Abstract
Products formed from defined oligodeoxyribonucleotide tetramers (oligonucleotides) by depurination at pH 5.0 and 90 degrees C followed by chain breakage at the resulting apurinic sites (AP sites) were assigned by reversed phase HPLC. Through kinetic analysis, rate constants of depurination and subsequent chain breakage reactions were measured. Depurination of the oligonucleotides with purine bases locating at the terminal positions was several times faster than those with purines at the internal ones. The pKa values for the N7 of the G residues and the activation energies of the depurination were essentially independent of the position of the bases. The frequency factor was found to be responsible for the observed difference of the depurination rates. In contrast, the chain breakage by beta-elimination was several times faster for the AP sites formed at the internal positions than those at the 5'-terminal positions. It is suggested that an electron withdrawing phosphate group attached to the 5'-side of an AP site facilitates the chain cleavage.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cantor C. R., Warshaw M. M., Shapiro H. Oligonucleotide interactions. 3. Circular dichroism studies of the conformation of deoxyoligonucleotides. Biopolymers. 1970;9(9):1059–1077. doi: 10.1002/bip.1970.360090909. [DOI] [PubMed] [Google Scholar]
- Doetsch P. W., Cunningham R. P. The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res. 1990 Sep-Nov;236(2-3):173–201. doi: 10.1016/0921-8777(90)90004-o. [DOI] [PubMed] [Google Scholar]
- GREER S., ZAMENHOF S. Studies on depurination of DNA by heat. J Mol Biol. 1962 Mar;4:123–141. doi: 10.1016/s0022-2836(62)80046-1. [DOI] [PubMed] [Google Scholar]
- Garrett E. R., Mehta P. J. Solvolysis of adenine nucleosides. I. Effects of sugars and adenine substituents on acid solvolyses. J Am Chem Soc. 1972 Nov 29;94(24):8532–8541. doi: 10.1021/ja00779a040. [DOI] [PubMed] [Google Scholar]
- Hevesi L., Wolfson-Davidson E., Nagy J. B., Nagy O. B., Bruylants A. Contribution to the mechanism of the acid-catalyzed hydrolysis of purine nucleosides. J Am Chem Soc. 1972 Jun 28;94(13):4715–4720. doi: 10.1021/ja00768a046. [DOI] [PubMed] [Google Scholar]
- Lafleur M. V., Woldhuis J., Loman H. Some characteristics of apurinic sites in single- and double-stranded biologically active phi X174 DNA. Nucleic Acids Res. 1981 Dec 11;9(23):6591–6599. doi: 10.1093/nar/9.23.6591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog Nucleic Acid Res Mol Biol. 1979;22:135–192. doi: 10.1016/s0079-6603(08)60800-4. [DOI] [PubMed] [Google Scholar]
- Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. doi: 10.1021/bi00769a018. [DOI] [PubMed] [Google Scholar]
- Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. doi: 10.1146/annurev.ge.20.120186.001221. [DOI] [PubMed] [Google Scholar]
- ROGER M., HOTCHKISS R. D. Selective heat inactivation of pneumococcal transforming deoxyribonucleate. Proc Natl Acad Sci U S A. 1961 May 15;47:653–669. doi: 10.1073/pnas.47.5.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg J. M., Seeman N. C., Day R. O., Rich A. RNA double-helical fragments at atomic resolution. II. The crystal structure of sodium guanylyl-3',5'-cytidine nonahydrate. J Mol Biol. 1976 Jun 14;104(1):145–167. doi: 10.1016/0022-2836(76)90006-1. [DOI] [PubMed] [Google Scholar]
- TAMM C., HODES M. E., CHARGAFF E. The formation apurinic acid from the desoxyribonucleic acid of calf thymus. J Biol Chem. 1952 Mar;195(1):49–63. [PubMed] [Google Scholar]
- TAMM C., SHAPIRO H. S., LIPSHITZ R., CHARGAFF E. Distribution density of nucleotides within a desoxyribonucleic acid chain. J Biol Chem. 1953 Aug;203(2):673–688. [PubMed] [Google Scholar]
- TSUBOI M., KYOGOKU Y., SHIMANOUCHI T. Infrared absorption spectra of protonated and deprotonated nucleosides. Biochim Biophys Acta. 1962 Jan 22;55:1–12. doi: 10.1016/0006-3002(62)90925-3. [DOI] [PubMed] [Google Scholar]
- Vodicka P., Hemminki K. Phosphodiester cleavage in apurinic dinucleotides. Chem Biol Interact. 1988;68(3-4):153–164. doi: 10.1016/0009-2797(88)90013-0. [DOI] [PubMed] [Google Scholar]
- Zoltewicz J. A., Clark D. F., Sharpless T. W., Grahe G. Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J Am Chem Soc. 1970 Mar 25;92(6):1741–1749. doi: 10.1021/ja00709a055. [DOI] [PubMed] [Google Scholar]