Abstract
Normal mode calculation is applied to tRNAPhe and tRNAAsp, and their structural and vibrational aspects are analyzed. Dihedral angles along the phosphate-ribose backbone (alpha, beta, gamma, epsilon, zeta) and dihedral angles of glycosyl bonds (chi) are selected as movable parameters. The calculated displacement of each atom agrees with experimental data. In modes with frequencies higher than 130 cm-1, the motions are localized around each stem and the elbow region of the L-shape. On the other hand, collective motions such as bending or twisting of arms are seen in modes with lower frequencies. Hinge axes and bend angles are calculated without prior knowledge. Movements in modes with very low frequencies are combinations of hinge bending motions with various hinge axes and bend angles. The thermal fluctuations of dihedral angles well reflect the structural characters of transfer RNAs. There are some dihedral angles of nucleotides located around the elbow region of L-shape, which fluctuate about five to six times more than the average value. Nucleotides in the position seem to be influential in the dynamics of the entire structure. The normal mode calculation seems to provide much information for the study of conformational changes of transfer RNAs induced by aminoacyl-tRNA synthetase or codon during molecular recognition.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Go N., Noguti T., Nishikawa T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3696–3700. doi: 10.1073/pnas.80.12.3696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey S. C., Gabb H. A. Conformational transitions using molecular dynamics with minimum biasing. Biopolymers. 1993 Aug;33(8):1167–1172. doi: 10.1002/bip.360330803. [DOI] [PubMed] [Google Scholar]
- Harvey S. C., Prabhakaran M., McCammon J. A. Molecular-dynamics simulation of phenylalanine transfer RNA. I. Methods and general results. Biopolymers. 1985 Jul;24(7):1169–1188. doi: 10.1002/bip.360240706. [DOI] [PubMed] [Google Scholar]
- Kim S. H. Three-dimensional structure of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1976;17:181–216. doi: 10.1016/s0079-6603(08)60070-7. [DOI] [PubMed] [Google Scholar]
- Klug A., Ladner J., Robertus J. D. The structural geometry of co-ordinated base changes in transfer RNA. J Mol Biol. 1974 Nov 5;89(3):511–516. doi: 10.1016/0022-2836(74)90480-x. [DOI] [PubMed] [Google Scholar]
- Levitt M., Sander C., Stern P. S. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol. 1985 Feb 5;181(3):423–447. doi: 10.1016/0022-2836(85)90230-x. [DOI] [PubMed] [Google Scholar]
- Nilsson L., Rigler R., Laggner P. Structural variability of tRNA: small-angle x-ray scattering of the yeast tRNAphe-Escherichia coli tRNAGlu2 complex. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5891–5895. doi: 10.1073/pnas.79.19.5891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishikawa T., Go N. Normal modes of vibration in bovine pancreatic trypsin inhibitor and its mechanical property. Proteins. 1987;2(4):308–329. doi: 10.1002/prot.340020407. [DOI] [PubMed] [Google Scholar]
- Olson T., Fournier M. J., Langley K. H., Ford N. C., Jr Detection of a major conformational change in transfer ribonucleic acid by laser light scattering. J Mol Biol. 1976 Apr 5;102(2):193–203. doi: 10.1016/s0022-2836(76)80048-4. [DOI] [PubMed] [Google Scholar]
- Patkowski A., Eimer W., Dorfmüller T. Internal dynamics of tRNA(Phe) studied by depolarized dynamic light scattering. Biopolymers. 1990;30(9-10):975–983. doi: 10.1002/bip.360300912. [DOI] [PubMed] [Google Scholar]
- Perahia D., Pullman B., Vasilescu D., Cornillon R., Broch H. A molecular orbital investigation of the conformation of transfer RNA. Biochim Biophys Acta. 1977 Sep 20;478(2):244–259. doi: 10.1016/0005-2787(77)90188-5. [DOI] [PubMed] [Google Scholar]
- Prabhakaran M., Harvey S. C., McCammon J. A. Molecular-dynamics simulation of phenylalanine transfer RNA. II. Amplitudes, anisotropies, and anharmonicities of atomic motions. Biopolymers. 1985 Jul;24(7):1189–1204. doi: 10.1002/bip.360240707. [DOI] [PubMed] [Google Scholar]
- Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
- Rould M. A., Perona J. J., Söll D., Steitz T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989 Dec 1;246(4934):1135–1142. doi: 10.1126/science.2479982. [DOI] [PubMed] [Google Scholar]
- Tung C. S., Harvey S. C., McCammon J. A. Large-amplitude bending motions in phenylalanine transfer RNA. Biopolymers. 1984 Nov;23(11 Pt 1):2173–2193. doi: 10.1002/bip.360231106. [DOI] [PubMed] [Google Scholar]
- Wickstrom E., Behlen L. S., Reuben M. A., Ainpour P. R. Molecular rulers for measuring RNA structure: sites of crosslinking in chlorambucilyl-phenylalanyl-tRNAPhe (yeast) and chlorambucilyl-pentadecaprolyl-phenylalanyl-tRNAPhe (yeast) intramolecularly crosslinked in aqueous solution. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2082–2085. doi: 10.1073/pnas.78.4.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]