptus plantation Santana, Pará, Brazil KM395943 KM396030 KM395856
C. reteaudii CBS 112143; CPC 3200 E. camaldulensis Vietnam GQ240642 GQ267418 FJ918536
CBS 112144; CPC 3201 E. camaldulensis Vietnam AF389833 GQ267417 FJ918537
C. robigophila CBS 134652 Eucalyptus sp. Açailândia, Maranhão, Brazil KM395937 KM396024 KM395850
CBS 134653 Eucalyptus sp. Açailândia, Maranhão, Brazil KM395938 KM396025 KM395851
C. rumohrae CBS 109062; CPC 1603 Adianthum sp. Netherlands AF232873 GQ267420 FJ918550
CBS 111431; CPC 1716 R. adiantiformis Brazil AF232871 GQ267419 FJ918549
C. seminaria CBS 136631; CMW 31449; CERC 1784 E. urophylla × E. grandis clone seedling leaf CERC Nursery, Zhanjiang, Guangdong, China KJ462997 KJ463114 KJ462884
CBS 136632; CMW 31450; CERC 1785 E. urophylla × E. grandis clone seedling leaf CERC Nursery, Zhanjiang, Guangdong, China KJ462998 KJ463115 KJ462885
C. silvicola CBS 134836 Soil Araponga, Minas Gerais, Brazil KM395975 KM396062 KM395888
CBS 135237 Soil Araponga, Minas Gerais, Brazil KM395978 KM396065 KM395891
C. spathulata CBS 555.92 E. viminalis Brazil AF308463 GQ267426 FJ918554
CBS 115639; CPC 1148 Colombia KX784659 KX784594 KX784732
CBS 115644; CPC 1071 E. grandis Colombia KX784660 KX784595 KX784733
C. spathiphylli CBS 114540; ATCC 44730; CPC 2378 Spathiphyllum sp. USA AF348214 GQ267424 GQ267330
CBS 116168; CPC 789 Spathiphyllum sp. Switzerland FJ918512 GQ267425 FJ918561
C. sphaeropendunculata CBS 136081; CMW 31390; CERC 1725 Soil in Eucalyptus plantation Guangxi, China KJ463003 KJ463120 KJ462890
C. stipitata CBS 112513; CPC 3851 Eucalyptus sp. Colombia KX784661 KX784596 KX784734
C. sulawesiensis CBS 125253; CMW 14879 Eucalyptus sp. Sulawesi, Indonesia GQ267220 GQ267432 GQ267340
CBS 125277 Eucalyptus sp. Sulawesi, Indonesia GQ267222 GQ267434 GQ267342
C. sumatrensis CBS 112829; CPC 4518 Soil Sumatra, Indonesia AY725649 AY725771 AY725733
CBS 112934; CPC 4516 Soil Indonesia AY725651 AY725773 AY725735
C. syzygiicola CBS 112827; CPC 4512 S. aromaticum Indonesia KX784662 KX784597 KX784735
CBS 112831; CPC 4511 S. aromaticum Indonesia KX784663 KX784736
C. telluricola CBS 134663; LPF214 Soil Salinas, Minas Gerais, Brazil KM395929 KM396016 KM395842
CBS 134664; LPF217 Soil Mucuri, Bahia, Brazil KM395930 KM396017 KM395843
C. tereticornis CBS 111301; CPC 1429 E. tereticornis Brazil KX784664 KX784737
C. terrae-reginae CBS 112151; CPC 3202 E. urophylla Queensland, Australia FJ918506 GQ267451 FJ918545
CBS 112634; CPC 4233 Xanthorrhoea australis Victoria, Australia FJ918507 GQ267452 FJ918546
C. terrestris CBS 136642; CMW 35180; CERC 1856 Soil in Eucalyptus plantation Guangdong, China KJ463004 KJ463121 KJ462891
CBS 136643; CMW 35364; CERC 1868 Soil in Eucalyptus plantation Guangdong, China KJ463005 KJ463122 KJ462892
C. terricola CBS 116247; CPC 3583 Soil in Eucalyptus plantation Brazil KX784665 KX784738
CBS 116248; CPC 3536 Soil in Eucalyptus plantation Brazil KX784666 KX784739
C. tetraramosa CBS 136635; CMW 31474; CERC 1809 E. urophylla × E. grandis clone seedling leaf CERC Nursery, Zhanjiang, Guangdong, China KJ463011 KJ463128 KJ462898
CBS 136637; CMW 31476; CERC 1811 E. urophylla × E. grandis clone seedling leaf CERC Nursery, Zhanjiang, Guangdong, China KJ463012 KJ463129 KJ462899
C. tropicalis CBS 116242; CPC 3543 Eucalyptus sp. Brazil KX784668 KX784741
CBS 116271; CPC 3559 Eucalyptus sp. Brazil KX784669 KX784599 KX784742
C. turangicola CBS 136077; CMW 31411; CERC 1746 Soil in Eucalyptus plantation Fangchenggang, Guangxi, China KJ463013 KJ462900
CBS 136093; CMW 35410; CERC 1901 Soil in Eucalyptus plantation Guangxi, China KJ463014 KJ463130 KJ462901
C. tunisiana CBS 130356 Callistemon sp. Tunisia JN607277 JN607292
CBS 130357 C. laevis Tunisia JN607276 JN607291
C. uniseptata CBS 413.67; CPC 2391; IMI 299577 Paphiopedilum callosum Celle, Germany GQ267208 GQ267379 GQ267307
CBS 170.77; IMI 299388 Idesia polycarpa Auckland, New Zealand GQ267209 GQ267380 GQ267308
C. uxmalensis CBS 110919; CPC 928 Soil Mexico KX784637 KX784707
CBS 110925; CPC 945 Soil Mexico KX784638 KX784708
C. variabilis CBS 112691; CPC 2506 Theobroma grandiflorum Brazil GQ267240 GQ267458 GQ267335
CBS 114677; CPC 2436 Schefflera morotoni Brazil AF333424 GQ267457 GQ267334
C. venezuelana CBS 111052; CPC 1183 Venezuela KX784671 KX784601 KX784744
Ca. zuluensis CBS 125268 E. grandis South Africa FJ972414 GQ267459 FJ972483
CBS 125272 E. grandis South Africa FJ972415 GQ267460 FJ972484
Calonectria sp. CBS 111423; CPC 1650 Ecuador KX784673 KX784603 KX784746
CBS 111465; CPC 1902 Soil Brazil DQ190607 KX784584 KX784717
CBS 111706; CPC 1636 Ecuador KX784674 KX784604 KX784747
CBS 112152; CPC 3203 E. camaldulensis Vietnam KX784672 KX784602 KX784745
CBS 112753; CPC 4225 Indonesia KX784667 KX784598 KX784740
CBS 113496; CPC 3155 KX784675 KX784605 KX784748
CBS 113627; CPC 3232 KX784676 KX784606 KX784749
CBS 114164; CPC 1634 Ecuador KX784677 KX784607 KX784750
CBS 114691; CPC 2472; AR 2574 Canada KX784678 KX784608 KX784751
CBS 114755; CPC 1403 E. tereticornis Brazil KX784670 KX784600 KX784743
CBS 116108; CPC 726 Soil Colombia KX784647 KX784585 KX784718
CBS 116249; CPC 3533 Eucalyptus sp. Brazil KX784679 KX784609 KX784752
CBS 116265; CPC 3552 Eucalyptus sp. Brazil KX784680 KX784610 KX784753
CBS 116305; CPC 3890 Eucalytus sp. Brazil KX784634 KX784576 KX784704
CBS 116319; CPC 3761 Eucalytus sp. Brazil KX784635 KX784577 KX784705
Curvicladiella cignea CBS 109167; CPC 1595; MUCL 40269 Leaf litter French Guiana KM232002 KM231287 KM231867
1

AR: Amy Y. Rossman working collection; ATCC: American Type Culture Collection, Virginia, USA; CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; CERC: China Eucalypt Research Centre, Zhanjiang, Guangdong Province, China; CMW: culture collection of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; CPC: Pedro Crous working collection housed at CBS; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, UK; LPF: Laboratório de Patologia Florestal, Universidade Federal de Viçosa, Viçosa, Brazil; MUCL: Mycothèque, Laboratoire de Mycologie Systématique st Appliqée, l’Université, Louvian-la-Neuve, Belgium; UFV: Universidade Federal de Viçosa, Viçosa, Brazil. Isolates obtained during the survey indicated in grey blocks.

2

tub2 = β-tubulin, cmdA = calmodulin, tef1 = translation elongation factor 1-alpha. Ex-type isolates indicated in bold. Sequences generated in this study indicated in italics.

Phylogeny

Total genomic DNA was extracted from 7-d-old axenic cultures, grown on MEA at room temperature, using the UltraClean™ Microbial DNA isolation kit (Mo Bio Laboratories, Inc., California, USA) following the protocols provided by the manufacturer. Based on previous studies (Lombard et al., 2010b, Lombard et al., 2015b, Alfenas et al., 2015), partial gene sequences were determined for β-tubulin (tub2), calmodulin (cmdA), and the translation elongation factor 1-alpha (tef1) regions as these regions provided the best phylogenetic signal at species level for the genus Calonectria. Therefore, the primers and protocols described by Lombard et al. (2015b) were used to determine these regions.

To ensure the integrity of the sequences, the amplicons were sequenced in both directions using the same primers used for amplification. Consensus sequences for each locus were assembled in MEGA v. 7 (Kumar et al. 2016) and compared with representative sequences from Alfenas et al., 2013a, Alfenas et al., 2013b, Alfenas et al., 2015, Chen et al., 2011 and Lombard et al., 2010a, Lombard et al., 2010b, Lombard et al., 2011, Lombard et al., 2015a. Subsequent alignments for each locus were generated in MAFFT v. 7.110 (Katoh & Standley 2013) and the ambiguously aligned regions of both ends were truncated. Congruency of the three loci was tested using the 70 % reciprocal bootstrap criterion (Mason-Gamer & Kellogg 1996) following the protocols of Lombard et al. (2015b).

Phylogenetic analyses of the individual gene regions and the combined dataset were based on Bayesian inference (BI), Maximum Likelihood (ML) and Maximum Parsimony (MP). For BI and ML, the best evolutionary models for each locus were determined using MrModeltest (Nylander 2004) and incorporated into the analyses. MrBayes v. 3.2.1 (Ronquist & Huelsenbeck 2003) was used for BI to generate phylogenetic trees under optimal criteria for each locus. A Markov Chain Monte Carlo (MCMC) algorithm of four chains was initiated in parallel from a random tree topology with the heating parameter set at 0.3. The MCMC analysis lasted until the average standard deviation of split frequencies was below 0.01 with trees saved every 1 000 generations. The first 25 % of saved trees were discarded as the “burn-in” phase and posterior probabilities (PP) were determined from the remaining trees.

The ML analyses were preformed using RAxML v. 8.0.9 (randomised accelerated (sic) maximum likelihood for high performance computing; Stamatakis 2014) through the CIPRES website (http://www.phylo.org) to obtain another measure of branch support. The robustness of the analysis was evaluated by bootstrap support (BS) with the number of bootstrap replicates automatically determined by the software.

For MP, analyses were done using PAUP (Phylogenetic Analysis Using Parsimony, v. 4.0b10; Swofford 2003) with phylogenetic relationships estimated by heuristic searches with 1 000 random addition sequences. Tree-bisection-reconnection was used, with branch swapping option set on “best trees” only. All characters were weighted equally and alignment gaps treated as fifth state. Measures calculated for parsimony included tree length (TL), consistency index (CI), retention index (RI) and rescaled consistence index (RC). Bootstrap analyses (Hillis & Bull 1993) were based on 1 000 replications. All new sequences generated in this study were deposited in GenBank (Table 1) and alignments and trees in TreeBASE.

Taxonomy

Axenic cultures were transferred to synthetic nutrient-poor agar (SNA; Nirenburg 1981) and incubated at room temperature for 7 d. Gross morphological characteristics were studied by mounting the fungal structures in 85 % lactic acid and 30 measurements were made at ×1 000 magnification for all taxonomically informative characters using a Zeiss Axioscope 2 microscope with differential interference contrast (DIC) illumination. The 95 % confidence levels were determined for the conidial measurements with extremes given in parentheses. For all other fungal structures measured, only the extremes are provided. Colony colour was assessed using 7-d-old cultures on MEA incubated at room temperature and the colour charts of Rayner (1970). All descriptions, illustrations and nomenclatural data were deposited in MycoBank (Crous et al. 2004a).

Results

Phylogenetic analyses

Approximately 500−550 bases were determined for the three gene regions included in this study. The congruency analyses revealed no conflicts in tree topologies, with only minor differences in branch support. Therefore, the sequences of the three loci determined here were combined in a single dataset for analyses. For the BI and ML analyses, a HKY+I+G model was selected for all three gene regions and incorporated into the analyses. The ML tree topology confirmed the tree topologies obtained from the BI and MP analyses, and therefore, only the ML tree is presented.

The combined cmdA, tef1 and tub2 sequences dataset included 278 ingroup taxa and Curvicladiella cignea (CBS 109167) as outgroup taxon. This dataset consisted of 1 680 characters, of which 507 were constant, 198 parsimony-uninformative and 975 parsimony-informative. The MP analysis yielded 1 000 trees (TL = 6 998; CI = 0.344; RI = 0.867; RC = 0.298) and a single best ML tree with −InL = −32198.651254 which is presented in Fig. 1. The BI lasted for 10 M generations, and the consensus tree, with posterior probabilities, was calculated from 15 002 trees left after 5 000 trees were discarded as the ‘burn-in’ phase. In the phylogenetic tree (Fig. 1) the previously unnamed Calonectria species resolved in 21 distinct clades that were either well or strongly supported and 17 single lineages, each representing probable novel phylogenetic taxa.

Fig. 1.

Fig. 1

Fig. 1

Fig. 1

Fig. 1

The ML consensus tree inferred from the combined cmdA, tef1 and tub2 sequence alignments. Thickened lines indicate branches present in the ML, MP and Bayesian consensus trees. Branches with ML-BS & MP-BS = 100 % and PP = 1.00 are in blue. Branches with ML-BS & MP-BS ≥ 75 % and PP ≥ 0.95 are in red. Dashed lines indicate branches shortened ×10. The scale bar indicates 0.09 expected changes per site. The tree is rooted to Curvicladiella cignea (CBS 109167). Epi- and ex-type strains are indicated in bold.

Taxonomy

Based on phylogenetic inference supported by morphological observations, numerous Calonectria isolates included in this study represent novel species. No sexual morphs were observed for any of the novel taxa described below, even after 6 wk of incubation at room temperature. Fifteen of the lineages (CBS 111423, CBS 111468, CBS 111706, CBS 112152, CBS 112753, CBS 113496, CBS 113627, CBS 114164, CBS 114691, CBS 114755, CBS 116108, CBS 116249, CBS 116265, CBS 116305, CBS 116319) identified based on phylogenetic inference are not provided with names because they form part of a separate study (Crous et al. in prep.) or more taxa are required to resolve their phylogenetic position.

Calonectria amazonica L. Lombard & Crous, sp. nov. MycoBank MB818698. Fig. 2.

Fig. 2.

Fig. 2

Calonectria amazonica (ex-type CBS 116250). A. Macroconidiophore. B–C. Conidiogenous apparatus with conidiophore branches and allantoid to elongate doliiform to reniform phialides. D–E. Clavate vesicles. F–G. Macroconidia. Scale bars: A = 50 μm; B−G = 10 μm.

Etymology: Name refers to the Amazonian region of Brazil where this fungus was collected.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 75–190 × 6–8 μm; stipe extension septate, straight to flexuous, 180–270 μm long, 4–5 μm wide at the apical septum, terminating in a clavate vesicle, 5–6 μm diam. Conidiogenous apparatus 45–55 μm wide, and 60–80 μm long; primary branches aseptate, 22–32 × 4–6 μm; secondary branches aseptate, 14–24 × 3–5 μm; tertiary branches aseptate, 10–18 × 2–4 μm; quaternary branches aseptate, 10−15 × 3 μm, each terminal branch producing 2–4 phialides; phialides allantoid to elongate doliiform to reniform, hyaline, aseptate, 9–20 × 3–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight to slightly curved, (68–)74–84(–88) × (4−)4.5−5.5(−6) μm (av. 79 × 5 μm), 1(−3)-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (40−65 mm diam) on MEA after 7 d at room temperature; surface sienna to sepia with moderate white, wooly aerial mycelium and moderate sporulation on the aerial mycelium and colony surface; reverse sienna to sepia with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Brazil, Amazon, from foliar lesion of Eucalyptus tereticornis, 1993, P.W. Crous & A.C. Alfenas (holotype CBS-H22750, culture ex-type CBS 116250 = CPC 3534); ibid., cultures CBS 115486 = CPC 3894.

Notes: Calonectria amazonica resides in the C. pteridis complex. The macroconidia of C. amazonica [(68–)74–84(–88) × (4−)4.5−5.5(−6) μm (av. 79 × 5 μm)] are slightly smaller than those of C. pteridis and C. pseudopteridis [(50–)70–100(–130) × (4−)5−6 μm (av. 82 × 5.5 μm); Crous, 2002, Alfenas et al., 2015], but larger than those of C. amazoniensis, C. lageniformis and C. tropicalis (see below).

Calonectria amazoniensis L. Lombard & Crous, sp. nov. MycoBank MB818699. Fig. 3.

Fig. 3.

Fig. 3

Calonectria amazoniensis (ex-type CBS 115440). A–C. Macroconidiophores. D–E. Conidiogenous apparatus with conidiophore branches and elongate doliiform to reniform phialides. F. Conidiogenous apparatus with lateral stipe extension. G–J. Clavate vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to the Amazonian region of Brazil where this fungus was collected.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 45–240 × 6–9 μm; stipe extension septate, straight to flexuous, 140–280 μm long, 4–5 μm wide at the apical septum, terminating in a clavate vesicle, 5–7 μm diam; lateral stipe extensions (90° to main axis) few, 80–95 μm long, 2–4 μm wide at the apical septum, terminating in clavate vesicles, 2–3 μm diam. Conidiogenous apparatus 30–110 μm wide, and 30–100 μm long; primary branches aseptate, 15–31 × 4–6 μm; secondary branches aseptate, 10–26 × 3–5 μm; tertiary branches aseptate, 9–31 × 3–5 μm; quaternary branches and additional branches (−5) aseptate, 9−18 × 3–5 μm each terminal branch producing 2–4 phialides; phialides elongate doliiform to reniform, hyaline, aseptate, 7–17 × 3–5 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight to slightly curved, (56–)64–74(–75) × (4−)4.5−5.5(−6) μm (av. 69 × 4 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (40−65 mm diam) on MEA after 7 d at room temperature; surface sienna to amber with moderate white, wooly aerial mycelium and moderate sporulation on the aerial mycelium and colony surface; reverse sienna with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Brazil, Amazon, from foliar lesion of Eucalyptus tereticornis, 1993, P.W. Crous & A.C. Alfenas (holotype CBS-H22751 culture ex-type CBS 115440 = CPC 3885); ibid., cultures CBS 115438 = CPC 3890, CBS 115439 = CPC 3889.

Notes: Calonectria amazoniensis resides in the C. pteridis complex. This species can be distinguished from other species in the C. pteridis complex by its greater number (−5) of branches in the conidiogenous apparatus and the presence of lateral stipe extensions (Crous, 2002, Alfenas et al., 2015).

Calonectria brasiliana L. Lombard & Crous, sp. nov. MycoBank MB818700. Fig. 4.

Fig. 4.

Fig. 4

Calonectria brasiliana (ex-type CBS 111484). A–C. Macroconidiophores. D–F. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. G–J. Ellipsoid to obpyrifom vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to Brazil, the country where this fungus was collected.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 40–240 × 5–10 μm; stipe extension septate, straight to flexuous, 117–172 μm long, 4–6 μm wide at the apical septum, terminating in an ellipsoid to obpyriform vesicle, 6–9 μm diam. Conidiogenous apparatus 45–100 μm wide, and 40–70 μm long; primary branches aseptate, 16–23 × 4–6 μm; secondary branches aseptate, 10–17 × 3–6 μm; tertiary branches aseptate, 7–13 × 3–5 μm; quaternary branches and additional branches (–5) aseptate, 7–14 × 3–4 μm each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 7–12 × 3–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (36–)38–42(–46) × (3−)3.5−4.5(−5) μm (av. 40 × 4 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (30−60 mm diam) on MEA after 7 d at room temperature; surface cinnamon to brick with sparse, felty, white aerial mycelium and abundant sporulation on the aerial mycelium and colony surface; reverse cinnamon to sepia with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Brazil, from soil, Jun. 1998, A.C. Alfenas (holotype CBS-H22752, culture ex-type CBS 111484 = CPC 1924); ibid., culture CBS 111485 = CPC 1929.

Notes: Calonectria brasiliana is a new species in the C. candelabrum complex (Schoch et al., 1999, Lombard et al., 2010a, Lombard et al., 2010b, Lombard et al., 2015a). The macroconidia of C. brasiliana [(36–)38–42(–46) × (3−)3.5−4.5(−5) μm (av. 40 × 4 μm)] are smaller than those of its closest phylogenetic neighbours (Fig. 1): C. candelabrum [(45–)58–68(–80) × 4−5(−6) μm (av. 60 × 4.5 μm); Crous 2002], C. eucalypticola [(43–)49–52(–55) × 3−5 μm (av. 50 × 4 μm); Alfenas et al. 2015], C. glaebicola [(45–)50–52(–55) × 3−5 μm (av. 50 × 4 μm); Alfenas et al. 2015], C. metrosideri [(40–)44–46(–51) × 3−5 μm (av. 45 × 4 μm); Alfenas et al., 2013a, Alfenas et al., 2015], C. pseudometrosideri [(40–)49–52(–60) × (3−)4.5(−5) μm (av. 51 × 4.5 μm); Alfenas et al. 2015] and C. pseudoscoparia [(41–)45–51(–52) × 3−5 μm (av. 48 × 4 μm); Lombard et al. 2010b].

Calonectria brassicicola L. Lombard & Crous, sp. nov. MycoBank MB818701. Fig. 5.

Fig. 5.

Fig. 5

Calonectria brassicicola (ex-type CBS 112841). A–C. Macroconidiophores. D–F. Conidiogenous apparatus with lateral stipe extensions and doliiform to reniform phialides. G–J. Sphaeropedunculate vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to the host plant, Brassica, from which this fungus was isolated.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicles; stipe septate, hyaline, smooth, 30–90 × 6–9 μm; stipe extension septate, straight to flexuous, 90–140 μm long, 4–5 μm wide at the apical septum, terminating in a sphaeropedunculate vesicle, 6–10 μm diam; lateral stipe extensions (90° to main axis) sparse, 30–50 μm long, 2–4 μm wide at the apical septum, terminating in sphaeropedunculate vesicles, 3−5 μm. Conidiogenous apparatus 45–80 μm wide, and 35–50 μm long; primary branches aseptate, 12–20 × 4–6 μm; secondary branches aseptate, 8–13 × 3–5 μm; tertiary branches aseptate, 8–12 × 3–6 μm; quaternary branches aseptate, 8–11 × 2–5 μm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 7–15 × 3–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (36−)39–45(–48) × (4−)4.5–5.5(−6) μm (av. 42 × 5 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (50−65 mm diam) on MEA after 7 d at room temperature; surface buff with abundant white to buff, wooly aerial mycelium, and moderate sporulation on the colony surface; reverse sienna, chlamydospores not observed.

Specimens examined: Indonesia, from soil at Brassica sp., 1990s, M.J. Wingfield (holotype CBS-H22753, culture ex-type CBS 112841 = CPC 4552); ibid., culture CBS 112756 = CPC 4502. New Zealand, substrate unknown, 2001, C.F. Hill, Lynfield 484, culture CBS 112947 = CPC 4668.

Notes: Calonectria brassicicola is similar to C. sumatrensis in having few lateral stipe extensions (Crous et al. 2004b). The macroconidia of C. brassicicola [(36−)39–45(–48) × (4−)4.5–5.5(−6) μm (av. 42 × 5 μm)] are smaller than those of C. sumatrensis [(45−)55–65(–70) × (4.5–)5(−6) μm (av. 58 × 5 μm); Crous et al. 2004b].

Calonectria brevistipitata L. Lombard & Crous, sp. nov. MycoBank MB818702. Fig. 6.

Fig. 6.

Fig. 6

Calonectria brevistipitata (ex-type CBS 115671). A–C. Macroconidiophores. D–E. Conidiogenous apparatus with conidiophore branches and elongate doliiform to reniform phialides. F. Conidiogenous apparatus with lateral stipe extension. G–J. Fusiform to ellipsoid vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to the short stipe extensions of the macroconidiophores in this fungus.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 50–210 × 5–12 μm; stipe extension septate, straight to flexuous, 90–135 μm long, 2–5 μm wide at the apical septum, terminating in an fusiform to obpyriform vesicle, 5–8 μm diam; lateral stipe extensions (90° to main axis) abundant, 60–80 μm long, 2–3 μm wide at the apical septum, terminating in broadly clavate vesicles, 2–3 μm diam. Conidiogenous apparatus 45–75 μm wide, and 45–70 μm long; primary branches aseptate, 13–25 × 4–6 μm; secondary branches aseptate, 10–19 × 3–5 μm; tertiary branches aseptate, 8–16 × 3–5 μm; quaternary branches aseptate, 7–11 × 3–4 μm each terminal branch producing 2–6 phialides; phialides elongate doliiform to reniform, hyaline, aseptate, 6–11 × 2–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, 29–33(–35) × 3−4 μm (av. 31 × 3.5 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (40−70 mm diam) on MEA after 7 d at room temperature; surface cinnamon to brick to sienna with abundant, wooly, white to buff aerial mycelium and abundant sporulation on the aerial mycelium and colony surface; reverse cinnamon to sepia with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Mexico, from soil, Apr. 1994, P.W. Crous (holotype CBS-H22754, culture ex-type CBS 115671 = CPC 949); ibid., cultures CBS 110837 = CPC 913, CBS 110928 = CPC 951.

Notes: Calonectria brevistipitata is a new species in the C. candelabrum complex. The lateral stipe extensions (up to 80 μm long) and macroconidia [29–33(–35) × 3−4 μm (av. 31 × 3.5 μm) of C. brevistipitata are shorter than the lateral stipe extensions (up to 125 μm long) and macroconidia [(35–)36–40(–43) × (3−)3.5−4.5(−5) μm (av. 38 × 4 μm)] of C. machaerinae, the only other species in the C. candelabrum complex to produce lateral stipe extensions.

Calonectria cliffordiicola L. Lombard & Crous, sp. nov. MycoBank MB818703. Fig. 7.

Fig. 7.

Fig. 7

Calonectria cliffordiicola (ex-type CBS 111812). A–C. Macroconidiophores. D–F. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. G–J. Ellipsoid to obpyrifom vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to plant host plant genus, Cliffordia, from which this fungus was isolated.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 65–130 × 7–10 μm; stipe extension septate, straight to flexuous, 127–180 μm long, 4–6 μm wide at the apical septum, terminating in an ellipsoid to obpyriform vesicle, 7–9 μm diam. Conidiogenous apparatus 57–100 μm wide, and 40–85 μm long; primary branches aseptate, 15–32 × 4–6 μm; secondary branches aseptate, 11–23 × 3–6 μm; tertiary branches aseptate, 7–13 × 3–5 μm; quaternary branches aseptate, 8–13 × 3–4 μm each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 7–11 × 3–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (35–)38–42(–44) × (3−)3.5−4.5(−6) μm (av. 40 × 4 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (35−65 mm diam) on MEA after 7 d at room temperature; surface cinnamon to brick with sparse, felty, white to buff aerial mycelium and moderate sporulation on the aerial mycelium and colony surface; reverse cinnamon to sepia with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: South Africa, Western Cape Province, George, from Cliffordia feruginea, 14 Apr. 1998, P.W. Crous (holotype CBS-H22755, culture ex-type CBS 111812 = CPC 2631); Stellenbosch, from Prunus avium saplings, 1 May 1999, C. Linde, cultures CBS 111814 = CPC 2617, CBS 111819 = CPC 2604.

Notes: Calonectria cliffordiicola is a new species in the C. candelabrum complex (Schoch et al., 1999, Lombard et al., 2010a, Lombard et al., 2010b, Lombard et al., 2015a). Morphologically, this species shows some overlap with C. brasiliana, but can be distinguished by its shorter stipe extensions (up to 180 μm) compared to C. brasiliana (up to 240 μm).

Calonectria ericae L. Lombard & Crous, sp. nov. MycoBank MB818704. Fig. 8.

Fig. 8.

Fig. 8

Calonectria ericae (ex-type CBS 114458). A–C. Macroconidiophores. D–F. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. G–J. Ellipsoid to obpyriform vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to host plant genus, Erica, from which this species was isolated.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 40–100 × 6–9 μm; stipe extension septate, straight to flexuous, 105–160 μm long, 3–7 μm wide at the apical septum, terminating in an ellipsoid to obpyriform vesicle, 6–10 μm diam. Conidiogenous apparatus 40–75 μm wide, and 35–70 μm long; primary branches aseptate, 15–23 × 3–5 μm; secondary branches aseptate, 10–19 × 2–6 μm; tertiary branches aseptate, 6–16 × 2–5 μm; quaternary branches aseptate, 6–13 × 2–5 μm each terminal branch producing 2–6 phialides; phialides elongate doliiform to reniform, hyaline, aseptate, 6–11 × 2–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (29–)34–40(–42) × (3−)3.5−4.5(−5) μm (av. 37 × 4 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (40−65 mm diam) on MEA after 7 days at room temperature; surface cinnamon to brick with sparse, felty, white aerial mycelium and moderate sporulation on the aerial mycelium and colony surface; reverse cinnamon to umber with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: USA, California, from Erica capensis, Sep. 1998, S.T. Koike (holotype CBS-H22756, culture ex-type CBS 114458 = CPC 2019); ibid., cultures CBS 114456 = CPC 1984, CBS 114457 = CPC 1985.

Notes: Calonectria ericae is a new species in the C. candelabrum complex. This species produces the smallest macroconidia in the C. candelabrum complex. Kioke et al. (1999) initially identified these isolates as C. pauciramosa based on morphology and mating studies using the C. pauciramosa mating tester strains (Schoch et al., 1999, Lombard et al., 2010a).

Calonectria indonesiana L. Lombard & Crous, sp. nov. MycoBank MB818705. Fig. 9.

Fig. 9.

Fig. 9

Calonectria indonesiana (ex-type CBS 112936). A–C. Macroconidiophores. D–E. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. F. Conidiogenous apparatus with lateral stipe extension. G–J. Sphaeropedunculate vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to Indonesia, the country where this fungus was collected.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicles; stipe septate, hyaline, smooth, 35–115 × 6–9 μm; stipe extension septate, straight to flexuous, 110–130 μm long, 3–5 μm wide at the apical septum, terminating in a sphaeropedunculate vesicle, 8–10 μm diam; lateral stipe extensions (90° to main axis) sparse, 30–50 μm long, 3–4 μm wide at the apical septum, terminating in sphaeropedunculate vesicles, 4−5 μm. Conidiogenous apparatus 40–100 μm wide, and 40–70 μm long; primary branches aseptate, 11–20 × 4–6 μm; secondary branches aseptate, 8–17 × 4–7 μm; tertiary branches aseptate, 9–14 × 3–6 μm; quaternary branches and additional branches (−6) aseptate, 7–12 × 3–5 μm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 7–14 × 3–5 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (38−)40–46(–48) × (3−)4.5–5.5(−6) μm (av. 43 × 5 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (50−65 mm diam) on MEA after 7 d at room temperature; surface buff with abundant white to buff, wooly aerial mycelium, and moderate sporulation on the colony surface; reverse sienna, chlamydospores not observed.

Specimens examined: Indonesia, north Sumatera, from soil, 1998, M.J. Wingfield (holotype CBS-H22757, culture ex-type CBS 112936 = CPC 4504); ibid., culture CBS 112826 = CPC 4519.

Notes: Calonectria indonesiana is similar to C. brassicicola and C. sumatrensis in having few lateral stipe extensions (Crous et al. 2004b). Calonectria indonesiana (−6) can be distinguished from C. brassicicola (−4) and C. sumatrensis (−3) by the number of branches of the conidiogenous apparatus (Crous et al. 2004b).

Calonectria lageniformis L. Lombard & Crous, sp. nov. MycoBank MB818706. Fig. 10.

Fig. 10.

Fig. 10

Calonectria lageniformis (ex-type CBS 111324). A–B. Macroconidiophores. C–E. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. F–I. Lageniformis to ellipsoid vesicles. J. Macroconidia. Scale bars: A–B = 50 μm; C–J = 10 μm.

Etymology: Name refers to the characteristic lageniform vesicles in this fungus.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 65–220 × 4–9 μm; stipe extension septate, straight to flexuous, 135–185 μm long, 4–6 μm wide at the apical septum, terminating in a lageniform to ellipsoid vesicle, 6–10 μm diam. Conidiogenous apparatus 20–80 μm wide, and 35–60 μm long; primary branches aseptate, 16–28 × 4–6 μm; secondary branches aseptate, 10–18 × 3–6 μm; tertiary branches aseptate, 8–13 × 3–6 μm, each terminal branch producing 2–4 phialides; phialides doliiform to reniform, hyaline, aseptate, 7–11 × 3–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (35–)37–43(–45) × (3−)4.5−5.5(−6) μm (av. 40 × 5 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies fast growing (60−90 mm diam) on MEA after 7 d at room temperature; surface sepia with sparse buff, felty aerial mycelium and moderate sporulation on the aerial mycelium and colony surface; reverse sepia with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Brazil, from leaf lesion on Eucalyptus sp., 1993, P.W. Crous & A.C. Alfenas, culture CBS 112685 = CPC 3418. Mauritius, Rivière Noire, from foliar lesion on Eucalyptus sp., 10 Apr. 1996, H. Smith (holotype CBS-H22758 culture ex-type CBS 111324 = CPC 1473).

Note: Calonectria lageniformis is the only species that has lageniform vesicles (Crous, 2002, Lombard et al., 2010b, Lombard et al., 2015a, Alfenas et al., 2015).

Calonectria machaerinae L. Lombard & Crous, sp. nov. MycoBank MB818707. Fig. 11.

Fig. 11.

Fig. 11

Calonectria machaerinae (ex-type CBS 123183). A–C. Macroconidiophores. D–E. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. F. Conidiogenous apparatus with lateral stipe extension. G–J. Ellipsoid to obpyriform vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to plant host genus, Machaerina, from which this species was isolated.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 40–115 × 5–10 μm; stipe extension septate, straight to flexuous, 105–170 μm long, 3–5 μm wide at the apical septum, terminating in an ellipsoid to obpyriform vesicle, 6–9 μm diam; lateral stipe extensions (90° to main axis) few, 80–125 μm long, 3–5 μm wide at the apical septum, terminating in broadly clavate vesicles, 5–6 μm diam. Conidiogenous apparatus 40–80 μm wide, and 55–90 μm long; primary branches aseptate, 18–28 × 4–6 μm; secondary branches aseptate, 13–23 × 3–6 μm; tertiary branches aseptate, 8–19 × 3–5 μm; quaternary branches and additional branches (–6) aseptate, 7–15 × 3–5 μm each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 6–11 × 2–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (35–)36–40(–43) × (3−)3.5−4.5(−5) μm (av. 38 × 4 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies fast growing (60−85 mm diam) on MEA after 7 d at room temperature; surface cinnamon to brick with sparse, wooly, white aerial mycelium and abundant sporulation on the aerial mycelium and colony surface; reverse cinnamon to umber with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimen examined: New Zealand, Auckland, Auckland University Campus, from foliar lesion of Machaerina sinclairii, 27 Jan. 2008, C.F. Hill (holotype CBS-H22760, culture ex-type CBS 123183 = CPC 15378).

Notes: Calonectria machaerinae is a new species in the C. candelabrum complex. This species, along with C. brevistipitata, are the only two species to produce lateral stipe extensions in the C. candelabrum complex (Schoch et al., 1999, Lombard et al., 2010a, Lombard et al., 2010b, Lombard et al., 2015a). See note under C. brevistipitata for additional distinguishing characters.

Calonectria multilateralis L. Lombard & Crous, sp. nov. MycoBank MB818708. Fig. 12.

Fig. 12.

Fig. 12

Calonectria multilateralis (ex-type CBS 110932). A–C. Macroconidiophores. D–E. Conidiogenous apparatus with conidiophore branches and doliiform to reniform to elongate reniform phialides. F. Conidiogenous apparatus with lateral stipe extension. G–J. Naviculate vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to the multiple lateral stipe extensions on the macroconidiophores of this species.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicles; stipe septate, hyaline, smooth, 25–130 × 4–8 μm; stipe extension septate, straight to flexuous, 135–375 μm long, 5–6 μm wide at the apical septum, terminating in a naviculate vesicle, 6–11 μm diam; lateral stipe extensions (90° to main axis) numerous, 55–100 μm long, 3–5 μm wide at the apical septum, terminating in naviculate vesicles, 4−8 μm. Conidiogenous apparatus 45–95 μm wide, and 30–70 μm long; primary branches aseptate, 10–25 × 3–6 μm; secondary branches aseptate, 6–20 × 3–5 μm; tertiary branches aseptate, 7–15 × 3–5 μm; quaternary branches and additional branches (–7) aseptate, 6–13 × 2–4 μm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform to elongate reniform, hyaline, aseptate, 6–12 × 2–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (27−)31–35(–38) × 3–4 μm (av. 33 × 3 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies fast growing (55−85 mm diam) on MEA after 7 d at room temperature; surface buff with abundant white, wooly aerial mycelium and abundant sporulation on the colony surface; reverse buff to sienna, chlamydospores not observed.

Specimens examined: Mexico, Uxmal, from soil, Apr. 1994, P.W. Crous (holotype CBS-H22762, culture ex-type CBS 110932 = CPC 957); ibid., cultures CBS 110926 = CPC 947, CBS 110927 = CPC 948, CBS 110931 = CPC 956, CBS 115615 = CPC 915.

Notes: Calonectria multilateralis is a new species in the C. naviculata complex (Alfenas et al. 2015). The macroconidia of C. multilateralis [31–35(–38) × 3–4 μm (av. 33 × 3 μm)] are smaller than those of C. naviculata [(40−)42–50 × 3(–4) μm (av. 45 × 3 μm); Crous 2002] and C. multinaviculata [(40−)44–49(–52) × (2.5−)3.5(–4) μm (av. 46 × 3.5 μm); Alfenas et al. 2015].

Calonectria paracolhounii L. Lombard & Crous, sp. nov. MycoBank MB818709. Fig. 13.

Fig. 13.

Fig. 13

Calonectria paracolhounii (ex-type CBS 114679). A–B. Macroconidiophores. C–D. Clavate vesicles. E–F. Conidiogenous apparatus with conidiophore branches and elongate doliiform to doliiform to reniform phialides. G. Macroconidia. Scale bars: A–B = 50 μm; C–G = 10 μm.

Etymology: Name refers to the fact that this species has an asexual morph that is very similar to that of C. colhounii.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 21–75 × 5–9 μm; stipe extension septate, straight to flexuous, 82–178 μm long, 3–5 μm wide at the apical septum, terminating in a narrowly clavate vesicle, 3–5 μm diam. Conidiogenous apparatus 31–77 μm wide, and 25–54 μm long; primary branches aseptate, 11–23 × 3–6 μm; secondary branches aseptate, 7–13 × 3–6 μm; tertiary branches aseptate, 7–12 × 2–4 μm, each terminal branch producing 2–6 phialides; phialides elongate doliiform to doliiform to reniform, hyaline, aseptate, 6–12 × 2–5 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (37–)39–43(–45) × 4−5 μm (av. 41 × 5 μm), 3-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (25−55 mm diam) on MEA after 7 d at room temperature; surface buff to sienna with abundant buff to white, felty to wooly aerial mycelium and moderate sporulation on the aerial mycelium and colony surface; reverse buff to sienna to umber with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: USA, substrate unknown, 1990s, A.Y. Rossman (holotype CBS-H22763 culture ex-type CBS 114679 = CPC 2445). Australia, fruit of Annona reticulata, 1988, D. Hutton, culture CBS 114705 = CPC 2423.

Notes: Calonectria paracolhounii is a new species in the C. colhounii complex (Lombard et al., 2010b, Chen et al., 2011). The macroconidia of C. paracolhounii [(37–)39–43(–45) × 4−5 μm (av. 41 × 5 μm)] are smaller than those of C. colhounii [(45–)60–70(–80) × (4−)5(−6) μm (av. 65 × 5 μm); Crous 2002], C. eucalypti [(66–)69–75(–80) × (5−)−6 μm (av. 72 × 6 μm); Lombard et al. 2010b], C. fujianensis [(48–)50–55(–60) × (2.5−)3.5−4.5(−5) μm (av. 52.5 × 4 μm); Chen et al. 2011], C. monticola 46–51(–56) × 4−5 μm (av. 49 × 5 μm); Crous et al. 2015b] and C. pseudocolhounii [(49–)55–65(–74) × (3.5−)4−5(−5.5) μm (av. 60 × 4.5 μm); Chen et al. 2011]. Hutton & Sanewski (1989) initially identified isolate CBS 114705 as C. colhounii, associated with leaf and fruit spots of custard apple (Annona reticulata). Their identification was based on morphological comparisons, as no DNA sequence data was available for the genus Calonectria at that time.

Calonectria parva L. Lombard & Crous, sp. nov. MycoBank MB818710. Fig. 14.

Fig. 14.

Fig. 14

Calonectria parva (ex-type CBS 110798). A. Macroconidiophore. B–C. Conidiogenous apparatus with conidiophore branches and cylindrical to allantoid phialides. D–E. Narrowly clavate vesicles. F. Macroconidia. Scale bars = 10 μm.

Etymology: Name refers to the small macroconidiophores in this fungus.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and rarely a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 43–149 × 5–7 μm; stipe extension septate, straight to flexuous, 65–95 μm long, 2–4 μm wide at the apical septum, terminating in a narrowly clavate vesicle, 3–5 μm diam. Conidiogenous apparatus 18–33 μm wide, and 24–43 μm long; primary branches aseptate, 11–21 × 3–5 μm; secondary branches aseptate, 11–15 × 3–4 μm, each terminal branch producing 2–4 phialides; phialides cylindrical to allantoid, hyaline, aseptate, 9–19 × 3–5 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (60–)66–78(–83) × 5−7 μm (av. 72 × 6 μm), (1−)3-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies fast growing (55−85 mm diam) on MEA after 7 d at room temperature; surface buff with abundant buff to white, felty aerial mycelium and sparse to moderate sporulation on the aerial mycelium and colony surface; reverse buff; chlamydospores not observed.

Specimen examined: South Africa, Mpumalanga, Sabie, D.R. de Wet nursery, from Eucalyptus grandis ramets (roots), 11 May 1990, P.W. Crous (holotype CBS-H22764, culture ex-type CBS 110798 = CPC 410 = PPRI 4001).

Note: Calonectria parva can be distinguished from other species in the genus by its relatively small macroconidiophores, which rarely bear a stipe extension.

Calonectria plurilateralis L. Lombard & Crous, sp. nov. MycoBank MB818711. Fig. 15.

Fig. 15.

Fig. 15

Calonectria plurilateralis (ex-type CBS 111401). A–C. Macroconidiophores with lateral stipe extensions. D. Conidiogenous apparatus with lateral stipe extensions. E–F. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. G–H. Obpyriform to ellipsoidal vesicles. I. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to the multiple lateral stipe extensions on the macroconidiophores of this fungus.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and numerous lateral stipe extensions terminating in vesicles, lacking a central stipe extension; stipe septate, hyaline, smooth, 50–130 × 4–7 μm; stipe extension septate, straight to flexuous, 110–180 μm long, 4–7 μm wide at the apical septum, terminating in obpyriform to ellipsoid vesicles, 7–11 μm diam; lateral stipe extensions (90° to main axis) abundant, 75–105 μm long, 3–6 μm wide at the apical septum, terminating in obpyriform to ellipsoid vesicles, 5−7 μm diam. Conidiogenous apparatus 25–80 μm wide, and 25–85 μm long; primary branches aseptate, 11–39 × 2–9 μm; secondary branches aseptate, 7–17 × 3–5 μm; tertiary branches aseptate, 6–12 × 3–5 μm; quaternary branches aseptate, 8 × 4 μm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 4–11 × 3–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (27−)30–38(–41) × (3−)3.5−4.5(−5) μm (av. 34 × 4 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies fast growing (60−85 mm diam) on MEA after 7 d at room temperature; surface sienna to sepia with moderate white, wooly aerial mycelium and abundant sporulation on the colony surface; reverse sienna to sepia, chlamydospores throughout the medium, forming microsclerotia.

Specimen examined: Ecuador, from soil, 20 Jun. 1997, M.J. Wingfield (holotype CBS-H22766, culture ex-type CBS 111401 = CPC 1637).

Note: Calonectria plurilateralis can be distinguished from other members of the C. cylindrospora complex by its numerous lateral stipe extensions.

Calonectria pseudoecuadoriae L. Lombard & Crous, sp. nov. MycoBank MB818712. Fig. 16.

Fig. 16.

Fig. 16

Calonectria pseudoecuadoriae (ex-type CBS 111402). A–B. Macroconidiophores. C–E. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. F–I. Clavate vesicles. J. Macroconidia. Scale bars: A–B = 50 μm; C–J = 10 μm.

Etymology: Name refers to the fact that this species has an asexual morph that is very similar to that of C. ecuadoriae.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 40–210 × 7–10 μm; stipe extension septate, straight to flexuous, 160–250 μm long, 4–5 μm wide at the apical septum, terminating in a clavate vesicle, 4–7 μm diam. Conidiogenous apparatus 70–105 μm wide, and 50–90 μm long; primary branches aseptate, 18–30 × 5–7 μm; secondary branches aseptate, 9–22 × 3–7 μm; tertiary branches aseptate, 7–17 × 3–5 μm; quaternary branches and additional branches (–6) aseptate, 7–12 × 3–5 μm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 8–12 × 3–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (34–)36–40(–43) × 3−4 (−5) μm (av. 38 × 3.5 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (30−60 mm diam) on MEA after 7 d at room temperature; surface cinnamon to brick with sparse white, wooly aerial mycelium and abundant sporulation on the aerial mycelium and colony surface; reverse buff to cinnamon with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Ecuador, soil, 20 Jun. 1997, M.J. Wingfield (holotype CBS-H22768, culture ex-type CBS 111402 = CPC 1639); ibid., culture CBS 111412 = CPC 1648.

Notes: Calonectria pseudoecuadoriae is morphologically similar to C. ecuadoriae. The macroconidia of C. pseudoecuadoriae [(34–)36–40(–43) × 3−4 (−5) μm (av. 38 × 3.5 μm)] are smaller than those of C. ecuadoriae [(45–)48–55(–65) × (4−)4.5(−5) μm (av. 51 × 4.5 μm); Crous et al. 2006]. Furthermore, C. pseudoecuadoriae has six tiers of branches in its conidiogenous apparatus in comparison to the seven in C. ecuadoriae (Crous et al. 2006), although these differences are relatively minor.

Calonectria pseudouxmalensis L. Lombard & Crous, sp. nov. MycoBank MB818713. Fig. 17.

Fig. 17.

Fig. 17

Calonectria pseudouxmalensis (ex-type CBS 110924). A–C. Macroconidiophores. D–F. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. G–J. Obpyriform to ellipsoidal vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to the fact that this species has an asexual morph that is very similar to that of C. uxmalensis.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 30–60 × 6–8 μm; stipe extension septate, straight to flexuous, 100–140 μm long, 4–6 μm wide at the apical septum, terminating in a obpyriform to ellipsoidal vesicle sometimes with a papillate apex, 5–9 μm diam. Conidiogenous apparatus 25–65 μm wide, and 30–60 μm long; primary branches aseptate, 14–21 × 4–6 μm; secondary branches aseptate, 8–16 × 2–5 μm; tertiary branches aseptate, 5–13 × 2–5 μm; quaternary branches and additional branches (–6) aseptate, 5–9 × 2–4 μm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 6–9 × 3–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (26–)28–30(–32) × 3−4 μm (av. 29 × 3 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies fast growing (75−90 mm diam) on MEA after 7 d at room temperature; surface sienna with abundant white, felty to wooly aerial mycelium and abundant sporulation on the aerial mycelium and colony surface; reverse sienna with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Mexico, from soil, Apr. 1994, P.W. Crous (holotype CBS-H22769, culture ex-type CBS 110924 = CPC 942); ibid., cultures CBS 110923 = CPC 941, CBS 115677 = CPC 943.

Notes: Calonectria pseudouxmalensis can be distinguished from C. uxmalensis by its lack of lateral stipe extensions. The macroconidia of C. pseudouxmalensis [(26–)28–30(–32) × 3−4 μm (av. 29 × 3 μm)] are smaller than those of C. mexicana [(35–)40–48(–52) × 3−4(−4.5) μm (av. 45 × 3 μm); Schoch et al., 1999, Crous, 2002], C. pseudomexicana [(40–)43–48(–49) × (4−)5−6 μm (av. 45 × 5 μm); Lombard et al. 2011] and C. tunisiana [(43–)47–51(–53) × 4−6 μm (av. 49 × 5 μm); Lombard et al. 2011]. Schoch et al. (1999) was able to induce the sexual morph of C. mexicana through the heterothallic mating of CBS 110918 (= CPC 927) with CBS 110923 (= CPC 941), which was deposited as the holotype (PREM 55763) of C. mexicana. However, phylogenetic inference in this study showed that the one mating tester strain CBS 110923 (Schoch et al. 1999) is distinct from the other mating tester strain (CBS 110918; ex-type of Cylindrocladium mexicanum). This phenomenon is not new to the genus Calonectria, as Neubauer & Zinkernagel (1995) and Overmeyer et al. (1996) have shown that fertile perithecia can be induced in some Calonectria species when they are cultured in the presence of other species, but where sexual outcrossing has not occurred.

Calonectria putriramosa L. Lombard & Crous, sp. nov. MycoBank MB818714. Fig. 18.

Fig. 18.

Fig. 18

Calonectria putriramosa (ex-type CBS 111449). A–B. Macroconidiophores. C–E. Conidiogenous apparatus with conidiophore branches and elongate reniform to allantoid to cylindrical phialides. F–I. Ellipsoid to obpyrifom vesicles. J. Macroconidia. Scale bars: A–B = 50 μm; C–J = 10 μm.

Etymology: Name refers to cutting rot, the disease symptoms that are associated with infection by this fungus.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 40–170 × 5–10 μm; stipe extension septate, straight to flexuous, 145–185 μm long, 4–7 μm wide at the apical septum, terminating in an ellipsoid to obpyriform vesicle, 7–9 μm diam. Conidiogenous apparatus 45–60 μm wide, and 30–90 μm long; primary branches aseptate, 12–34 × 3–6 μm; secondary branches aseptate, 9–21 × 3–6 μm; tertiary branches aseptate, 9–17 × 3–5 μm; quaternary branches aseptate, 4–13 × 3–5 μm each terminal branch producing 2–6 phialides; phialides elongate reniform to allantoid to cylindrical, hyaline, aseptate, 6–15 × 3–5 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (35–)40–46(–49) × (4−)4.5−5.5(−6) μm (av. 43 × 5 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (35−75 mm diam) on MEA after 7 d at room temperature; surface cinnamon to brick with sparse, wooly, white to buff aerial mycelium and moderate sporulation on the aerial mycelium and colony surface; reverse cinnamon to sepia with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Brazil, from Eucalyptus cuttings, Jun. 1998, A.C. Alfenas (holotype CBS-H22770, culture ex-type CBS 111449 = CPC 1951); Bahia do Sol, from Eucalyptus cuttings, Apr. 1993, P.W. Crous, culture CBS 116076 = CPC 604; from soil, Jun. 1998, A.C. Alfenas, cultures CBS 111470 = CPC 1940, CBS 111477 = CPC 1928.

Notes: Calonectria putriramosa is a new species in the C. candelabrum complex (Schoch et al., 1999, Lombard et al., 2010a, Lombard et al., 2010b, Lombard et al., 2015a). The macroconidia of C. putriramosa [(35–)40–46(–49) × (4−)4.5−5.5(−6) μm (av. 43 × 5 μm)] are smaller than those of its closest phylogenetic neighbours (see notes under C. brasiliana), but slightly larger than those of C. brasiliana [(36–)38–42(–46) × (3−)3.5−4.5(−5) μm (av. 40 × 4 μm)].

Calonectria stipitata L. Lombard & Crous, sp. nov. MycoBank MB818715. Fig. 19.

Fig. 19.

Fig. 19

Calonectria stipitata (ex-type CBS 112513). A–C. Macroconidiophores. D–E. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. F. Conidiogenous apparatus with lateral stipe extension. G–J. Ellipsoid to obpyriform vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to the lateral stipe extensions produced by this fungus.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 35–85 × 6–9 μm; stipe extension septate, straight to flexuous, 105–195 μm long, 4–6 μm wide at the apical septum, terminating in an ellipsoid to obpyriform vesicle, 7–11 μm diam; lateral stipe extensions (90° to main axis) abundant, 70–135 μm long, 3–6 μm wide at the apical septum, terminating in broadly clavate vesicles, 3–6 μm diam. Conidiogenous apparatus 50–120 μm wide, and 40–75 μm long; primary branches aseptate, 15–29 × 4–5 μm; secondary branches aseptate, 9–18 × 3–6 μm; tertiary branches aseptate, 8–19 × 2–5 μm; quaternary branches and additional branches (–6) aseptate, 6–14 × 2–5 μm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 7–13 × 2–5 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (27–)29–35(–37) × (3−)3.5−4.5(−6) μm (av. 32 × 4 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies fast growing (60−85 mm diam) on MEA after 7 d at room temperature; surface sienna to sepia with abundant wooly, white aerial mycelium and abundant sporulation on the aerial mycelium and colony surface; reverse sienna to sepia with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimen examined: Colombia, from Eucalyptus sp., 1990s, M.J. Wingfield (holotype CBS-H22771, culture ex-type CBS 112513 = CPC 3851).

Notes: Calonectria stipitata, like C. brevistipitata and C. machaerinae, produce lateral stipe extensions, a characteristic not usually associated with members of the C. candelabrum complex (Schoch et al., 1999, Lombard et al., 2010a, Lombard et al., 2010b, Lombard et al., 2015a). The lateral stipe extensions of C. stipitata (up to 135 μm) are longer than those of C. brevistipitata (up to 80 μm) and C. machaerinae (up to 125 μm).

Calonectria syzygiicola L. Lombard & Crous, sp. nov. MycoBank MB818716. Fig. 20.

Fig. 20.

Fig. 20

Calonectria syzygiicola (ex-type CBS 112831). A–B. Macroconidiophores. C–E. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. F–H. Sphaeropedunculate vesicles. I. Macroconidia. Scale bars: A–B = 50 μm; C–I = 10 μm.

Etymology: Name refers to the host plant, Syzygium aromaticum from which this fungus was isolated.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 30–170 × 4–8 μm; stipe extension septate, straight to flexuous, 65–105 μm long, 3–4 μm wide at the apical septum, terminating in a sphaeropedunculate vesicle, 4–7 μm diam; lateral stipe extensions (90° to main axis) sparse, 40–50 μm long, 2–3 μm wide at the apical septum, terminating in sphaeropedunculate vesicles, 3–6 μm diam. Conidiogenous apparatus 30–70 μm wide, and 30–45 μm long; primary branches aseptate, 12–21 × 4–6 μm; secondary branches aseptate, 8–14 × 3–5 μm; tertiary branches aseptate, 9–12 × 3–5 μm; quaternary branches aseptate, 8–10 × 2–3 μm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 7–11 × 2–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (39–)41–49(–56) × (4−)4.5−5.5(−7) μm (av. 45 × 5 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (45−65 mm diam) on MEA after 7 d at room temperature; surface amber to sienna with abundant wooly, white to buff aerial mycelium, and abundant sporulation on the aerial mycelium and colony surface; reverse sienna with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Indonesia, Sumatra, from soil under Syzygium aromaticum, 1998, M.J. Wingfield (holotype CBS-H22772, culture ex-type CBS 112831 = CPC 4511), culture CBS 112827 = CPC 4512.

Notes: Calonectria syzygiicola is closely related to C. asiatica (Fig. 1). However, the macroconidia of C. syzygiicola [(39–)41–49(–56) × (4−)4.5−5.5(−7) μm (av. 45 × 5 μm)] are smaller than those of C. asiatica [(42–)48–55(–65) × (4−)5(−5.5) μm (av. 53 × 5 μm); Crous et al. 2004b].

Calonectria tereticornis L. Lombard & Crous, sp. nov. MycoBank MB818717. Fig. 21.

Fig. 21.

Fig. 21

Calonectria tereticornis (ex-type CBS 111301). A–C. Macroconidiophores. D–F. Conidiogenous apparatus with conidiophore branches and elongate doliiform to reniform phialides. G–J. Fusiform to ovoid vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to the host plant, Eucalyptus tereticornis, from which this fungus was isolated.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 70–270 × 6–11 μm; stipe extension septate, straight to flexuous, 140–245 μm long, 3–7 μm wide at the apical septum, terminating in a fusiform to ovoid vesicle, 8–14 μm diam. Conidiogenous apparatus 35–65 μm wide, and 45–75 μm long; primary branches aseptate, 18–34 × 4–10 μm; secondary branches aseptate, 11–26 × 3–7 μm, each terminal branch producing 2–4 phialides; phialides elongate doliiform to allantoid, hyaline, aseptate, 9–15 × 3–5 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (51–)55–63(–71) × (3−)4.5−5.5(−6) μm (av. 59 × 5 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies fast growing (55−75 mm diam) on MEA after 7 d at room temperature; surface cinnamon to sienna with sparse buff to white, wooly aerial mycelium and abundant sporulation on the aerial mycelium and colony surface; reverse sienna to umber with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Brazil, Tucurui, from leaves of Eucalyptus tereticornis, 20 Sep. 1996, P.W. Crous (holotype CBS-H22773 culture ex-type CBS 111301 = CPC 1429).

Notes: Calonectria tereticornis is closely related to C. gordoniae and C. ovata (Fig. 1). The macroconidia of C. tereticornis [(51–)55–63(–71) × (3−)4.5−5.5(−6) μm (av. 59 × 5 μm)] are smaller than those of C. gordoniae [(44–)50–70(–80) × (4−)5−6 μm (av. 65 × 5 μm); Crous 2002] and C. ovata [(50–)65–80(–110) × 4−5 (−6) μm (av. 70 × 5 μm); Crous 2002].

Calonectria terricola L. Lombard & Crous, sp. nov. MycoBank MB818718. Fig. 22.

Fig. 22.

Fig. 22

Calonectria terricola (ex-type CBS 116247). A–C. Macroconidiophores. D–F. Conidiogenous apparatus with conidiophore branches and elongate doliiform to reniform phialides. G–J. Fusiform to ovoid vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to soil, the substrate from which this fungus was isolated.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 30–100 × 5–9 μm; stipe extension septate, straight to flexuous, 135–175 μm long, 4–5 μm wide at the apical septum, terminating in a fusiform to ovoid vesicle, 8–12 μm diam. Conidiogenous apparatus 30–100 μm wide, and 45–65 μm long; primary branches aseptate, 14–26 × 3–6 μm; secondary branches aseptate, 13–22 × 2–5 μm; tertiary branches aseptate, 15–18 × 4–5 μm, each terminal branch producing 2–4 phialides; phialides elongate doliiform to reniform, hyaline, aseptate, 9–17 × 3–5 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (40–)43–49(–53) × (3−)4−5(−6) μm (av. 46 × 4.5 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (45−65 mm diam) on MEA after 7 d at room temperature; surface brick to sienna with sparse, buff to white, wooly aerial mycelium and moderate sporulation on the aerial mycelium and colony surface; reverse sienna with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Brazil, from soil in Eucalyptus plantation, 1996, P.W. Crous (holotype CBS-H22774; culture ex-type CBS 116247 = CPC 3583); ibid., culture CBS 116248 = CPC 3536.

Notes: Calonectria terricola is a new species in the C. pteridis complex. The macroconidia of C. terricola [(40–)43–49(–53) × (3−)4−5(−6) μm (av. 46 × 4.5 μm)] are smaller than those of C. ovata [(50–)65–80(–110) × 4−5 (−6) μm (av. 70 × 5 μm); Crous 2002], C. pseudovata [(55–)67–70(–80) × (4−)5 (−7) μm (av. 69 × 5 μm); Alfenas et al. 2015] and C. tereticornis [(51–)55–63(–71) × (3−)4.5−5.5(−6) μm (av. 59 × 5 μm)].

Calonectria tropicalis L. Lombard & Crous, sp. nov. MycoBank MB818719. Fig. 23.

Fig. 23.

Fig. 23

Calonectria tropicalis (ex-type CBS 116271). A–C. Macroconidiophores. D–E. Conidiogenous apparatus with conidiophore branches and elongate doliiform to reniform phialides. F–I. Clavate vesicles. J. Macroconidia. Scale bars: A–C = 50 μm; D–J = 10 μm.

Etymology: Name refers to the tropical region in Brazil where this fungus was collected.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 120–210 × 7–8 μm; stipe extension septate, straight to flexuous, 190–270 μm long, 4–6 μm wide at the apical septum, terminating in a clavate vesicle, 5–6 μm diam. Conidiogenous apparatus 50–70 μm wide, and 60–90 μm long; primary branches aseptate, 20–32 × 4–6 μm; secondary branches aseptate, 12–29 × 3–6 μm; tertiary branches aseptate, 12–20 × 2–4 μm, each terminal branch producing 2–4 phialides; phialides elongate doliiform to reniform, hyaline, aseptate, 10–16 × 2–5 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight to slightly curved, (69–)74–86(–89) × (4−)4.5−5.5(−6) μm (av. 80 × 5 μm), 1(−3)-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies moderately fast growing (45−65 mm diam) on MEA after 7 days at room temperature; surface sienna to sepia with moderate white, wooly aerial mycelium and moderate sporulation on the aerial mycelium and colony surface; reverse sienna to sepia with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Brazil, Amazon, from foliar lesion of Eucalyptus sp., 1993, P.W. Crous & A.C. Alfenas (holotype CBS-H22776 culture ex-type CBS 116271 = CPC 3559); ibid., cultures CBS 116242 = CPC 3543.

Notes: Calonectria tropicalis resides in the C. pteridis complex. This species can be distinguished from other species in the complex by the smaller numbers of fertile branches in its conidiogenous apparatus.

Calonectria uniseptata Gerlach, Phytopathol. Z. 61: 379. 1968. MycoBank MB327268.

Specimen examined: Germany, Celle, from root of Paphiopedilum callosum, May 1967, W. Gerlach, culture ex-type CBS 413.67 = IMI 299577.

Notes: Sobers (1972) reduced C. floridana and C. uniseptata to synonymy with C. kyotensis based on their similarities in morphology and pathogenicity. Phylogenetic inference in this study showed that the ex-type of C. uniseptata (CBS 413.67; Gerlach 1968) is distinct from C. kyotensis. Therefore, C. uniseptata is reinstated here as a distinct species of Calonectria.

Calonectria uxmalensis L. Lombard & Crous, sp. nov. MycoBank MB818720. Fig. 24.

Fig. 24.

Fig. 24

Calonectria uxmalensis (ex-type CBS 110925). A–C. Macroconidiophores with lateral stipe extensions. D–F. Conidiogenous apparatus with conidiophore branches and doliiform to reniform phialides. G–J. Obpyriform to ellipsoidal vesicles. K. Macroconidia. Scale bars: A–C = 50 μm; D–K = 10 μm.

Etymology: Name refers to the ancient Maya city Uxmal, Mexico, the locality where this fungus was collected.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 35–155 × 6–8 μm; stipe extension septate, straight to flexuous, 60–140 μm long, 3–6 μm wide at the apical septum, terminating in a obpyriform to ellipsoidal vesicle sometimes with a papillate apex, 5–8 μm diam; lateral stipe extensions (90° to main axis) few, 88–100 μm long, 3–4 μm wide at the apical septum, terminating in broadly clavate to obpyriform to ellipsoid vesicles, 5–6 μm diam. Conidiogenous apparatus 30–90 μm wide, and 35–60 μm long; primary branches aseptate, 14–19 × 3–6 μm; secondary branches aseptate, 10–16 × 3–6 μm; tertiary branches aseptate, 7–11 × 3–5 μm; quaternary branches and additional branches (–6) aseptate, 7–11 × 3–5 μm, each terminal branch producing 2–6 phialides; phialides doliiform to reniform, hyaline, aseptate, 8–11 × 2–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (26–)27–33(–35) × 3−4 μm (av. 30 × 3 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Mega- and microconidia not observed.

Culture characteristics: Colonies fast growing (65−85 mm diam) on MEA after 7 d at room temperature; surface buff to sienna with abundant buff to white, felty to wooly aerial mycelium and moderate sporulation on the aerial mycelium and colony surface; reverse sienna to umber with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimens examined: Mexico, Uxmal, from soil, Apr. 1994, P.W. Crous (holotype CBS-H22761, culture ex-type CBS 110925 = CPC 945); ibid., culture CBS 110919 = CPC 928.

Notes: Calonectria uxmalensis can be distinguished from C. mexicana, C. pseudomexicana and C. tunisiana by its lateral stipe extensions, a characteristic not known for the latter three species (Schoch et al., 1999, Crous, 2002, Lombard et al., 2011).

Calonectria venezuelana L. Lombard & Crous, sp. nov. MycoBank MB818721. Fig. 25.

Fig. 25.

Fig. 25

Calonectria venezuelana (ex-type CBS 111052). A–B. Macroconidiophores. C–D. Conidiogenous apparatus with conidiophore branches and elongate doliiform to reniform phialides. E–F. Fusiform to ovoid to ellipsoid vesicles. G. Macroconidia. H. Microconidia. I. Micro- and macroconidia. Scale bars: A–B = 50 μm; C–I = 10 μm.

Etymology: Name refers to Venezuela, the country from which this fungus was collected.

Macroconidiophores consist of a stipe bearing a penicillate arrangement of fertile branches, and a stipe extension terminating in a vesicle; stipe septate, hyaline, smooth, 35–100 × 4–8 μm; stipe extension septate, straight to flexuous, 85–190 μm long, 3–6 μm wide at the apical septum, terminating in a fusiform to ovoid to ellipsoid vesicle, 5–9 μm diam. Conidiogenous apparatus 25–60 μm wide, and 25–65 μm long; primary branches aseptate, 15–30 × 4–8 μm; secondary branches aseptate, 11–24 × 3–5 μm; tertiary branches aseptate, 8–14 × 3–6 μm, each terminal branch producing 2–4 phialides; phialides elongate doliiform to reniform, hyaline, aseptate, 8–17 × 2–5 μm, apex with minute periclinal thickening and inconspicuous collarette. Macroconidia cylindrical, rounded at both ends, straight, (48–)54–62(–65) × (4−)4.5−5.5(−7) μm (av. 58 × 5 μm), 1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Microconidiophores consists of a stipe and a penicillate or subverticillate arrangement of fertile branches; stipe septate, hyaline, smooth, 25–40 × 3–4 μm; primary branches aseptate, 8–12 × 2–4 μm, terminating in 1–4 phialides that are cylindrical, straight to slightly curved, 7–15 × 2–4 μm, apex with minute periclinal thickening and inconspicuous collarette. Microconidia cylindrical, straight to slightly curved, rounded at the apex and flattened at the base, 16–20(–22) × (2−)2.5−3.5(−4) μm (av. 18 × 3 μm), (0−)1-septate, lacking a visible abscission scar, held in parallel cylindrical clusters by colourless slime. Megaconidia not observed.

Culture characteristics: Colonies fast growing (50−75 mm diam) on MEA after 7 d at room temperature; surface cinnamon to amber with sparse, buff to white, wooly aerial mycelium and abundant sporulation on the aerial mycelium and colony surface; reverse sienna to amber with abundant chlamydospores throughout the medium, forming microsclerotia.

Specimen examined: Venezuela, Acarigua, from soil, 27 Jun. 1995, M.J. Wingfield (holotype CBS-H22778 culture ex-type CBS 111052 = CPC 1183).

Notes: Calonectria venezuelana forms a single lineage closely related to C. eucalypticola (Fig. 1). The macroconidia of C. venezuelana [(48–)54–62(–65) × (4−)4.5−5.5(−7) μm (av. 58 × 5 μm)] are larger than those of C. eucalypticola [(43–)49–52(–55) × 3−5 μm (av. 50 × 4 μm); Alfenas et al. 2015].

Discussion

A collection of isolates stored for many years and tentatively identified as species of Calonectria based on morphology, were shown to represent 24 new species. At the time that they were collected, it would not have been possible to recognise them as novel taxa and this vividly illustrates the power of the DNA-based sequencing tools that are now available to facilitate accurate species recognition. These species emerging from this study were isolated from various substrates collected globally over a 20 year period, and this study therefore highlights the value of the careful storage and maintenance of cultures for further study when appropriate opportunities arise to do so. This paper also highlights the fact that many undescribed species most likely remain hidden in culture collections, requiring a re-evaluation based on DNA sequence comparisons.

Most of the isolates collected in Brazil formed part of the C. pteridis species complex. This is regarded as one of the most prominent species complexes associated with CLB on Eucalyptus in that country (Alfenas et al., 2004, Alfenas et al., 2013c, Alfenas et al., 2015, Graça et al., 2009). Calonectria amazonica, C. amazoniensis, C. lageniformis, C. tereticornis and C. tropicalis were all isolated from CLB leaf lesions on Eucalyptus spp. propagated commercially as non-natives in plantations. Results of this study have raised the number of species known from Brazil to 55 (Alfenas et al., 2013a, Alfenas et al., 2013b, Alfenas et al., 2015). Calonectria terricola, isolated from soil collected in a Eucalyptus plantation in Brazil, also formed part of the C. pteridis complex in this study.

Calonectria parva, isolated from soil collected in South Africa, formed a basal lineage to the C. colhounii species complex. This species can be readily distinguished from other species in the C. colhounii species complex by its relatively small macroconidiophores, which rarely bear stipe extensions.

Both C. uxmalensis and C. pseudouxmalensis, isolated from soil collected in Mexico, are new additions to the C. mexicana species complex, which now include five species (Lombard et al. 2011). This complex is characterised by the papillate apices of the vesicles terminating the stipe extensions (Lombard et al. 2011). Calonectria uxmalensis can be distinguished from the other species in this complex by the formation of lateral stipe extensions, whereas macroconidial dimensions can distinguish C. pseudouxmalensis from the species in this complex.

Calonectria paracolhounii, collected in the USA and Australia, is a new addition to the C. colhounii complex (Crous, 2002, Crous et al., 2006, Chen et al., 2011). This species complex now includes seven species (Crous, 2002, Crous et al., 2006, Crous et al., 2015b, Chen et al., 2011, Xu et al., 2012), and is characterised by the formation of unique bright yellow perithecia. Although no perithecia were observed for C. paracolhounii in this study, the macroconidia of C. paracolhounii were smaller than those of the other species known in this complex.

The C. candelabrum species complex (Schoch et al. 1999) accommodates the greatest number of species in the genus and includes 27 species (Schoch et al., 1999, Crous, 2002, Lombard et al., 2010a, Lombard et al., 2011, Lombard et al., 2015a, Crous et al., 2013, Alfenas et al., 2015) after the addition of C. brasiliana (Brazil), C. brevistipitata (Mexico), C. cliffordiicola (South Africa), C. ericae (USA), C. machaerinae (New Zealand), C. putriramosa (Brazil), C. stipitata (Colombia) and C. venezuelana (Venezuela) recognised in this study. Although some unique morphological characters could be identified to distinguish these eight new species, DNA sequence comparisons are required to provide accurate species identification.

Calonectria pseudoecuadoriae and C. plurilateralis (Ecuador) are both new additions to the C. brassicae and C. cylindrospora species complexes, respectively (Crous, 2002, Lombard et al., 2009, Alfenas et al., 2015). Calonectria pseudoecuadoriae is morphologically similar to C. ecuadoriae (Crous et al. 2006) except for the additional branches in the conidiogenous apparatus and smaller macroconidia. Calonectria plurilateralis is the only species in the C. cylindrospora complex known to produce lateral stipe extensions, distinguishing it from other species in this complex.

Calonectria brassicicola (Indonesia and New Zealand), C. indonesiana (Indonesia), and C. syzygiicola (Indonesia) are new additions to the C. kyotensis species complex (Crous 2002, Crous et al. 2004b, Lombard et al., 2010b, Lombard et al., 2015a). Species in this complex are characterised by their sphaeropedunculate vesicles and the formation of lateral stipe extensions on the conidiogenous apparatus (Crous et al. 2004b, Lombard et al., 2010b, Lombard et al., 2015a). The three new species introduced in this study can be distinguished from their closest phylogenetic neighbours as well as from each other by the number of branches in the conidiogenous apparatus and their macroconidial dimensions.

Calonectria spp. are soil-borne fungi that are able to exist in this substrate for long periods of time due to their abundant production of sclerotia (Crous 2002). This also implies that they can be and most likely have been extensively moved between countries and continents. Given their importance as plant pathogens, it is ironical that very little is known regarding their genetic diversity or pathways of movement globally. This study has shown that there are many more species of Calonectria than has been recognised and it likely that many more species have yet to be discovered. Genomes have yet to be sequenced for Calonectria spp. and as these emerge, tools will become available to answer questions regarding the global movement of these fungi (Crous et al. 2016). They will also contribute to reducing the impact of, for example, tree pathogens that are resulting in serious losses to planted forests (Wingfield et al. 2015).

When the 24 species newly described in this study were collected, the genus Calonectria had only been peripherally studied. At that time, most species had been described based on their morphological characteristics, which included vesicle shape and macroconidial dimensions and septation (Crous and Wingfield, 1994, Crous, 2002). However, with a large number of DNA sequences now available from recent taxonomic studies of the genus Calonectria (Lombard et al., 2010b, Lombard et al., 2015a, Alfenas et al., 2015), the initial identifications could be either confirmed or corrected. This study, vividly highlights the impact that DNA sequence data have had in providing more accurate identifications of filamentous fungi (Crous et al., 2015a, Crous et al., 2016). Identifications at this level are already impacting substantially on agricultural and forestry practices as well as in the trade in food and fibre products (Crous et al. 2016).

Acknowledgements

We thank Y. Vlug and A. van Iperen for their valuable assistance with cultures.

Footnotes

Peer review under responsibility of CBS-KNAW Fungal Biodiversity Centre.

Contributor Information

L. Lombard, Email: l.lombard@cbs.knaw.nl.

P.W. Crous, Email: p.crous@cbs.knaw.nl.

References

  1. Alfenas R.F., Lombard L., Pereira O.L. Diversity and potential impact of Calonectria species in Eucalyptus plantations in Brazil. Studies in Mycology. 2015;80:89–130. doi: 10.1016/j.simyco.2014.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alfenas R.F., Pereira O.L., Ferreira M.A. Calonectria metrosideri, a highly aggressive pathogen causing leaf blight, root rot, and wilt of Metrosideros spp. in Brazil. Forest Pathology. 2013;43:257–265. [Google Scholar]
  3. Alfenas R.F., Pereira O.L., Jorge V.L. A new species of Calonectria causing leaf blight and cutting rot of three forest tree species in Brazil. Tropical Plant Pathology. 2013;38:513–521. [Google Scholar]
  4. Alfenas R.F., Pereira O.L., Freitas R.G. Mass spore production and inoculation of Calonectria pteridis on Eucalyptus spp. under different environmental conditions. Tropical Plant Pathology. 2013;38:406–413. [Google Scholar]
  5. Alfenas A.C., Zauza E.A., Mafia R.G. Editora UFV; Viçosa, MG, Brazil: 2004. Clonagem e doenças do eucalipto. [Google Scholar]
  6. Bell D.K., Sobers E.K. A peg, pod and root necrosis of peanuts caused by a species of Calonectria. Phytopathology. 1966;56:1361–1364. [Google Scholar]
  7. Beute M.K., Rowe R.C. Studies on the biology and control of Cylindrocladium black rot (CBR) of peanut. Journal of the American Peanut Research Educational Association. 1973;5:197. [Google Scholar]
  8. Brand T. Occurrence of Cylindrocladium buxicola B. Henricot on boxwood in Northwest-Germany. Nachrichtenblatt des Duetschen Pflanzenschutzdienstes. 2005;12:237–240. [Google Scholar]
  9. Chen S.F., Lombard L., Roux J. Novel species of Calonectria associated with Eucalyptus leaf blight in Southeast China. Persoonia. 2011;26:1–12. doi: 10.3767/003158511X555236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crepel C., Inghelbrecht S. First report of blight on Buxus sp. caused by Cylindrocladium buxicola in Belgium. Plant Disease. 2003;87:1539. doi: 10.1094/PDIS.2003.87.12.1539A. [DOI] [PubMed] [Google Scholar]
  11. Crous P.W. APS Press; St. Paul, Minnasota, USA: 2002. Taxonomy and pathology of Cylindrocladium (Calonectria) and allied genera. [Google Scholar]
  12. Crous P.W., Gams W., Stalpers J.A. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology. 2004;50:19–22. [Google Scholar]
  13. Crous P.W., Groenewald J.Z., Risède J.-M. Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology. 2004;50:415–430. doi: 10.3114/sim.55.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crous P.W., Groenewald J.Z., Risède J.-M. Calonectria species and their Cylindrocladium anamorphs: species with clavate vesicles. Studies in Mycology. 2006;55:213–226. doi: 10.3114/sim.55.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Crous P.W., Groenewald J.Z., Slippers B. Global food and fibre security threatened by current inefficiencies in fungal identification. Philosophical Transactions of the Royal Society B Biological Sciences. 2016;371:20160024. doi: 10.1098/rstb.2016.0024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Crous P.W., Hawksworth D.L., Wingfield M.J. Identifying and naming plant-pathogenic fungi: past, present and future. Annual Review of Phytopathology. 2015;53:247–267. doi: 10.1146/annurev-phyto-080614-120245. [DOI] [PubMed] [Google Scholar]
  17. Crous P.W., Kang J.-C. Phylogenetic confirmation of Calonectria spathulata and Cylindrocladium leucothoes based on morphology, β-tubulin and ITS rDNA sequence data. Mycoscience. 2001;42:51–57. [Google Scholar]
  18. Crous P.W., Wingfield M.J. A monograph of Cylindrocladium, including anamorphus of Calonectria. Mycotaxon. 1994;51:341–435. [Google Scholar]
  19. Crous P.W., Wingfield M.J., Guarro J. Fungal Planet description sheets: 154–213. Persoonia. 2013;31:188–296. doi: 10.3767/003158513X675925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Crous P.W., Wingfield M.J., Le Roux J.J. Fungal Planet description sheets: 371–399. Persoonia. 2015;35:264–327. doi: 10.3767/003158515X690269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gehesquière B., Crouch J.A., Marra R.E. Characterization and taxonomic reassessment of the box blight pathogen Calonectria pseudonaviculata, introducing Calonectria henricotiae sp. nov. Plant Pathology. 2016;65:37–52. [Google Scholar]
  22. Gerlach W. Calonectria uniseptata n. sp., die bisher unbekannte Hauptfruchtform von Cylindrocladium scoparium Morgan. Phytopathologische Zeitschrift. 1968;61:372–381. [Google Scholar]
  23. Graça R.N., Alfenas A.C., Maffia L.A. Factors influencing infection of eucalypts by Cylindrocladium pteridis. Plant Pathology. 2009;58:971–981. [Google Scholar]
  24. Hawksworth D.L. A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus. 2011;2:155–162. doi: 10.5598/imafungus.2011.02.02.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hawksworth D.L. Managing and coping with names of pleomorphic fungi in a period of transition. IMA Fungus. 2012;3:15–24. doi: 10.5598/imafungus.2012.03.01.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hawksworth D.L., Crous P.W., Redhead S.A. The Amsterdam declaration on fungal nomenclature. IMA Fungus. 2011;2:105–112. doi: 10.5598/imafungus.2011.02.01.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Henricot B., Pérez Sierra A., Prior C. A new blight disease on Buxus in the UK caused by the fungus Cylindrocladium. Plant Pathology. 2000;49:805. [Google Scholar]
  28. Hillis D.M., Bull J.J. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology. 1993;42:182–192. [Google Scholar]
  29. Hollowell J.E., Stew B.B., Beute M.K. Occurrence of pod rot pathogens in peanuts grown in North Carolina. Plant Disease. 1998;82:1345–1349. doi: 10.1094/PDIS.1998.82.12.1345. [DOI] [PubMed] [Google Scholar]
  30. Hutton D.G., Sanewski G.M. Cylindrocladium leaf and fruit spot of custard apple in Queensland. Australasian Plant Pathology. 1989;18:15–16. [Google Scholar]
  31. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30:772–780. doi: 10.1093/molbev/mst010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kioke S.T., Henderson D.M., Crous P.W. A new root and crown rot disease of heath in California caused by Cylindrocladium pauciramosum. Plant Disease. 1999;83:589. doi: 10.1094/PDIS.1999.83.6.589D. [DOI] [PubMed] [Google Scholar]
  33. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetic Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lechat C., Crous P.W., Groenewald J.Z. The enigma of Calonectria species occurring on leaves of Ilex aquifolium in Europe. IMA Fungus. 2010;1:101–108. doi: 10.5598/imafungus.2010.01.02.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lombard L., Chen S.F., Mou X. New species, hyper-diversity and potential importance of Calonectria spp. from Eucalyptus in South China. Studies in Mycology. 2015;80:151–188. doi: 10.1016/j.simyco.2014.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lombard L., Crous P.W., Wingfield B.D. Multigene phylogeny and mating tests reveal three cryptic species related to Calonectria pauciramosa. Studies in Mycology. 2010;66:15–30. doi: 10.3114/sim.2010.66.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lombard L., Crous P.W., Wingfield B.D. Phylogeny and systematics of the genus Calonectria. Studies in Mycology. 2010;66:31–69. doi: 10.3114/sim.2010.66.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lombard L., Crous P.W., Wingfield B.D. Species concepts in Calonectria (Cylindrocladium) Studies in Mycology. 2010;66:1–14. doi: 10.3114/sim.2010.66.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lombard L., Merwe van der N.A., Groenewald J.Z. Generic concepts in Nectriaceae. Studies in Mycology. 2015;80:189–245. doi: 10.1016/j.simyco.2014.12.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lombard L., Polizzi G., Guarnaccia V. Calonectria spp. causing leaf spot, crown and root rot of ornamental plants in Tunisia. Persoonia. 2011;27:73–79. doi: 10.3767/003158511X615086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lombard L., Rodas C.A., Crous P.W. Calonectria (Cylindrocladium) species associated with dying Pinus cuttings. Persoonia. 2009;23:41–47. doi: 10.3767/003158509X471052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mason-Gamer R., Kellogg E. Testing for phylogenetic conflict among molecular datasets in the tribe Triticeae (Graminae) Systematic Biology. 1996;45:525–545. [Google Scholar]
  43. McNeill J., Barrie F.F., Buck W.R. A.R.G. Gantner Verlag KG [Regnum Vegetabile no. 154]; 2012. International Code of Numenclature for algae, fungi and plants (Melbourne Code) [Google Scholar]
  44. Mirabolfathy M., Ahangaran Y., Lombard L. Leaf blight of Buxus sempervirens in northern forests of Iran caused by Calonectria pseudonaviculata. Plant Disease. 2013;97:1121. doi: 10.1094/PDIS-03-13-0237-PDN. [DOI] [PubMed] [Google Scholar]
  45. Neubauer C., Zinkernagel V. Calonectria morganii (Crous, Alfenas and Wingfield), the sexual stage of Cylindrocladium scoparium Morgan. Zeitschrift für Pflanzenkrankheiten un Pflanzenschutz. 1995;102:323–325. [Google Scholar]
  46. Nirenburg H.I. A simplified method for identifying Fusarium spp. occurring on wheat. Canadian Journal of Botany. 1981;59:1599–1609. [Google Scholar]
  47. Nylander J.A.A. Evolutionary Biology Centre, Uppsala University; 2004. MrModeltest v. 2. Programme distributed by the author. [Google Scholar]
  48. Old K.M., Wingfield M.J., Yuan Z.Q. Center for International Forestry Research; Jakarta, Indonesia: 2003. A manual of diseases of eucalypts in South-East Asia. [Google Scholar]
  49. Overmeyer C., Lünneman S., von Wallburnn C. Genetic variability among isolates and sexual offspring of the plant pathogenic fungus Calonectria morganii on the basis of random amplification of polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) Current Microbiology. 1996;33:249–255. doi: 10.1007/s002849900108. [DOI] [PubMed] [Google Scholar]
  50. Rayner R.W. Commonwealth Mycological Institute; Kew, Surrey: 1970. A mycological colour chart. British Mycological Society. [Google Scholar]
  51. Rodas C.A., Lombard L., Gryzenhout M. Cylindrocladium blight of Eucalyptus grandis in Colombia. Australasian Plant Pathology. 2005;34:134–149. [Google Scholar]
  52. Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. [DOI] [PubMed] [Google Scholar]
  53. Rossman A.Y. Calonectria and its type species, C. daldiniana, a later synonym of C. pyrochroa. Mycotaxon. 1979;8:321–328. [Google Scholar]
  54. Rossman A.Y. Holomorphic hypocrealean fungi: Nectria sensu stricto and telemorphs of Fusarium. In: Reunolds D.R., Taylor J.W., editors. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International; Wallingford, UK: 1993. pp. 149–160. [Google Scholar]
  55. Rossman A.Y., Seifert K.A., Samuels G.J. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales) proposed for acceptance and rejection. IMA Fungus. 2013;4:41–51. doi: 10.5598/imafungus.2013.04.01.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Saracchi M., Rocchi F., Pizzatti C. Box blight, a new disease of Buxus in Italy caused by Cylindrocladium buxicola. Journal of Plant Pathology. 2008;90:581–584. [Google Scholar]
  57. Saurat C., Fourrier C., Ioos R. First report of blight disease on Buxus caused by Cylindrocladium buxicola in France. Plant Disease. 2012;96:1069. doi: 10.1094/PDIS-03-12-0242-PDN. [DOI] [PubMed] [Google Scholar]
  58. Schoch C.L., Crous P.W., Wingfield B.D. The Cylindrocladium candelabrum species complex includes four distinct mating populations. Mycologia. 1999;91:286–298. [Google Scholar]
  59. Sobers E.K. Morphology and pathogenicity of Calonectria floridana, Calonectria kyotensis, and Calonectria uniseptata. Phytopathology. 1972;62:485–487. [Google Scholar]
  60. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Swofford D.L. Sinauer Associates; Sunderland, Massachusetts, USA: 2003. PAUP*. Phylogenetic analysis using parsimony (*and other methods), v. 4.0b10. Computer programme. [Google Scholar]
  62. Vitale A., Crous P.W., Lombard L. Calonectria diseases on ornamental plants in Europe and the Mediterranean basin: an overview. Journal of Plant Pathology. 2013;95:463–476. [Google Scholar]
  63. Wingfield M.J., Brockerhoff E.G., Wingfield B.D. Planted forest health: the need for a global strategy. Science. 2015;349:832–836. doi: 10.1126/science.aac6674. [DOI] [PubMed] [Google Scholar]
  64. Wingfield M.J., de Beer Z.W., Slippers B. One fungus, one name promotes progressive plant pathology. Molecular Plant Pathology. 2011;13:604–613. doi: 10.1111/j.1364-3703.2011.00768.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Xu J.-J., Qin S.-Y., Hao Y.-Y. A new species of Calonectria causing leaf disease of water lily in China. Mycotaxon. 2012;122:177–185. [Google Scholar]

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

RESOURCES