Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Sep 1;88(17):7650–7653. doi: 10.1073/pnas.88.17.7650

Enhanced GABAergic inhibition preserves hippocampal structure and function in a model of epilepsy.

A M Ylinen 1, R Miettinen 1, A Pitkänen 1, A I Gulyas 1, T F Freund 1, P J Riekkinen 1
PMCID: PMC52359  PMID: 1652757

Abstract

Extensive electrical stimulation of the perforant pathway input to the hippocampus results in a characteristic pattern of neuronal death, which is accompanied by an impairment of cognitive functions similar to that seen in human temporal lobe epilepsy. The excitotoxic hypothesis of epileptic cell death [Olney, J. W. (1978) in Kainic Acid as a Tool in Neurobiology, eds. McGeer, E., Olney, J. W. & McGeer, P. (Raven, New York), pp. 95-121; Olney, J. W. (1983) in Excitotoxins, eds. Fuxe, K., Roberts, P. J. & Schwartch, R. (Wenner-Gren International Symposium Series, Macmillan, London), Vol. 39, pp. 82-96; and Rothman, S. M. & Olney, J. W. (1986) Ann. Neurol. 19, 105-111] predicts an imbalance between excitation and inhibition, which occurs probably as a result of hyperactivity in afferent pathways or impaired inhibition. In the present study, we investigated whether the enhancement of gamma-aminobutyric acid (GABA)-mediated (GABAergic) inhibition of neurotransmission by blocking the GABA-metabolizing enzyme, GABA transaminase, could influence the histopathological and/or the behavioral outcome in this epilepsy model. We demonstrate that the loss of pyramidal cells and hilar somatostatin-containing neurons can be abolished by enhancing the level of synaptically released GABA, and that the preservation of hippocampal structure is accompanied by a significant sparing of spatial memory as compared with placebo-treated controls. These results suggest that enhanced GABAergic inhibition can effectively block the pathophysiological processes that lead to excitotoxic cell death and, as a result, protect the brain from seizure-induced cognitive impairment.

Full text

PDF
7650

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babb T. L., Pretorius J. K., Kupfer W. R., Crandall P. H. Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci. 1989 Jul;9(7):2562–2574. doi: 10.1523/JNEUROSCI.09-07-02562.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bakst I., Avendano C., Morrison J. H., Amaral D. G. An experimental analysis of the origins of somatostatin-like immunoreactivity in the dentate gyrus of the rat. J Neurosci. 1986 May;6(5):1452–1462. doi: 10.1523/JNEUROSCI.06-05-01452.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bornstein R. A., Pakalnis A., Drake M. E., Jr, Suga L. J. Effects of seizure type and waveform abnormality on memory and attention. Arch Neurol. 1988 Aug;45(8):884–887. doi: 10.1001/archneur.1988.00520320074019. [DOI] [PubMed] [Google Scholar]
  4. Bridgman P. A., Malamut B. L., Sperling M. R., Saykin A. J., O'Connor M. J. Memory during subclinical hippocampal seizures. Neurology. 1989 Jun;39(6):853–856. doi: 10.1212/wnl.39.6.853. [DOI] [PubMed] [Google Scholar]
  5. Buchan A. M., Sikora L. K., Levy J. G., McIntosh C. H., Dyck I., Brown J. C. An immunocytochemical investigation with monoclonal antibodies to somatostatin. Histochemistry. 1985;83(2):175–180. doi: 10.1007/BF00495150. [DOI] [PubMed] [Google Scholar]
  6. Buzsáki G., Ponomareff G. L., Bayardo F., Ruiz R., Gage F. H. Neuronal activity in the subcortically denervated hippocampus: a chronic model for epilepsy. Neuroscience. 1989;28(3):527–538. doi: 10.1016/0306-4522(89)90002-x. [DOI] [PubMed] [Google Scholar]
  7. Freund T. F., Buzsaki G., Leon A., Somogyi P. Hippocampal cell death following ischemia: effects of brain temperature and anesthesia. Exp Neurol. 1990 Jun;108(3):251–260. doi: 10.1016/0014-4886(90)90131-b. [DOI] [PubMed] [Google Scholar]
  8. Halonen T., Lehtinen M., Pitkänen A., Ylinen A., Riekkinen P. J. Inhibitory and excitatory amino acids in CSF of patients suffering from complex partial seizures during chronic treatment with gamma-vinyl GABA (vigabatrin). Epilepsy Res. 1988 Jul-Aug;2(4):246–252. doi: 10.1016/0920-1211(88)90015-0. [DOI] [PubMed] [Google Scholar]
  9. Hammond E. J., Wilder B. J. Gamma-vinyl GABA: a new antiepileptic drug. Clin Neuropharmacol. 1985;8(1):1–12. doi: 10.1097/00002826-198503000-00001. [DOI] [PubMed] [Google Scholar]
  10. Leranth C., Malcolm A. J., Frotscher M. Afferent and efferent synaptic connections of somatostatin-immunoreactive neurons in the rat fascia dentata. J Comp Neurol. 1990 May 1;295(1):111–122. doi: 10.1002/cne.902950110. [DOI] [PubMed] [Google Scholar]
  11. Margerison J. H., Corsellis J. A. Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain. 1966 Sep;89(3):499–530. doi: 10.1093/brain/89.3.499. [DOI] [PubMed] [Google Scholar]
  12. Riekkinen P. J., Ylinen A., Halonen T., Sivenius J., Pitkanen A. Cerebrospinal fluid GABA and seizure control with vigabatrin. Br J Clin Pharmacol. 1989;27 (Suppl 1):87S–94S. doi: 10.1111/j.1365-2125.1989.tb03467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Riekkinen P., Jr, Sirviö J., Riekkinen P. Similar memory impairments found in medial septal-vertical diagonal band of Broca and nucleus basalis lesioned rats: are memory defects induced by nucleus basalis lesions related to the degree of non-specific subcortical cell loss? Behav Brain Res. 1990 Feb 12;37(1):81–88. doi: 10.1016/0166-4328(90)90073-n. [DOI] [PubMed] [Google Scholar]
  14. Robbins R. J., Brines M. L., Kim J. H., Adrian T., de Lanerolle N., Welsh S., Spencer D. D. A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy. Ann Neurol. 1991 Mar;29(3):325–332. doi: 10.1002/ana.410290316. [DOI] [PubMed] [Google Scholar]
  15. Rogers B. C., Barnes M. I., Mitchell C. L., Tilson H. A. Functional deficits after sustained stimulation of the perforant path. Brain Res. 1989 Jul 24;493(1):41–50. doi: 10.1016/0006-8993(89)90998-0. [DOI] [PubMed] [Google Scholar]
  16. Shewmon D. A., Erwin R. J. The effect of focal interictal spikes on perception and reaction time. I. General considerations. Electroencephalogr Clin Neurophysiol. 1988 Apr;69(4):319–337. doi: 10.1016/0013-4694(88)90004-1. [DOI] [PubMed] [Google Scholar]
  17. Sloviter R. S. "Epileptic" brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies. Brain Res Bull. 1983 May;10(5):675–697. doi: 10.1016/0361-9230(83)90037-0. [DOI] [PubMed] [Google Scholar]
  18. Sloviter R. S., Damiano B. P. Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats. Neurosci Lett. 1981 Jul 17;24(3):279–284. doi: 10.1016/0304-3940(81)90171-3. [DOI] [PubMed] [Google Scholar]
  19. Sloviter R. S. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science. 1987 Jan 2;235(4784):73–76. doi: 10.1126/science.2879352. [DOI] [PubMed] [Google Scholar]
  20. Sloviter R. S., Nilaver G. Immunocytochemical localization of GABA-, cholecystokinin-, vasoactive intestinal polypeptide-, and somatostatin-like immunoreactivity in the area dentata and hippocampus of the rat. J Comp Neurol. 1987 Feb 1;256(1):42–60. doi: 10.1002/cne.902560105. [DOI] [PubMed] [Google Scholar]
  21. Stringer J. L., Williamson J. M., Lothman E. W. Induction of paroxysmal discharges in the dentate gyrus: frequency dependence and relationship to afterdischarge production. J Neurophysiol. 1989 Jul;62(1):126–135. doi: 10.1152/jn.1989.62.1.126. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES