Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Jun 25;22(12):2183–2196. doi: 10.1093/nar/22.12.2183

Summary: the modified nucleosides of RNA.

P A Limbach 1, P F Crain 1, J A McCloskey 1
PMCID: PMC523672  PMID: 7518580

Abstract

A comprehensive listing is made of posttranscriptionally modified nucleosides from RNA reported in the literature through mid-1994. Included are chemical structures, common names, symbols, Chemical Abstracts registry numbers (for ribonucleoside and corresponding base), Chemical Abstracts Index Name, phylogenetic sources, and initial literature citations for structural characterization or occurrence, and for chemical synthesis. The listing is categorized by type of RNA: tRNA, rRNA, mRNA, snRNA, and other RNAs. A total of 93 different modified nucleosides have been reported in RNA, with the largest number and greatest structural diversity in tRNA, 79; and 28 in rRNA, 12 in mRNA, 11 in snRNA and 3 in other small RNAs.

Full text

PDF
2183

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADLER M., WEISSMANN B., GUTMAN A. B. Occurrence of methylated purine bases in yeast ribonucleic acid. J Biol Chem. 1958 Feb;230(2):717–723. [PubMed] [Google Scholar]
  2. AMOS H., KORN M. 5-Methyl cytosine in the RNA of Escherichia coli. Biochim Biophys Acta. 1958 Aug;29(2):444–445. doi: 10.1016/0006-3002(58)90214-2. [DOI] [PubMed] [Google Scholar]
  3. Adamiak R. W., Górnicki P. Hypermodified nucleosides of tRNA: synthesis, chemistry, and structural features of biological interest. Prog Nucleic Acid Res Mol Biol. 1985;32:27–74. doi: 10.1016/s0079-6603(08)60345-1. [DOI] [PubMed] [Google Scholar]
  4. Amaldi F., Attardi G. Partial sequence analysis of ribosomal RNA from HeLa cells. I. Oligonucleotide pattern of 28 s and 18 s RNA after pancreatic ribonuclease digestion. J Mol Biol. 1968 May 14;33(3):737–755. doi: 10.1016/0022-2836(68)90317-3. [DOI] [PubMed] [Google Scholar]
  5. BISWAS B. B., MYERS J. A methyl cytidine from the ribonucleic acid of Anacystis nidulans. Nature. 1960 Apr 16;186:238–239. doi: 10.1038/186238a0. [DOI] [PubMed] [Google Scholar]
  6. BRAWERMAN G., CHARGAFF E. Relation of ribonucleic acid to the photosynthetic apparatus in Euglena gracilis. Biochim Biophys Acta. 1959 Jan;31(1):172–177. doi: 10.1016/0006-3002(59)90453-6. [DOI] [PubMed] [Google Scholar]
  7. BROOM A. D., ROBINS R. K. THE DIRECT PREPARATION OF 2'-O-METHYLADENOSINE FROM ADENOSINE. J Am Chem Soc. 1965 Mar 5;87:1145–1146. doi: 10.1021/ja01083a045. [DOI] [PubMed] [Google Scholar]
  8. BROOM A. D., TOWNSEND L. B., JONES J. W., ROBINS R. K. PURINE NUCLEOSIDES. VI. FURTHER METHYLATION STUDIES OF NATURALLY OCCURRING PURINE NUCLEOSIDES. Biochemistry. 1964 Apr;3:494–500. doi: 10.1021/bi00892a005. [DOI] [PubMed] [Google Scholar]
  9. BUXTON C. L., WEINMAN D., JOHNSON O. Epidemiology of Trichomonas vaginalis vaginitis: a progress report. Obstet Gynecol. 1958 Dec;12(6):699–702. [PubMed] [Google Scholar]
  10. Baczynskyj L., Biemann K., Fleysher M. H., Hall R. H. Synthesis of 2-thio-5-carboxymethyluridine methyl ester: a component of transfer RNA. Can J Biochem. 1969 Dec;47(12):1202–1203. doi: 10.1139/o69-194. [DOI] [PubMed] [Google Scholar]
  11. Baczynskyj L., Biemann K., Hall R. H. Sulfur-containing nucleoside from yeast transfer ribonucleic acid: 2-thio-5(or 6)-uridine acetic acid methyl ester. Science. 1968 Mar 29;159(3822):1481–1483. doi: 10.1126/science.159.3822.1481. [DOI] [PubMed] [Google Scholar]
  12. Banerjee A. K. 5'-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol Rev. 1980 Jun;44(2):175–205. doi: 10.1128/mr.44.2.175-205.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bangs J. D., Crain P. F., Hashizume T., McCloskey J. A., Boothroyd J. C. Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J Biol Chem. 1992 May 15;267(14):9805–9815. [PubMed] [Google Scholar]
  14. Björk G. R., Ericson J. U., Gustafsson C. E., Hagervall T. G., Jönsson Y. H., Wikström P. M. Transfer RNA modification. Annu Rev Biochem. 1987;56:263–287. doi: 10.1146/annurev.bi.56.070187.001403. [DOI] [PubMed] [Google Scholar]
  15. Blobstein S. H., Grunberger D., Weinstein I. B., Nakanishi K. Isolation and structure determination of the fluorescent base from bovine liver phenylalanine transfer ribonucleic acid. Biochemistry. 1973 Jan 16;12(2):188–193. doi: 10.1021/bi00726a002. [DOI] [PubMed] [Google Scholar]
  16. Brand R. C., Klootwijk J., Planta R. J., Maden B. E. Biosynthesis of a hypermodified nucleotide in Saccharomyces carlsbergensis 17S and HeLa-cell 18S ribosomal ribonucleic acid. Biochem J. 1978 Jan 1;169(1):71–77. doi: 10.1042/bj1690071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Brown G. M., Attardi G. Methylation of nucleic acids in HeLa cells. Biochem Biophys Res Commun. 1965 Jul 26;20(3):298–302. doi: 10.1016/0006-291x(65)90363-3. [DOI] [PubMed] [Google Scholar]
  18. Bruenger E., Kowalak J. A., Kuchino Y., McCloskey J. A., Mizushima H., Stetter K. O., Crain P. F. 5S rRNA modification in the hyperthermophilic archaea Sulfolobus solfataricus and Pyrodictium occultum. FASEB J. 1993 Jan;7(1):196–200. doi: 10.1096/fasebj.7.1.8422966. [DOI] [PubMed] [Google Scholar]
  19. Burrows W. J., Armstrong D. J., Skoog F., Hecht S. M., Boyle J. T., Leonard N. J., Occolowitz J. Cytokinin from soluble RNA of Escherichia coli: 6-(3-methyl-2-butenylamino)-2-methylthio-9-beta-D-ribofuranosylpurine. Science. 1968 Aug 16;161(3842):691–693. doi: 10.1126/science.161.3842.691. [DOI] [PubMed] [Google Scholar]
  20. Busch H., Ro-Choi T. S., Prestayko A. W., Shibata H., Crooke S. T., el-Khatib S. M., Choi Y. C., Mauritzen C. M. Low-molecular-weight nuclear RNAs. Perspect Biol Med. 1971 Fall;15(1):117–139. doi: 10.1353/pbm.1971.0055. [DOI] [PubMed] [Google Scholar]
  21. CHARGAFF E., RUEST P., TEMPERLI A., MORISAWA S., DANON A. INVESTIGATION OF THE PURINE SEQUENCES IN DEOXYRIBONUCLEIC ACIDS. Biochim Biophys Acta. 1963 Sep 17;76:149–151. [PubMed] [Google Scholar]
  22. COHN W. E. 5-Ribosyl uracil, a carbon-carbon ribofuranosyl nucleoside in ribonucleic acids. Biochim Biophys Acta. 1959 Apr;32:569–571. doi: 10.1016/0006-3002(59)90644-4. [DOI] [PubMed] [Google Scholar]
  23. COHN W. E. Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids: isolation, structure, and chemical characteristics. J Biol Chem. 1960 May;235:1488–1498. [PubMed] [Google Scholar]
  24. Carbon J. A., Hung L., Jones D. S. A reversible oxidative in activation of specific transfer RNA species. Proc Natl Acad Sci U S A. 1965 May;53(5):979–986. doi: 10.1073/pnas.53.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Carbon J., David H., Studier M. H. Thiobases in Escherchia coli Transfer RNA: 2-Thiocytosine and 5-Methylaminomethyl-2-thiouracil. Science. 1968 Sep 13;161(3846):1146–1147. doi: 10.1126/science.161.3846.1146. [DOI] [PubMed] [Google Scholar]
  26. Cecchini J. P., Miassod R. Studies on the methylation of cytoplasmic ribosomal RNA from cultured higher plant cells. Eur J Biochem. 1979 Jul;98(1):203–214. doi: 10.1111/j.1432-1033.1979.tb13178.x. [DOI] [PubMed] [Google Scholar]
  27. Cheng C. S., Hinshaw B. C., Panzica R. P., Townsend L. B. Synthesis of 2-amino-5-cyano-7-(beta-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidin-4-one. An important precursor for the synthesis of nucleoside Q and Q. J Am Chem Soc. 1976 Nov 24;98(24):7870–7872. doi: 10.1021/ja00440a094. [DOI] [PubMed] [Google Scholar]
  28. Chheda G., Hong C. I. Synthesis of naturally occurring 6-ureidopurines and their nucleosides. J Med Chem. 1971 Aug;14(8):748–753. doi: 10.1021/jm00290a019. [DOI] [PubMed] [Google Scholar]
  29. Ching W. M. Occurrence of selenium-containing tRNAs in mouse leukemia cells. Proc Natl Acad Sci U S A. 1984 May;81(10):3010–3013. doi: 10.1073/pnas.81.10.3010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Crain P. F., Choi Y. C., Busch H., McCloskey J. A. Characterization of N6, O2-dimethyladenosine from nuclear RNA of Novikoff hepatoma. Nucleic Acids Res. 1978 Mar;5(3):771–776. doi: 10.1093/nar/5.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Crain P. F., Sethi S. K., Katze J. R., McCloskey J. A. Structure of an amniotic fluid component, 7-(4,5-cis-dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanine (queuine), a substrate for tRNA: guanine transglycosylase. J Biol Chem. 1980 Sep 25;255(18):8405–8407. [PubMed] [Google Scholar]
  32. DUNN D. B. Additional components in ribonucleic acid of rat-liver fractions. Biochim Biophys Acta. 1959 Jul;34:286–288. doi: 10.1016/0006-3002(59)90274-4. [DOI] [PubMed] [Google Scholar]
  33. DUNN D. B. The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta. 1961 Jan 1;46:198–200. doi: 10.1016/0006-3002(61)90668-0. [DOI] [PubMed] [Google Scholar]
  34. Desgrès J., Keith G., Kuo K. C., Gehrke C. W. Presence of phosphorylated O-ribosyl-adenosine in T-psi-stem of yeast methionine initiator tRNA. Nucleic Acids Res. 1989 Feb 11;17(3):865–882. doi: 10.1093/nar/17.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Desrosiers R., Friderici K., Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3971–3975. doi: 10.1073/pnas.71.10.3971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Diamond A. M., Choi I. S., Crain P. F., Hashizume T., Pomerantz S. C., Cruz R., Steer C. J., Hill K. E., Burk R. F., McCloskey J. A. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA([Ser]Sec). J Biol Chem. 1993 Jul 5;268(19):14215–14223. [PubMed] [Google Scholar]
  37. Dirheimer G. Chemical nature, properties, location, and physiological and pathological variations of modified nucleosides in tRNAs. Recent Results Cancer Res. 1983;84:15–46. doi: 10.1007/978-3-642-81947-6_2. [DOI] [PubMed] [Google Scholar]
  38. Dubin D. T., Stollar V., Hsuchen C. C., Timko K., Guild G. M. Sindbis virus messenger RNA: the 5'-termini and methylated residues of 26 and 42 S RNA. Virology. 1977 Apr;77(2):457–470. doi: 10.1016/0042-6822(77)90471-8. [DOI] [PubMed] [Google Scholar]
  39. Dubin D. T., Taylor R. H., Davenport L. W. Methylation status of 13S ribosomal RNA from hamster mitochondria: the presence of a novel riboside, N4-methylcytidine. Nucleic Acids Res. 1978 Nov;5(11):4385–4397. doi: 10.1093/nar/5.11.4385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Dubin D. T., Taylor R. H. Modification of mitochondrial ribosomal RNA from hamster cells: the presence of GmG and late-methylated UmGmU in the large subunit (17S) RNA. J Mol Biol. 1978 Jun 5;121(4):523–540. doi: 10.1016/0022-2836(78)90398-4. [DOI] [PubMed] [Google Scholar]
  41. Dunn D. B., Trigg M. M. 5-Carbamoylmethyluridine: a new minor nucleoside of transfer ribonucleic acid. Biochem Soc Trans. 1975;3(5):656–659. doi: 10.1042/bst0030656. [DOI] [PubMed] [Google Scholar]
  42. Dutta S. P., Hong C. I., Murphy G. P., Mittelman A., Chheda G. B. Synthesis properties of the naturally occurring N-[(9-beta-D-ribofuranosylpurin-6-yl)-N-methylcarbamoyl]-L-threonine (mt-6A) and other related synthetic analogs. Biochemistry. 1975 Jul 15;14(14):3144–3151. doi: 10.1021/bi00685a017. [DOI] [PubMed] [Google Scholar]
  43. Edmonds C. G., Crain P. F., Gupta R., Hashizume T., Hocart C. H., Kowalak J. A., Pomerantz S. C., Stetter K. O., McCloskey J. A. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J Bacteriol. 1991 May;173(10):3138–3148. doi: 10.1128/jb.173.10.3138-3148.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Edmonds C. G., Crain P. F., Gupta R., Hashizume T., Hocart C. H., Kowalak J. A., Pomerantz S. C., Stetter K. O., McCloskey J. A. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J Bacteriol. 1991 May;173(10):3138–3148. doi: 10.1128/jb.173.10.3138-3148.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Feldmann H., Dütting D., Zachau H. G. Analyses of some oligonucleotide sequences and odd nucleotides from serine transfer ribonucleic acids. Hoppe Seylers Z Physiol Chem. 1966;347(4):236–248. doi: 10.1515/bchm2.1966.347.1.236. [DOI] [PubMed] [Google Scholar]
  46. Fellner P. Nucleotide sequences from specific areas of the 16S and 23S ribosomal RNAs of E. coli. Eur J Biochem. 1969 Nov;11(1):12–27. doi: 10.1111/j.1432-1033.1969.tb00733.x. [DOI] [PubMed] [Google Scholar]
  47. Fissekis J. D., Sweet F. Synthesis of 5-carboxymethyluridine. A nucleoside from transfer ribonucleic acid. Biochemistry. 1970 Aug 4;9(16):3136–3142. doi: 10.1021/bi00818a004. [DOI] [PubMed] [Google Scholar]
  48. Fox G. E., Magrum L. J., Balch W. E., Wolfe R. S., Woese C. R. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4537–4541. doi: 10.1073/pnas.74.10.4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Friedman S., Li H. J., Nakanishi K., Van Lear G. 3-(3-amino-3-carboxy-n-propyl)uridine. The structure of the nucleoside in Escherichia coli transfer ribonucleic acid that reacts with phenoxyacetoxysuccinimide. Biochemistry. 1974 Jul 2;13(14):2932–2937. doi: 10.1021/bi00711a024. [DOI] [PubMed] [Google Scholar]
  50. Funamizu M., Terahara A., Feinberg A. M., Nakanishi K. Total synthesis of dl-Y base from yeast phenylalanine transfer ribonucleic acid and determination of its absolute configuration. J Am Chem Soc. 1971 Dec;93(24):6706–6708. doi: 10.1021/ja00753a080. [DOI] [PubMed] [Google Scholar]
  51. Furukawa Y., Kobayashi K., Kanai Y., Honjo M. Synthesis of 2'-O-methyluridine, 2'-O-methylcytidine and their relating compounds. Chem Pharm Bull (Tokyo) 1965 Nov;13(11):1273–1278. doi: 10.1248/cpb.13.1273. [DOI] [PubMed] [Google Scholar]
  52. GERSTER J. F., ROBINS R. K. PURINE NUCLEOSIDES. X. THE SYNTHESIS OF CERTAIN NATURALLY OCCURRING 2-SUBSTITUTED AMINO-9-BETA-D-RIBOFURANOSYLPURIN-6(1H)-ONES (N2-SUBSTITUTED GUANOSINES). J Am Chem Soc. 1965 Aug 20;87:3752–3759. doi: 10.1021/ja01094a037. [DOI] [PubMed] [Google Scholar]
  53. GREEN M., COHEN S. S. Studies on the biosynthesis of bacterial and viral pyrimidines. II. Dihydrouracil and dihydrothymine nucleosides. J Biol Chem. 1957 Mar;225(1):397–407. [PubMed] [Google Scholar]
  54. Gehrke C. W., Kuo K. C. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. J Chromatogr. 1989 Jun 2;471:3–36. doi: 10.1016/s0021-9673(00)94152-9. [DOI] [PubMed] [Google Scholar]
  55. Gehrke C. W., Kuo K. C. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. J Chromatogr. 1989 Jun 2;471:3–36. doi: 10.1016/s0021-9673(00)94152-9. [DOI] [PubMed] [Google Scholar]
  56. Glasser A. L., Desgres J., Heitzler J., Gehrke C. W., Keith G. O-ribosyl-phosphate purine as a constant modified nucleotide located at position 64 in cytoplasmic initiator tRNAs(Met) of yeasts. Nucleic Acids Res. 1991 Oct 11;19(19):5199–5203. doi: 10.1093/nar/19.19.5199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Gray M. W. Analysis of O2'-methylnucleoside 5'-phosphates in snake venom hydrolysates of RNA: identification of O2'-methyl-5-carboxymethyluridine as a constituent of yeast transfer RNA. Can J Biochem. 1975 Jul;53(7):735–746. doi: 10.1139/o75-101. [DOI] [PubMed] [Google Scholar]
  58. Gray M. W. Dinucleotide sequences containing both base and sugar modifications in the ribosomal RNA of Crithidia fasciculata. Biochim Biophys Acta. 1974 Dec 6;374(2):253–257. doi: 10.1016/0005-2787(74)90367-0. [DOI] [PubMed] [Google Scholar]
  59. Gray M. W., Lane B. G. 5-carboxymethyluridine, a novel nucleoside derived from yeast and wheat embryo transfer ribonucleates. Biochemistry. 1968 Oct;7(10):3441–3453. doi: 10.1021/bi00850a020. [DOI] [PubMed] [Google Scholar]
  60. Gray M. W. O2'-Methylinosine, a constituent of the ribosomal RNA of Crithidia fasciculata. Nucleic Acids Res. 1976 Apr;3(4):977–988. doi: 10.1093/nar/3.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Gray M. W. Structural analysis of O2'-methyl-5-carbamoylmethyluridine, a newly discovered constituent of yeast transfer RNA. Biochemistry. 1976 Jul 13;15(14):3046–3051. doi: 10.1021/bi00659a017. [DOI] [PubMed] [Google Scholar]
  62. Gray M. W. The presence of O-2'-methylpseudouridine in the 18S + 26S ribosomal ribonucleates of wheat embryo. Biochemistry. 1974 Dec 31;13(27):5453–5463. doi: 10.1021/bi00724a001. [DOI] [PubMed] [Google Scholar]
  63. Gregson J. M., Crain P. F., Edmonds C. G., Gupta R., Hashizume T., Phillipson D. W., McCloskey J. A. Structure of the archaeal transfer RNA nucleoside G*-15 (2-amino-4,7-dihydro- 4-oxo-7-beta-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyrimidine-5-carboximi dam ide (archaeosine)). J Biol Chem. 1993 May 15;268(14):10076–10086. [PubMed] [Google Scholar]
  64. Gross H. J., Simsek M., Raba M., Limburg K., Heckman J., Raj Bhandary U. L. 2'-O-methyl ribothymidine: a component of rabbit liver lysine transfer RNA. Nucleic Acids Res. 1974 Jan;1(1):35–43. doi: 10.1093/nar/1.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. HALL R. H. A GENERAL PROCEDURE FOR THE ISOLATION OF "MINOR" NUCLEOSIDES FROM RIBONUCLEIC ACID HYDROLYSATES. Biochemistry. 1965 Apr;4:661–670. doi: 10.1021/bi00880a008. [DOI] [PubMed] [Google Scholar]
  66. HALL R. H. ISOLATION OF 3-METHYLURIDINE AND 3-METHYLCYTIDINE FROM SOLUBLERIBONUCLEIC ACID. Biochem Biophys Res Commun. 1963 Aug 14;12:361–364. doi: 10.1016/0006-291x(63)90105-0. [DOI] [PubMed] [Google Scholar]
  67. HALL R. H. ON THE 2'-O-METHYLRIBONUCLEOSIDE CONTENT OF RIBONUCLEIC ACIDS. Biochemistry. 1964 Jul;3:876–880. doi: 10.1021/bi00895a001. [DOI] [PubMed] [Google Scholar]
  68. Hagervall T. G., Edmonds C. G., McCloskey J. A., Björk G. R. Transfer RNA(5-methylaminomethyl-2-thiouridine)-methyltransferase from Escherichia coli K-12 has two enzymatic activities. J Biol Chem. 1987 Jun 25;262(18):8488–8495. [PubMed] [Google Scholar]
  69. Hall R. H., Csonka L., David H., McLennan B. Cytokinins in the soluble RNA of plant tissues. Science. 1967 Apr 7;156(3771):69–71. doi: 10.1126/science.156.3771.69. [DOI] [PubMed] [Google Scholar]
  70. Harada F., Gross H. J., Kimura F., Chang S. H., Nishimura S., RajBhandary U. L. 2-Methylthio N6-(delta 2-isopentenyl) adenosine: a component of E. coli tyrosine transfer RNA. Biochem Biophys Res Commun. 1968 Oct 24;33(2):299–306. doi: 10.1016/0006-291x(68)90784-5. [DOI] [PubMed] [Google Scholar]
  71. Hayashi Y., Osawa S., Miura K. The methyl groups in ribosomal RNA from Escherichia coli. Biochim Biophys Acta. 1966 Dec 21;129(3):519–531. doi: 10.1016/0005-2787(66)90067-0. [DOI] [PubMed] [Google Scholar]
  72. Hecht S. M., Leonard N. J., Burrows W. J., Armstrong D. J., Skoog F., Occolowitz J. Cytokinin of wheat germ transfer RNA: 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-beta-D-ribofuranosylpurine. Science. 1969 Dec 5;166(3910):1272–1274. doi: 10.1126/science.166.3910.1272. [DOI] [PubMed] [Google Scholar]
  73. HsuChen C. C., Dubin D. T. Di-and trimethylated congeners of 7-methylguanine in Sindbis virus mRNA. Nature. 1976 Nov 11;264(5582):190–191. doi: 10.1038/264190a0. [DOI] [PubMed] [Google Scholar]
  74. Huang R. C., Bonner J. Histone-bound RNA, a component of native nucleohistone. Proc Natl Acad Sci U S A. 1965 Sep;54(3):960–967. doi: 10.1073/pnas.54.3.960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Isaksson L. A., Phillips J. H. Studies on microbial RNA. V. A comparison of the in vivo methylated components of ribosomal RNA from Escherichia coli and Saccharomyces cerevisiae. Biochim Biophys Acta. 1968 Jan 29;155(1):63–71. [PubMed] [Google Scholar]
  76. Iwanami Y., Brown G. M. Methylated bases of ribosomal ribonucleic acid from HeLa cells. Arch Biochem Biophys. 1968 Jul;126(1):8–15. doi: 10.1016/0003-9861(68)90553-5. [DOI] [PubMed] [Google Scholar]
  77. Jacobson R. A., Bonner J. The occurrence of dihydro ribothymidine in chromosomal RNA. Biochem Biophys Res Commun. 1968 Dec 9;33(5):716–720. doi: 10.1016/0006-291x(68)90217-9. [DOI] [PubMed] [Google Scholar]
  78. Johnson D. R., Love-Dixon M. A., Brown W. J., Levine D. P., Downes F. P., Hall W. N. Delayed detection of an increase in resistant Acinetobacter at a Detroit hospital. Infect Control Hosp Epidemiol. 1992 Jul;13(7):394–398. doi: 10.1086/646556. [DOI] [PubMed] [Google Scholar]
  79. Johnson J. D., Horowitz J. Characterization of ribosomes and RNAs from Mycoplasma hominis. Biochim Biophys Acta. 1971 Oct 14;247(2):262–279. doi: 10.1016/0005-2787(71)90675-7. [DOI] [PubMed] [Google Scholar]
  80. Johnson J. D., Horowitz J. Characterization of ribosomes and RNAs from Mycoplasma hominis. Biochim Biophys Acta. 1971 Oct 14;247(2):262–279. doi: 10.1016/0005-2787(71)90675-7. [DOI] [PubMed] [Google Scholar]
  81. Kasai H., Goto M., Ikeda K., Zama M., Mizuno Y., Takemura S., Matsuura S., Sugimoto T., Goto T. Structure of wye (Yt base) and wyosine (Yt) from Torulopsis utilis phenylalanine transfer ribonucleic acid. Biochemistry. 1976 Feb 24;15(4):898–904. doi: 10.1021/bi00649a027. [DOI] [PubMed] [Google Scholar]
  82. Kasai H., Nakanishi K., Macfarlane R. D., Torgerson D. F., Ohashi Z., McCloskey J. A., Gross H. J., Nishimura S. Letter: The structure of Q* nucleoside isolated from rabbit liver transfer ribonucleic acid. J Am Chem Soc. 1976 Aug 4;98(16):5044–5046. doi: 10.1021/ja00432a071. [DOI] [PubMed] [Google Scholar]
  83. Kasai H., Oashi Z., Harada F., Nishimura S., Oppenheimer N. J., Crain P. F., Liehr J. G., von Minden D. L., McCloskey J. A. Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-Dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. Biochemistry. 1975 Sep 23;14(19):4198–4208. doi: 10.1021/bi00690a008. [DOI] [PubMed] [Google Scholar]
  84. Kasai H., Yamaizumi Z., Kuchino Y., Nishimura S. Isolation of hydroxy-Y base from rat liver tRNAPhe. Nucleic Acids Res. 1979 Mar;6(3):993–999. doi: 10.1093/nar/6.3.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Kawakami M., Takemura S., Kondo T., Fukami T., Goto T. Chemical structure of a new modified nucleoside located in the anticodon of Bombyx mori glycine tRNA2. J Biochem. 1988 Jul;104(1):108–111. doi: 10.1093/oxfordjournals.jbchem.a122403. [DOI] [PubMed] [Google Scholar]
  86. Keith G., Glasser A. L., Desgrès J., Kuo K. C., Gehrke C. W. Identification and structural characterization of O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate in yeast methionine initiator tRNA. Nucleic Acids Res. 1990 Oct 25;18(20):5989–5993. doi: 10.1093/nar/18.20.5989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Khwaja T. A., Robins R. K. Purine nucleosides. XVI. Synthesis of the naturally occurring 2 -O-methylpurine ribonucleosides and related derivatives. J Am Chem Soc. 1966 Aug 5;88(15):3640–3643. doi: 10.1021/ja00967a031. [DOI] [PubMed] [Google Scholar]
  88. Kiesewetter S., Ott G., Sprinzl M. The role of modified purine 64 in initiator/elongator discrimination of tRNA(iMet) from yeast and wheat germ. Nucleic Acids Res. 1990 Aug 25;18(16):4677–4682. doi: 10.1093/nar/18.16.4677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Kimura-Harada F., Saneyoshi M., Nishimura S. 5-methyl-2-thiouridine: A new sulfur-containing minor constituent from rat liver glutamic acid and lysine tRNAs. FEBS Lett. 1971 Apr 2;13(6):335–338. doi: 10.1016/0014-5793(71)80254-5. [DOI] [PubMed] [Google Scholar]
  90. Kimura-Harada F., Von Minden D. L., McCloskey J. A., Nishimura S. N-((9- -D-ribofuranosylpurin-6-yl)-N-methylcarbamoyl) threonine, a modified nucleoside isolated from Escherichia coli threonine transfer ribonucleic acid. Biochemistry. 1972 Oct 10;11(21):3910–3915. doi: 10.1021/bi00771a012. [DOI] [PubMed] [Google Scholar]
  91. Kiss T., Antal M., Solymosy F. Plant small nuclear RNAs. II. U6 RNA and a 4.5SI-like RNA are present in plant nuclei. Nucleic Acids Res. 1987 Jan 26;15(2):543–560. doi: 10.1093/nar/15.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Klagsbrun M. An evolutionary study of the methylation of transfer and ribosomal ribonucleic acid in prokaryote and eukaryote organisms. J Biol Chem. 1973 Apr 10;248(7):2612–2620. [PubMed] [Google Scholar]
  93. Klootwijk J., Planta R. J. Analysis of the methylation sites in yeast ribosomal RNA. Eur J Biochem. 1973 Nov 15;39(2):325–333. doi: 10.1111/j.1432-1033.1973.tb03130.x. [DOI] [PubMed] [Google Scholar]
  94. Kondo T., Fukami T., Goto T., Kawakami M., Takemura S. Determination of structure and absolute configuration of a new modified nucleoside isolated from tRNA-2Gly of Bombyx mori by a total synthesis to be 5-(S-carboxy(hydroxy)methyl) uridine. Nucleic Acids Symp Ser. 1983;(12):127–130. [PubMed] [Google Scholar]
  95. Kowalak J. A., Pomerantz S. C., Crain P. F., McCloskey J. A. A novel method for the determination of post-transcriptional modification in RNA by mass spectrometry. Nucleic Acids Res. 1993 Sep 25;21(19):4577–4585. doi: 10.1093/nar/21.19.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Krol A., Gallinaro H., Lazar E., Jacob M., Branlant C. The nuclear 5S RNAs from chicken, rat and man. U5 RNAs are encoded by multiple genes. Nucleic Acids Res. 1981 Feb 25;9(4):769–787. doi: 10.1093/nar/9.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Kuchino Y., Ihara M., Yabusaki Y., Nishimura S. Initiator tRNAs from archaebacteria show common unique sequence characteristics. Nature. 1982 Aug 12;298(5875):684–685. doi: 10.1038/298684a0. [DOI] [PubMed] [Google Scholar]
  98. Kuchino Y., Kasai H., Yamaizumi Z., Nishimura S., Borek E. Under-modified Y base in a tRHAPhe isoacceptor observed in tumor cells. Biochim Biophys Acta. 1979 Nov 22;565(1):215–218. doi: 10.1016/0005-2787(79)90098-4. [DOI] [PubMed] [Google Scholar]
  99. LITTLEFIELD J. W., DUNN D. B. Natural occurrence of thymine and three methylated adenine bases in several ribonucleic acids. Nature. 1958 Jan 24;181(4604):254–255. doi: 10.1038/181254a0. [DOI] [PubMed] [Google Scholar]
  100. LITTLEFIELD J. W., DUNN D. B. The occurrence and distribution of thymine and three methylated-adenine bases in ribonucleic acids from several sources. Biochem J. 1958 Dec;70(4):642–651. doi: 10.1042/bj0700642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Lai C. J., Dahlberg J. E., Weisblum B. Structure of an inducibly methylatable nucleotide sequence in 23S ribosomal ribonucleic acid from erythromycin-resistant Staphylococcus aureus. Biochemistry. 1973 Jan 30;12(3):457–460. doi: 10.1021/bi00727a015. [DOI] [PubMed] [Google Scholar]
  102. Lau R. Y., Kennedy T. D., Lane B. G. Wheat-embryo ribonucleates. III. Modified nucleotide constituents in each of the 5.8S, 18S and 26S ribonucleates. Can J Biochem. 1974 Dec;52(12):1110–1123. doi: 10.1139/o74-155. [DOI] [PubMed] [Google Scholar]
  103. Liou R. F., Blumenthal T. trans-spliced Caenorhabditis elegans mRNAs retain trimethylguanosine caps. Mol Cell Biol. 1990 Apr;10(4):1764–1768. doi: 10.1128/mcb.10.4.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Lipsett M. N. The isolation of 4-thiouridylic acid from the soluble ribonucleic acid of Escherichia coli. J Biol Chem. 1965 Oct;240(10):3975–3978. [PubMed] [Google Scholar]
  105. Lis A. W., Passarge W. E. Isolation of 5-hydroxyuridine (iso-barbituridine) from yeast ribonucleic acids. Arch Biochem Biophys. 1966 Jun;114(3):593–595. doi: 10.1016/0003-9861(66)90384-5. [DOI] [PubMed] [Google Scholar]
  106. MADISON J. T., HOLLEY R. W. THE PRESENCE OF 5,6-DIHYDROURIDYLIC ACID IN YEAST "SOLUBLE" RIBONUCLEIC ACID. Biochem Biophys Res Commun. 1965 Jan 18;18:153–157. doi: 10.1016/0006-291x(65)90732-1. [DOI] [PubMed] [Google Scholar]
  107. MILES H. T. Infrared spectra and tautomeric structure in D20 solution of some pyrimidine nucleosides and nucleotides. Biochim Biophys Acta. 1956 Nov;22(2):247–253. doi: 10.1016/0006-3002(56)90147-0. [DOI] [PubMed] [Google Scholar]
  108. MacKay R. M., Doolittle W. F. Nucleotide sequences of Acanthamoeba castellanii 5S and 5.8S ribosomal ribonucleic acids: phylogenetic and comparative structural analyses. Nucleic Acids Res. 1981 Jul 24;9(14):3321–3334. doi: 10.1093/nar/9.14.3321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Maden B. E., Forbes J., de Jonge P., Klootwijk J. Presence of a hypermodified nucleotide in HeLa cell 18 S and Saccharomyces carlsbergensis 17 S ribosomal RNAs. FEBS Lett. 1975 Nov 1;59(1):60–63. doi: 10.1016/0014-5793(75)80341-3. [DOI] [PubMed] [Google Scholar]
  110. Maden B. E., Robertson J. S. Demonstration of the "5-8 S" ribosomal sequence in HeLa cell ribosomal precursor RNA. J Mol Biol. 1974 Aug 5;87(2):227–235. doi: 10.1016/0022-2836(74)90145-4. [DOI] [PubMed] [Google Scholar]
  111. Maden B. E., Salim M. The methylated nucleotide sequences in HELA cell ribosomal RNA and its precursors. J Mol Biol. 1974 Sep 5;88(1):133–152. doi: 10.1016/0022-2836(74)90299-x. [DOI] [PubMed] [Google Scholar]
  112. McCloskey J. A., Crain P. F., Edmonds C. G., Gupta R., Hashizume T., Phillipson D. W., Stetter K. O. Structure determination of a new fluorescent tricyclic nucleoside from archaebacterial tRNA. Nucleic Acids Res. 1987 Jan 26;15(2):683–693. doi: 10.1093/nar/15.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Miyazaki M. Studies on the nucleotide sequence of pseudouridine-containing 5S RNA from Saccharomyces cerevisiae. J Biochem. 1974 Jun;75(6):1407–1410. doi: 10.1093/oxfordjournals.jbchem.a130532. [DOI] [PubMed] [Google Scholar]
  114. Moriya J., Yokogawa T., Wakita K., Ueda T., Nishikawa K., Crain P. F., Hashizume T., Pomerantz S. C., McCloskey J. A., Kawai G. A novel modified nucleoside found at the first position of the anticodon of methionine tRNA from bovine liver mitochondria. Biochemistry. 1994 Mar 1;33(8):2234–2239. doi: 10.1021/bi00174a033. [DOI] [PubMed] [Google Scholar]
  115. Muramatsu T., Yokoyama S., Horie N., Matsuda A., Ueda T., Yamaizumi Z., Kuchino Y., Nishimura S., Miyazawa T. A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J Biol Chem. 1988 Jul 5;263(19):9261–9267. doi: 10.1351/pac198961030573. [DOI] [PubMed] [Google Scholar]
  116. Murao K., Hasegawa T., Ishikura H. 5-methoxyuridine: a new minor constituent located in the first position of the anticodon of tRNAAla, tRNAThr, and tRNAVal from Bacillus subtilis. Nucleic Acids Res. 1976 Oct;3(10):2851–2860. doi: 10.1093/nar/3.10.2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Murao K., Saneyoshi M., Harada F., Nishimura S. Uridin-5-oxy acetic acid: a new minor constituent from E. coli valine transfer RNA I. Biochem Biophys Res Commun. 1970 Feb 20;38(4):657–662. doi: 10.1016/0006-291x(70)90631-5. [DOI] [PubMed] [Google Scholar]
  118. Nakanishi K., Blobstein S., Funamizu M., Furutachi N., Van Lear G., Grunberger D., Lanks K. W., Weinstein I. B. Structure of the "peroxy-Y base" from liver tRNA Phe . Nat New Biol. 1971 Nov 24;234(47):107–109. doi: 10.1038/newbio234107b0. [DOI] [PubMed] [Google Scholar]
  119. Nakanishi K., Furutachi N., Funamizu M., Grunberger D., Weinstein I. B. Structure of the fluorescent Y base from yeast phenylalanine transfer ribonucleic acid. J Am Chem Soc. 1970 Dec 30;92(26):7617–7619. doi: 10.1021/ja00729a035. [DOI] [PubMed] [Google Scholar]
  120. Nazar R. N., Sitz T. O., Busch H. Heterogeneity in the methylation and 5' termini of Novikoff ascites hepatoma 5.8 S ribosomal RNA. FEBS Lett. 1974 Sep 1;45(1):206–212. doi: 10.1016/0014-5793(74)80846-x. [DOI] [PubMed] [Google Scholar]
  121. Nichols J. L., Lane B. G. N-4-methyl-2'-O-methyl cytidine and other methyl-substituted nucleoside constituents of Escherichia coli ribosomal and soluble RNA. Biochim Biophys Acta. 1966 Jun 22;119(3):649–651. doi: 10.1016/0005-2787(66)90147-x. [DOI] [PubMed] [Google Scholar]
  122. Noguchi S., Yamaizumi Z., Ohgi T., Goto T., Nishimura Y., Hirota Y., Nishimura S. Isolation of Q nucleoside precursor present in tRNA of an E. coli mutant and its characterization as 7-(cyano)-7-deazaguanosine. Nucleic Acids Res. 1978 Nov;5(11):4215–4223. doi: 10.1093/nar/5.11.4215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Ohashi Z., Maeda M., McCloskey J. A., Nishimura S. 3-(3-Amino-3-carboxypropyl)uridine: a novel modified nucleoside isolated from Escherichia coli phenylalanine transfer ribonucleic acid. Biochemistry. 1974 Jun 4;13(12):2620–2625. doi: 10.1021/bi00709a023. [DOI] [PubMed] [Google Scholar]
  124. Okada N., Noguchi S., Nishimura S., Ohgi T., Goto T., Crain P. F., McCloskey J. A. Structure determination of a nucleoside Q precursor isolated from E. coli tRNA: 7-(aminomethyl)-7-deazaguanosine. Nucleic Acids Res. 1978 Jul;5(7):2289–2296. doi: 10.1093/nar/5.7.2289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Pang H., Ihara M., Kuchino Y., Nishimura S., Gupta R., Woese C. R., McCloskey J. A. Structure of a modified nucleoside in archaebacterial tRNA which replaces ribosylthymine. 1-Methylpseudouridine. J Biol Chem. 1982 Apr 10;257(7):3589–3592. [PubMed] [Google Scholar]
  126. Phillipson D. W., Edmonds C. G., Crain P. F., Smith D. L., Davis D. R., McCloskey J. A. Isolation and structure elucidation of an epoxide derivative of the hypermodified nucleoside queuosine from Escherichia coli transfer RNA. J Biol Chem. 1987 Mar 15;262(8):3462–3471. [PubMed] [Google Scholar]
  127. Playtis A. J., Leonard N. J. The synthesis of ribosyl-cis-zeatin and thin layer chromatographic separation of the cis and trans isomers of ribosylzeatin. Biochem Biophys Res Commun. 1971 Oct 1;45(1):1–5. doi: 10.1016/0006-291x(71)90041-6. [DOI] [PubMed] [Google Scholar]
  128. Pope W. T., Brown A., Reeves R. H. The identification of the tRNA substrates for the supK tRNA methylase. Nucleic Acids Res. 1978 Mar;5(3):1041–1057. doi: 10.1093/nar/5.3.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Reddy D. M., Crain P. F., Edmonds C. G., Gupta R., Hashizume T., Stetter K. O., Widdel F., McCloskey J. A. Structure determination of two new amino acid-containing derivatives of adenosine from tRNA of thermophilic bacteria and archaea. Nucleic Acids Res. 1992 Nov 11;20(21):5607–5615. doi: 10.1093/nar/20.21.5607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Reddy R., Henning D., Liu M. H., Spector D., Busch H. Identification and characterization of a polyadenylated small RNA (s-poly A+ RNA) in dinoflagellates. Biochem Biophys Res Commun. 1985 Mar 15;127(2):552–557. doi: 10.1016/s0006-291x(85)80195-9. [DOI] [PubMed] [Google Scholar]
  131. Reddy R., Ro-Choi T. S., Henning D., Shibata H., Choi Y. C., Busch H. MOdified nucleosides of nuclear and nucleolar low molecular weight ribonucleic acid. J Biol Chem. 1972 Nov 25;247(22):7245–7250. [PubMed] [Google Scholar]
  132. Reddy R., Singh R., Shimba S. Methylated cap structures in eukaryotic RNAs: structure, synthesis and functions. Pharmacol Ther. 1992;54(3):249–267. doi: 10.1016/0163-7258(92)90002-h. [DOI] [PubMed] [Google Scholar]
  133. Ro-Choi T. S., Choi Y. C., Henning D., McCloskey J., Busch H. Nucleotide sequence of U-2 ribonucleic acid. The sequence of the 5'-terminal oligonucleotide. J Biol Chem. 1975 May 25;250(10):3921–3928. [PubMed] [Google Scholar]
  134. Robins M. J., Hall R. H., Thedford R. N-6-(delta-3-isopentenyl) adenosine. A component of the transfer ribonucleic acid of yeast and of mammalian tissue, methods of isolation, and characterization. Biochemistry. 1967 Jun;6(6):1837–1848. doi: 10.1021/bi00858a035. [DOI] [PubMed] [Google Scholar]
  135. Robins M. J., MacCoss M., Lee A. S. Nucleic acid related compounds. 20. Sugar, base doubly modified nucleosides at the 5'-terminal "cap" of mRNAs and in nuclear RNA. Biochem Biophys Res Commun. 1976 May 17;70(2):356–363. doi: 10.1016/0006-291x(76)91053-6. [DOI] [PubMed] [Google Scholar]
  136. Robins M. J., Naik S. R., Lee A. S. Nucleic acid related compounds. 12. The facile and high-yield stannous chloride catalyzed monomethylation of the cis-glycol system of nucleosides by diazomethane. J Org Chem. 1974 Jun 28;39(13):1891–1899. doi: 10.1021/jo00927a022. [DOI] [PubMed] [Google Scholar]
  137. Rottman F., Shatkin A. J., Perry R. P. Sequences containing methylated nucleotides at the 5' termini of messenger RNAs: possible implications for processing. Cell. 1974 Nov;3(3):197–199. doi: 10.1016/0092-8674(74)90131-7. [DOI] [PubMed] [Google Scholar]
  138. Rubin G. M. The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid. J Biol Chem. 1973 Jun 10;248(11):3860–3875. [PubMed] [Google Scholar]
  139. SCANNELL J. P., CRESTFIELD A. M., ALLEN F. W. Methylation studies on various uracil derivatives and on an isomer of uridine isolated from ribonucleic acids. Biochim Biophys Acta. 1959 Apr;32:406–412. doi: 10.1016/0006-3002(59)90613-4. [DOI] [PubMed] [Google Scholar]
  140. SINGH H., LANE B. G. THE ALKALI-STABLE DINUCLEOTIDE SEQUENCES IN 18S+28S RIBONUCLEATES FROM WHEAT GERM. Can J Biochem. 1964 Jul;42:1011–1021. doi: 10.1139/o64-112. [DOI] [PubMed] [Google Scholar]
  141. SMITH J. D., DUNN D. B. An additional sugar component of ribonucleic acids. Biochim Biophys Acta. 1959 Feb;31(2):573–575. doi: 10.1016/0006-3002(59)90045-9. [DOI] [PubMed] [Google Scholar]
  142. SMITH J. D., DUNN D. B. The occurrence of methylated guanines in ribonucleic acids from several sources. Biochem J. 1959 Jun;72(2):294–301. doi: 10.1042/bj0720294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. STARR J. L., FEFFERMAN R. THE OCCURRENCE OF METHYLATED BASES IN RIBOSOMAL RIBONUCLEIC ACID OF ESCHERICHIA COLI K12 W-6. J Biol Chem. 1964 Oct;239:3457–3461. [PubMed] [Google Scholar]
  144. STARR J. L., FEFFERMAN R. THE OCCURRENCE OF METHYLATED BASES IN RIBOSOMAL RIBONUCLEIC ACID OF ESCHERICHIA COLI K12 W-6. J Biol Chem. 1964 Oct;239:3457–3461. [PubMed] [Google Scholar]
  145. Sakamoto K., Kawai G., Niimi T., Satoh T., Sekine M., Yamaizumi Z., Nishimura S., Miyazawa T., Yokoyama S. A modified uridine in the first position of the anticodon of a minor species of arginine tRNA, the argU gene product, from Escherichia coli. Eur J Biochem. 1993 Sep 1;216(2):369–375. doi: 10.1111/j.1432-1033.1993.tb18154.x. [DOI] [PubMed] [Google Scholar]
  146. Saponara A. G., Enger M. D. Occurrence of N2,N2,7-trimethylguanosine in minor RNA species of a mammalian cell line. Nature. 1969 Sep 27;223(5213):1365–1366. doi: 10.1038/2231365a0. [DOI] [PubMed] [Google Scholar]
  147. Saponara A. G., Enger M. D. The isolation from ribonucleic acid of substituted uridines containing alpha-aminobutyrate moieties derived from methionine. Biochim Biophys Acta. 1974 Apr 27;349(1):61–77. doi: 10.1016/0005-2787(74)90009-4. [DOI] [PubMed] [Google Scholar]
  148. Schweizer M. P., Chheda G. B., Baczynskyj L., Hall R. H. Aminoacyl nucleosides. VII. N-(Purin-6-ylcarbamoyl)threonine. A new component of transfer ribonucleic acid. Biochemistry. 1969 Aug;8(8):3283–3289. doi: 10.1021/bi00836a023. [DOI] [PubMed] [Google Scholar]
  149. Schweizer M. P., McGrath K., Baczynskyj L. The isolation and characterization of N-[9-(beta-D-ribofuranosyl)-purin-6-ylcarbamoyl]glycine from yeast transfer RNA. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1046–1052. doi: 10.1016/0006-291x(70)90899-5. [DOI] [PubMed] [Google Scholar]
  150. Shibata H., Ro-Choi T. S., Reddy R., Choi Y. C., Henning D., Busch H. The primary nucleotide sequence of nuclear U-2 ribonucleic acid. The 5'-terminal portion of the molecule. J Biol Chem. 1975 May 25;250(10):3909–3920. [PubMed] [Google Scholar]
  151. Singh R., Reddy R. Gamma-monomethyl phosphate: a cap structure in spliceosomal U6 small nuclear RNA. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8280–8283. doi: 10.1073/pnas.86.21.8280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Sommer S., Salditt-Georgieff M., Bachenheimer S., Darnell J. E., Furuichi Y., Morgan M., Shatkin A. J. The methylation of adenovirus-specific nuclear and cytoplasmic RNA. Nucleic Acids Res. 1976 Mar;3(3):749–765. doi: 10.1093/nar/3.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Srivastava R., Gopinathan K. P. Ribosomal RNA methylation in Mycobacterium smegmatis SN2. Biochem Int. 1987 Dec;15(6):1179–1188. [PubMed] [Google Scholar]
  154. Steinberg S., Misch A., Sprinzl M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1993 Jul 1;21(13):3011–3015. doi: 10.1093/nar/21.13.3011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Thomas G., Gordon J., Rogg H. N4-Acetylcytidine. A previously unidentified labile component of the small subunit of eukaryotic ribosomes. J Biol Chem. 1978 Feb 25;253(4):1101–1105. [PubMed] [Google Scholar]
  156. Tumaitis T. D., Lane B. G. Differential labelling of the carboxymethyl and methyl substituents of 5-carboxymethyluridine methyl ester, a trace nucleoside constituent of yeast transfer RNA. Biochim Biophys Acta. 1970 Dec 14;224(2):391–403. doi: 10.1016/0005-2787(70)90572-1. [DOI] [PubMed] [Google Scholar]
  157. Ueda T., Iida Y., Ikeda K., Mizuno Y. Synthesis of 2,4-dithiouridine and 2-thiocytidine. Chem Pharm Bull (Tokyo) 1966 Jun;14(6):666–667. [PubMed] [Google Scholar]
  158. Vorbrüggen H., Krolikiewicz K. Synthesis of 5-methylaminomethyl-2-thiouridine, a rare nucleoside from t-RNA. Angew Chem Int Ed Engl. 1975 Apr;14(4):255–256. doi: 10.1002/anie.197502551. [DOI] [PubMed] [Google Scholar]
  159. Wei C. M., Gershowitz A., Moss B. Methylated nucleotides block 5' terminus of HeLa cell messenger RNA. Cell. 1975 Apr;4(4):379–386. doi: 10.1016/0092-8674(75)90158-0. [DOI] [PubMed] [Google Scholar]
  160. Wittwer A. J., Tsai L., Ching W. M., Stadtman T. C. Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine. Biochemistry. 1984 Sep 25;23(20):4650–4655. doi: 10.1021/bi00315a021. [DOI] [PubMed] [Google Scholar]
  161. Woese C. R., Gutell R., Gupta R., Noller H. F. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev. 1983 Dec;47(4):621–669. doi: 10.1128/mr.47.4.621-669.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. YU C. T., ALLEN F. W. Studies on an isomer of uridine isolated from ribonucleic acids. Biochim Biophys Acta. 1959 Apr;32:393–406. doi: 10.1016/0006-3002(59)90612-2. [DOI] [PubMed] [Google Scholar]
  163. Yamada Y., Murao K., Ishikura H. 5-(carboxymethylaminomethyl)-2-thiouridine, a new modified nucleoside found at the first letter position of the anticodon. Nucleic Acids Res. 1981 Apr 24;9(8):1933–1939. doi: 10.1093/nar/9.8.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES