Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Aug 25;22(16):3418–3422. doi: 10.1093/nar/22.16.3418

Directly labeled DNA probes using fluorescent nucleotides with different length linkers.

Z Zhu 1, J Chao 1, H Yu 1, A S Waggoner 1
PMCID: PMC523738  PMID: 8078779

Abstract

Directly labeled fluorescent DNA probes have been made by nick translation and PCR using dUTP attached to the fluorescent label, Cy3, with different length linkers. With preparation of probes by PCR we find that linker length affects the efficiency of incorporation of Cy3-dUTP, the yield of labeled probe, and the signal intensity of labeled probes hybridized to chromosome target sequences. For nick translation and PCR, both the level of incorporation and the hybridization fluorescence signal increased in parallel when the length of the linker arm is increased. Under optimal conditions, PCR yielded more densely labeled probes, however, the yield of PCR labeled probe decreased with greater linear density of labeling. By using a Cy3-modified dUTP with the longest linker under optimal conditions it was possible to label up to 28% of the possible substitution sites on the target DNA with reasonable yield by PCR and 18% by nick translation. A mechanism involving steric interactions between the polymerase, cyanine-labeled sites on template and extending chains and the modified dUTP substrate is proposed to explain the inverse correlation between the labeling efficiency and the yield of DNA probe synthesis by PCR.

Full text

PDF
3418

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Celeda D., Bettag U., Cremer C. PCR amplification and simultaneous digoxigenin incorporation of long DNA probes for fluorescence in situ hybridization. Biotechniques. 1992 Jan;12(1):98–102. [PubMed] [Google Scholar]
  2. Epstein N. D., Karlsson S., O'Brien S., Modi W., Moulton A., Nienhuis A. W. A new moderately repetitive DNA sequence family of novel organization. Nucleic Acids Res. 1987 Mar 11;15(5):2327–2341. doi: 10.1093/nar/15.5.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ernst L. A., Gupta R. K., Mujumdar R. B., Waggoner A. S. Cyanine dye labeling reagents for sulfhydryl groups. Cytometry. 1989 Jan;10(1):3–10. doi: 10.1002/cyto.990100103. [DOI] [PubMed] [Google Scholar]
  4. Finckh U., Lingenfelter P. A., Myerson D. Producing single-stranded DNA probes with the Taq DNA polymerase: a high yield protocol. Biotechniques. 1991 Jan;10(1):35-6, 38-9. [PubMed] [Google Scholar]
  5. Gebeyehu G., Rao P. Y., SooChan P., Simms D. A., Klevan L. Novel biotinylated nucleotide--analogs for labeling and colorimetric detection of DNA. Nucleic Acids Res. 1987 Jun 11;15(11):4513–4534. doi: 10.1093/nar/15.11.4513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. John H. A., Birnstiel M. L., Jones K. W. RNA-DNA hybrids at the cytological level. Nature. 1969 Aug 9;223(5206):582–587. doi: 10.1038/223582a0. [DOI] [PubMed] [Google Scholar]
  7. Lanzillo J. J. Chemiluminescent nucleic acid detection with digoxigenin-labeled probes: a model system with probes for angiotensin converting enzyme which detect less than one attomole of target DNA. Anal Biochem. 1991 Apr;194(1):45–53. doi: 10.1016/0003-2697(91)90149-n. [DOI] [PubMed] [Google Scholar]
  8. Leary J. J., Brigati D. J., Ward D. C. Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4045–4049. doi: 10.1073/pnas.80.13.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mujumdar R. B., Ernst L. A., Mujumdar S. R., Lewis C. J., Waggoner A. S. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug Chem. 1993 Mar-Apr;4(2):105–111. doi: 10.1021/bc00020a001. [DOI] [PubMed] [Google Scholar]
  10. Pardue M. L., Gall J. G. Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A. 1969 Oct;64(2):600–604. doi: 10.1073/pnas.64.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ried T., Baldini A., Rand T. C., Ward D. C. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1388–1392. doi: 10.1073/pnas.89.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ried T., Baldini A., Rand T. C., Ward D. C. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1388–1392. doi: 10.1073/pnas.89.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Slupphaug G., Alseth I., Eftedal I., Volden G., Krokan H. E. Low incorporation of dUMP by some thermostable DNA polymerases may limit their use in PCR amplifications. Anal Biochem. 1993 May 15;211(1):164–169. doi: 10.1006/abio.1993.1248. [DOI] [PubMed] [Google Scholar]
  14. Trask B. J. DNA sequence localization in metaphase and interphase cells by fluorescence in situ hybridization. Methods Cell Biol. 1991;35:3–35. doi: 10.1016/s0091-679x(08)60567-1. [DOI] [PubMed] [Google Scholar]
  15. Wetmur J. G. DNA probes: applications of the principles of nucleic acid hybridization. Crit Rev Biochem Mol Biol. 1991;26(3-4):227–259. doi: 10.3109/10409239109114069. [DOI] [PubMed] [Google Scholar]
  16. Yu H., Ernst L., Wagner M., Waggoner A. Sensitive detection of RNAs in single cells by flow cytometry. Nucleic Acids Res. 1992 Jan 11;20(1):83–88. doi: 10.1093/nar/20.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES