Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Sep 1;88(17):7620–7624. doi: 10.1073/pnas.88.17.7620

Leukotriene A4 hydrolase: determination of the three zinc-binding ligands by site-directed mutagenesis and zinc analysis.

J F Medina 1, A Wetterholm 1, O Rådmark 1, R Shapiro 1, J Z Haeggström 1, B L Vallee 1, B Samuelsson 1
PMCID: PMC52353  PMID: 1881903

Abstract

Three mutants of recombinant mouse leukotriene A4 (LTA4) hydrolase (3.3.2.6) were produced by site-directed mutagenesis on cDNA. The codons corresponding to His-295, His-299, or Glu-318 were replaced by codons encoding tyrosine, tyrosine, and glutamine, respectively. The mutated cDNAs were expressed in Escherichia coli, and the three mutated proteins were purified to apparent homogeneity. None of these mutants contained significant amounts of zinc, as determined by atomic absorption spectrometry, and all of them were practically devoid of both LTA4 hydrolase and peptidase enzyme activities. Nevertheless, the mutated proteins could be positively identified by their immunoreactivities with an antiserum for human LTA4 hydrolase in immunoblot analysis. Site-directed mutagenesis was also carried out on human LTA4 hydrolase cDNA. Codons encoding His-295, His-299, and Glu-318 were replaced by ones encoding tyrosine, leucine, and alanine, respectively, and the three mutants were expressed in E. coli. The LTA4 hydrolase activities of the total soluble proteins produced in these expressions were less than 10% of that obtained for bacteria harboring nonmutated cDNA. In agreement with earlier predictions, our experimental data demonstrate that His-295, His-299, and Glu-318 constitute the three ligands of the intrinsic zinc atom in LTA4 hydrolase. Additionally, the combined loss of enzyme activities and zinc content in the purified mutated mouse proteins, emphasizes the critical role of the zinc atom for catalysis, whereas the virtually identical chromatographic behaviors of the mutated and nonmutated mouse LTA4 hydrolase proteins suggest that the metal is of limited importance for the maintenance of the enzyme tertiary structure.

Full text

PDF
7620

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Devault A., Sales V., Nault C., Beaumont A., Roques B., Crine P., Boileau G. Exploration of the catalytic site of endopeptidase 24.11 by site-directed mutagenesis. Histidine residues 583 and 587 are essential for catalysis. FEBS Lett. 1988 Apr 11;231(1):54–58. doi: 10.1016/0014-5793(88)80701-4. [DOI] [PubMed] [Google Scholar]
  2. Fu J. Y., Haeggström J., Collins P., Meijer J., Rådmark O. Leukotriene A4 hydrolase: analysis of some human tissues by radioimmunoassay. Biochim Biophys Acta. 1989 Nov 6;1006(1):121–126. doi: 10.1016/0005-2760(89)90332-9. [DOI] [PubMed] [Google Scholar]
  3. Funk C. D., Rådmark O., Fu J. Y., Matsumoto T., Jörnvall H., Shimizu T., Samuelsson B. Molecular cloning and amino acid sequence of leukotriene A4 hydrolase. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6677–6681. doi: 10.1073/pnas.84.19.6677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Haeggström J. Z., Wetterholm A., Shapiro R., Vallee B. L., Samuelsson B. Leukotriene A4 hydrolase: a zinc metalloenzyme. Biochem Biophys Res Commun. 1990 Nov 15;172(3):965–970. doi: 10.1016/0006-291x(90)91540-9. [DOI] [PubMed] [Google Scholar]
  5. Haeggström J. Z., Wetterholm A., Vallee B. L., Samuelsson B. Leukotriene A4 hydrolase: an epoxide hydrolase with peptidase activity. Biochem Biophys Res Commun. 1990 Nov 30;173(1):431–437. doi: 10.1016/s0006-291x(05)81076-9. [DOI] [PubMed] [Google Scholar]
  6. Herlitze S., Koenen M. A general and rapid mutagenesis method using polymerase chain reaction. Gene. 1990 Jul 2;91(1):143–147. doi: 10.1016/0378-1119(90)90177-s. [DOI] [PubMed] [Google Scholar]
  7. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  8. Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
  9. Kadowaki H., Kadowaki T., Wondisford F. E., Taylor S. I. Use of polymerase chain reaction catalyzed by Taq DNA polymerase for site-specific mutagenesis. Gene. 1989 Mar 15;76(1):161–166. doi: 10.1016/0378-1119(89)90018-8. [DOI] [PubMed] [Google Scholar]
  10. Landt O., Grunert H. P., Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene. 1990 Nov 30;96(1):125–128. doi: 10.1016/0378-1119(90)90351-q. [DOI] [PubMed] [Google Scholar]
  11. Malfroy B., Kado-Fong H., Gros C., Giros B., Schwartz J. C., Hellmiss R. Molecular cloning and amino acid sequence of rat kidney aminopeptidase M: a member of a super family of zinc-metallohydrolases. Biochem Biophys Res Commun. 1989 May 30;161(1):236–241. doi: 10.1016/0006-291x(89)91586-6. [DOI] [PubMed] [Google Scholar]
  12. Medina J. F., Barrios C., Funk C. D., Larsson O., Haeggström J., Rådmark O. Human fibroblasts show expression of the leukotriene-A4-hydrolase gene, which is increased after simian-virus-40 transformation. Eur J Biochem. 1990 Jul 20;191(1):27–31. doi: 10.1111/j.1432-1033.1990.tb19089.x. [DOI] [PubMed] [Google Scholar]
  13. Medina J. F., Rådmark O., Funk C. D., Haeggström J. Z. Molecular cloning and expression of mouse leukotriene A4 hydrolase cDNA. Biochem Biophys Res Commun. 1991 May 15;176(3):1516–1524. doi: 10.1016/0006-291x(91)90459-k. [DOI] [PubMed] [Google Scholar]
  14. Minami M., Minami Y., Emori Y., Kawasaki H., Ohno S., Suzuki K., Ohishi N., Shimizu T., Seyama Y. Expression of human leukotriene A4 hydrolase cDNA in Escherichia coli. FEBS Lett. 1988 Mar 14;229(2):279–282. doi: 10.1016/0014-5793(88)81140-2. [DOI] [PubMed] [Google Scholar]
  15. Minami M., Ohishi N., Mutoh H., Izumi T., Bito H., Wada H., Seyama Y., Toh H., Shimizu T. Leukotriene A4 hydrolase is a zinc-containing aminopeptidase. Biochem Biophys Res Commun. 1990 Dec 14;173(2):620–626. doi: 10.1016/s0006-291x(05)80080-4. [DOI] [PubMed] [Google Scholar]
  16. Minami M., Ohno S., Kawasaki H., Rådmark O., Samuelsson B., Jörnvall H., Shimizu T., Seyama Y., Suzuki K. Molecular cloning of a cDNA coding for human leukotriene A4 hydrolase. Complete primary structure of an enzyme involved in eicosanoid synthesis. J Biol Chem. 1987 Oct 15;262(29):13873–13876. [PubMed] [Google Scholar]
  17. Perrin S., Gilliland G. Site-specific mutagenesis using asymmetric polymerase chain reaction and a single mutant primer. Nucleic Acids Res. 1990 Dec 25;18(24):7433–7438. doi: 10.1093/nar/18.24.7433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rådmark O., Haeggström J. Properties of leukotriene A4-hydrolase. Adv Prostaglandin Thromboxane Leukot Res. 1990;20:35–45. [PubMed] [Google Scholar]
  19. Rådmark O., Shimizu T., Jörnvall H., Samuelsson B. Leukotriene A4 hydrolase in human leukocytes. Purification and properties. J Biol Chem. 1984 Oct 25;259(20):12339–12345. [PubMed] [Google Scholar]
  20. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  21. Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
  22. Samuelsson B., Funk C. D. Enzymes involved in the biosynthesis of leukotriene B4. J Biol Chem. 1989 Nov 25;264(33):19469–19472. [PubMed] [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
  25. Steinhilber D., Herrmann T., Roth H. J. Separation of lipoxins and leukotrienes from human granulocytes by high-performance liquid chromatography with a Radial-Pak cartridge after extraction with an octadecyl reversed-phase column. J Chromatogr. 1989 Sep 1;493(2):361–366. doi: 10.1016/s0378-4347(00)82742-5. [DOI] [PubMed] [Google Scholar]
  26. Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  28. Vallette F., Mege E., Reiss A., Adesnik M. Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 1989 Jan 25;17(2):723–733. doi: 10.1093/nar/17.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES