Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Aug 15;88(16):7443–7446. doi: 10.1073/pnas.88.16.7443

Design and synthesis of a specific endothelin 1 antagonist: effects on pulmonary vasoconstriction.

M J Spinella 1, A B Malik 1, J Everitt 1, T T Andersen 1
PMCID: PMC52312  PMID: 1871142

Abstract

The 21-amino acid vasoconstrictor peptide endothelin (Et) contains two disulfide bonds. We investigated the importance of the outer disulfide bond in Et-1 by replacing it with an amide linkage. Bioactivity was assessed in an isolated guinea pig lung preparation (perfused at constant flow with Ringer's solution/0.5% albumin) in which pulmonary artery pressure was monitored. Et-1 produced concentration-dependent pulmonary vasoconstriction at concentrations of 1 x 10(-10) M and higher. [Dpr1, Asp15]Et-1 (where Dpr is diaminopropionic acid), in which the outer disulfide was replaced by an amide bond and the inner disulfide was left intact, showed no agonist activity at 1 x 10(-6) M but 1 x 10(-7) M [Dpr1, Asp15]Et-1 inhibited Et-1-induced pulmonary vasoconstriction: effects of 1 x 10(-10) M 2 x 10(-10) M, and 1 x 10(-9) M Et-1 were inhibited by 98%, 75%, and 65%, respectively. Furthermore, this analog did not alter pulmonary vasoconstriction induced by thrombin, norepinephrine, or, most significantly, Et-3. A monocyclic Et-1 analog with the same sequence but in which the amide bond was not formed showed weak pulmonary vasoconstrictor activity (300-500 times less potent than Et-1) but had no antagonist activity. In addition, both the monocyclic control peptide and [Dpr1, Asp15]Et-1 competed effectively with 125I-labeled Et-1 for binding to cultured rat pulmonary artery smooth muscle cells. Thus, an Et-1 structural analog produced by replacement of the outer disulfide bond with an amide linkage displayed potent and specific Et-1 antagonism.

Full text

PDF
7443

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anggård E. E., Botting R. M., Vane J. R. Endothelins. Blood Vessels. 1990;27(2-5):269–281. [PubMed] [Google Scholar]
  2. Arai H., Hori S., Aramori I., Ohkubo H., Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990 Dec 20;348(6303):730–732. doi: 10.1038/348730a0. [DOI] [PubMed] [Google Scholar]
  3. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
  4. Fabregat I., Rozengurt E. [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P, a neuropeptide antagonist, blocks binding, Ca2(+)-mobilizing, and mitogenic effects of endothelin and vasoactive intestinal contractor in mouse 3T3 cells. J Cell Physiol. 1990 Oct;145(1):88–94. doi: 10.1002/jcp.1041450113. [DOI] [PubMed] [Google Scholar]
  5. Horgan M. J., Fenton J. W., 2nd, Malik A. B. Alpha-thrombin-induced pulmonary vasoconstriction. J Appl Physiol (1985) 1987 Nov;63(5):1993–2000. doi: 10.1152/jappl.1987.63.5.1993. [DOI] [PubMed] [Google Scholar]
  6. Inoue A., Yanagisawa M., Kimura S., Kasuya Y., Miyauchi T., Goto K., Masaki T. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2863–2867. doi: 10.1073/pnas.86.8.2863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaiser E., Colescott R. L., Bossinger C. D., Cook P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem. 1970 Apr;34(2):595–598. doi: 10.1016/0003-2697(70)90146-6. [DOI] [PubMed] [Google Scholar]
  8. Kloog Y., Bousso-Mittler D., Bdolah A., Sokolovsky M. Three apparent receptor subtypes for the endothelin/sarafotoxin family. FEBS Lett. 1989 Aug 14;253(1-2):199–202. doi: 10.1016/0014-5793(89)80958-5. [DOI] [PubMed] [Google Scholar]
  9. Martin E. R., Marsden P. A., Brenner B. M., Ballermann B. J. Identification and characterization of endothelin binding sites in rat renal papillary and glomerular membranes. Biochem Biophys Res Commun. 1989 Jul 14;162(1):130–137. doi: 10.1016/0006-291x(89)91972-4. [DOI] [PubMed] [Google Scholar]
  10. Merrifield B. Solid phase synthesis. Science. 1986 Apr 18;232(4748):341–347. doi: 10.1126/science.3961484. [DOI] [PubMed] [Google Scholar]
  11. Moon D. G., Horgan M. J., Andersen T. T., Krystek S. R., Jr, Fenton J. W., 2nd, Malik A. B. Endothelin-like pulmonary vasoconstrictor peptide release by alpha-thrombin. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9529–9533. doi: 10.1073/pnas.86.23.9529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morrison B. D., Swanson M. L., Sweet L. J., Pessin J. E. Insulin-dependent covalent reassociation of isolated alpha beta heterodimeric insulin receptors into an alpha 2 beta 2 heterotetrameric disulfide-linked complex. J Biol Chem. 1988 Jun 5;263(16):7806–7813. [PubMed] [Google Scholar]
  13. Nakajima K., Kubo S., Kumagaye S., Nishio H., Tsunemi M., Inui T., Kuroda H., Chino N., Watanabe T. X., Kimura T. Structure-activity relationship of endothelin: importance of charged groups. Biochem Biophys Res Commun. 1989 Aug 30;163(1):424–429. doi: 10.1016/0006-291x(89)92153-0. [DOI] [PubMed] [Google Scholar]
  14. Nakajima K., Kumagaye S., Nishio H., Kuroda H., Watanabe T. X., Kobayashi Y., Tamaoki H., Kimura T., Sakakibara S. Synthesis of endothelin-1 analogues, endothelin-3, and sarafotoxin S6b: structure-activity relationships. J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S8–S18. doi: 10.1097/00005344-198900135-00004. [DOI] [PubMed] [Google Scholar]
  15. Sakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., Masaki T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990 Dec 20;348(6303):732–735. doi: 10.1038/348732a0. [DOI] [PubMed] [Google Scholar]
  16. Simonson M. S., Dunn M. J. Cellular signaling by peptides of the endothelin gene family. FASEB J. 1990 Sep;4(12):2989–3000. doi: 10.1096/fasebj.4.12.2168326. [DOI] [PubMed] [Google Scholar]
  17. Wilden P. A., Treadway J. L., Morrison B. D., Pessin J. E. IGF-1-dependent subunit communication of the IGF-1 holoreceptor: interactions between alpha beta heterodimeric receptor halves. Biochemistry. 1989 Dec 12;28(25):9734–9740. doi: 10.1021/bi00451a029. [DOI] [PubMed] [Google Scholar]
  18. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES