Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Jun 25;22(12):2217–2221. doi: 10.1093/nar/22.12.2217

Nuclease resistance of an extraordinarily thermostable mini-hairpin DNA fragment, d(GCGAAGC) and its application to in vitro protein synthesis.

S Yoshizawa 1, T Ueda 1, Y Ishido 1, K Miura 1, K Watanabe 1, I Hirao 1
PMCID: PMC523676  PMID: 8036147

Abstract

The nuclease resistance of a short, thermostable mini-hairpin, d(GCGAAGC), and other related hairpins was examined. Hairpins possessing a purine-rich (GAA) or (GAAA) loop appeared to be more resistant against nucleases than those with a pyrimidine-rich loop or single-stranded oligomers. Among 8 kinds of oligodeoxyribonucleotides examined, the fragment most resistant against nucleases was a hairpin with the sequence of d(CGCGAAGCG). This hairpin was then utilized for the stabilization of mRNA in an in vitro translation system; the 3'-terminal region of an mRNA was hybridized with an oligodeoxyribonucleotide including the sequence complementary to the 3'-terminus of the mRNA tagged with the nuclease-resistant d(CGCGAAGCG) hairpin sequence. By using this method, dihydrofolate reductase (DHFR) mRNA was stabilized against nucleases contaminating a cell-free translation system of E.coli, with a consequent increase in protein synthesis efficiency of 200%.

Full text

PDF
2217

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake K. R., Murakami A., Miller P. S. Inhibition of rabbit globin mRNA translation by sequence-specific oligodeoxyribonucleotides. Biochemistry. 1985 Oct 22;24(22):6132–6138. doi: 10.1021/bi00343a015. [DOI] [PubMed] [Google Scholar]
  2. Cazenave C., Stein C. A., Loreau N., Thuong N. T., Neckers L. M., Subasinghe C., Hélène C., Cohen J. S., Toulmé J. J. Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides. Nucleic Acids Res. 1989 Jun 12;17(11):4255–4273. doi: 10.1093/nar/17.11.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chattopadhyaya R., Ikuta S., Grzeskowiak K., Dickerson R. E. X-ray structure of a DNA hairpin molecule. Nature. 1988 Jul 14;334(6178):175–179. doi: 10.1038/334175a0. [DOI] [PubMed] [Google Scholar]
  4. Endo Y., Otsuzuki S., Ito K., Miura K. Production of an enzymatic active protein using a continuous flow cell-free translation system. J Biotechnol. 1992 Sep;25(3):221–230. doi: 10.1016/0168-1656(92)90157-5. [DOI] [PubMed] [Google Scholar]
  5. FRAENKEL-CONRAT H., SINGER B., TSUGITA A. Purification of viral RNA by means of bentonite. Virology. 1961 May;14:54–58. doi: 10.1016/0042-6822(61)90131-3. [DOI] [PubMed] [Google Scholar]
  6. Hare D. R., Reid B. R. Three-dimensional structure of a DNA hairpin in solution: two-dimensional NMR studies and distance geometry calculations on d(CGCGTTTTCGCG). Biochemistry. 1986 Sep 9;25(18):5341–5350. doi: 10.1021/bi00366a053. [DOI] [PubMed] [Google Scholar]
  7. Hilbers C. W., Haasnoot C. A., de Bruin S. H., Joordens J. J., van der Marel G. A., van Boom J. H. Hairpin formation in synthetic oligonucleotides. Biochimie. 1985 Jul-Aug;67(7-8):685–695. doi: 10.1016/s0300-9084(85)80156-5. [DOI] [PubMed] [Google Scholar]
  8. Hirao I., Kawai G., Yoshizawa S., Nishimura Y., Ishido Y., Watanabe K., Miura K. Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat. Nucleic Acids Res. 1994 Feb 25;22(4):576–582. doi: 10.1093/nar/22.4.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirao I., Nishimura Y., Tagawa Y., Watanabe K., Miura K. Extraordinarily stable mini-hairpins: electrophoretical and thermal properties of the various sequence variants of d(GCGAAAGC) and their effect on DNA sequencing. Nucleic Acids Res. 1992 Aug 11;20(15):3891–3896. doi: 10.1093/nar/20.15.3891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirao I., Yoshizawa S., Miura K. Stabilization of mRNA in an Escherichia coli cell-free translation system. FEBS Lett. 1993 Apr 26;321(2-3):169–172. doi: 10.1016/0014-5793(93)80101-y. [DOI] [PubMed] [Google Scholar]
  11. Khan I. M., Coulson J. M. A novel method to stabilise antisense oligonucleotides against exonuclease degradation. Nucleic Acids Res. 1993 Jun 25;21(12):2957–2958. doi: 10.1093/nar/21.12.2957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kigawa T., Yokoyama S. A continuous cell-free protein synthesis system for coupled transcription-translation. J Biochem. 1991 Aug;110(2):166–168. doi: 10.1093/oxfordjournals.jbchem.a123551. [DOI] [PubMed] [Google Scholar]
  13. Ohta T., Sarkar S., Thach R. E. The role of guanosine 5'-triphosphate in the initiation of peptide synthesis. 3. Binding of formylmethionyl-tRNA to ribosomes. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1638–1644. doi: 10.1073/pnas.58.4.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ovodov SYu, Alakhov YuB mRNA acetylated at 2'-OH-groups of ribose residues is functionally active in the cell-free translation system from wheat embryos. FEBS Lett. 1990 Sep 17;270(1-2):111–114. doi: 10.1016/0014-5793(90)81246-k. [DOI] [PubMed] [Google Scholar]
  15. Sampson J. R., Uhlenbeck O. C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033–1037. doi: 10.1073/pnas.85.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Senior M. M., Jones R. A., Breslauer K. J. Influence of loop residues on the relative stabilities of DNA hairpin structures. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6242–6246. doi: 10.1073/pnas.85.17.6242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shibahara S., Mukai S., Morisawa H., Nakashima H., Kobayashi S., Yamamoto N. Inhibition of human immunodeficiency virus (HIV-1) replication by synthetic oligo-RNA derivatives. Nucleic Acids Res. 1989 Jan 11;17(1):239–252. doi: 10.1093/nar/17.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spirin A. S., Baranov V. I., Ryabova L. A., Ovodov S. Y., Alakhov Y. B. A continuous cell-free translation system capable of producing polypeptides in high yield. Science. 1988 Nov 25;242(4882):1162–1164. doi: 10.1126/science.3055301. [DOI] [PubMed] [Google Scholar]
  19. Sproat B. S., Lamond A. I., Beijer B., Neuner P., Ryder U. Highly efficient chemical synthesis of 2'-O-methyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Res. 1989 May 11;17(9):3373–3386. doi: 10.1093/nar/17.9.3373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stein C. A., Subasinghe C., Shinozuka K., Cohen J. S. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 1988 Apr 25;16(8):3209–3221. doi: 10.1093/nar/16.8.3209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tang J. Y., Temsamani J., Agrawal S. Self-stabilized antisense oligodeoxynucleotide phosphorothioates: properties and anti-HIV activity. Nucleic Acids Res. 1993 Jun 11;21(11):2729–2735. doi: 10.1093/nar/21.11.2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ueda T., Tohda H., Chikazumi N., Eckstein F., Watanabe K. Phosphorothioate-containing RNAs show mRNA activity in the prokaryotic translation systems in vitro. Nucleic Acids Res. 1991 Feb 11;19(3):547–552. doi: 10.1093/nar/19.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. von Gabain A., Belasco J. G., Schottel J. L., Chang A. C., Cohen S. N. Decay of mRNA in Escherichia coli: investigation of the fate of specific segments of transcripts. Proc Natl Acad Sci U S A. 1983 Feb;80(3):653–657. doi: 10.1073/pnas.80.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES