Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Jun 25;22(12):2209–2216. doi: 10.1093/nar/22.12.2209

Use of the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp) and related protecting groups in oligoribonucleotide synthesis: stability of internucleotide linkages to aqueous acid.

D C Capaldi 1, C B Reese 1
PMCID: PMC523675  PMID: 8036146

Abstract

The internucleotide linkage of uridylyl-(3'-->5')-uridine (r[UpU]) does not undergo detectable hydrolytic cleavage or migration in ca. 24 hr in 0.01 mol dm-3 hydrochloric acid (pH 2.0) at 25 degrees C. However, unlike r[UpU] and previously examined relatively high molecular weight oligoribonucleotides, oligouridylic acids are very sensitive to aqueous acid under the latter conditions (pH 2.0, 25 degrees C). Thus when the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp) group is used to protect the 2'-hydroxy functions in the synthesis of r[(Up)9U] and r[(Up)19U], the final unblocking process must be carried out above pH 3 if hydrolytic cleavage and migration are to be avoided. It is demonstrated that the rate of acid-catalyzed hydrolysis of the internucleotide linkages of oligoribonucleotides is sequence dependent. As Fpmp groups may be virtually completely removed from average partially-protected oligoribonucleotides within ca. 24 hr at pH 3 and 25 degrees C, it is concluded that Fpmp is a suitable 2'-protecting group even in the synthesis of particularly acid-sensitive sequences.

Full text

PDF
2209

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beijer B., Sulston I., Sproat B. S., Rider P., Lamond A. I., Neuner P. Synthesis and applications of oligoribonucleotides with selected 2'-O-methylation using the 2'-O-[1-(2-fluorophenyl)-4-methoxypiperidin-4-yl] protecting group. Nucleic Acids Res. 1990 Sep 11;18(17):5143–5151. doi: 10.1093/nar/18.17.5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Griffin B. E., Jarman M., Reese C. B. The synthesis of oligoribonucleotides. IV. Preparation of dinucleoside phosphates from 2',5'-protected ribonucleoside derivatives. Tetrahedron. 1968 Jan;24(2):639–662. doi: 10.1016/0040-4020(68)88015-9. [DOI] [PubMed] [Google Scholar]
  3. Jeffries A. C., Symons R. H. A catalytic 13-mer ribozyme. Nucleic Acids Res. 1989 Feb 25;17(4):1371–1377. doi: 10.1093/nar/17.4.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rozners E., Westman E., Strömberg R. Evaluation of 2'-hydroxyl protection in RNA-synthesis using the H-phosphonate approach. Nucleic Acids Res. 1994 Jan 11;22(1):94–99. doi: 10.1093/nar/22.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sakatsume O., Ohtsuki M., Takaku H., Reese C. B. Solid phase synthesis of oligoribonucleotides using the 1-[(2-chloro-4-methyl)phenyl]-4-methoxypiperidin-4-yl (Ctmp) group for the protection of the 2'-hydroxy functions and the H-phosphonate approach. Nucleic Acids Res. 1989 May 25;17(10):3689–3697. doi: 10.1093/nar/17.10.3689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES