Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Nov 25;22(23):5128–5134. doi: 10.1093/nar/22.23.5128

Conformation, hydrogen bonding and aggregate formation of guanosine 5'-monophosphate and guanosine in dimethylsulfoxide.

R T West 1, L A Garza 2nd 1, W R Winchester 1, J A Walmsley 1
PMCID: PMC523787  PMID: 7800509

Abstract

The tetrabutylammonium salt of guanosine 5'-monophosphate (5'-GMP) dissolves in DMSO-d6 forming aggregated species which exhibit some properties of reverse micelles. 1H NOESY experiments show that the 5'-GMP adopts the syn conformation about the glycosidic bond. Molecular mechanics calculations reveal a stable structure with this conformation in which the phosphate group and the amino group of the base are in close enough proximity to hydrogen bond. In contrast inosine 5'-monophosphate in DMSO-d6, which has no NH2 group for hydrogen bond stabilization of the syn conformation, is shown by NMR to have the anti structure. Guanosine in DMSO-d6 behaves differently from 5'-GMP. Guanosine adopts the anti conformation and forms a symmetric dimer via hydrogen bonding between the N3 and NH2 of the bases.

Full text

PDF
5128

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackburn E. H. Structure and function of telomeres. Nature. 1991 Apr 18;350(6319):569–573. doi: 10.1038/350569a0. [DOI] [PubMed] [Google Scholar]
  2. Cho B. S., Evans F. E. Correlation between NMR spectral parameters of nucleosides and its implication to the conformation about the glycosyl bond. Biochem Biophys Res Commun. 1991 Oct 15;180(1):273–278. doi: 10.1016/s0006-291x(05)81288-4. [DOI] [PubMed] [Google Scholar]
  3. Coll M., Solans X., Font-Altaba M., Subirana J. A. Crystal and molecular structure of the sodium salt of the dinucleotide duplex d(CpG). J Biomol Struct Dyn. 1987 Apr;4(5):797–811. doi: 10.1080/07391102.1987.10507679. [DOI] [PubMed] [Google Scholar]
  4. Cruse W. B., Egert E., Kennard O., Sala G. B., Salisbury S. A., Viswamitra M. A. Self base pairing in a complementary deoxydinucleoside monophosphate duplex: crystal and molecular structure of deoxycytidylyl-(3'-5')-deoxyguanosine. Biochemistry. 1983 Apr 12;22(8):1833–1839. doi: 10.1021/bi00277a014. [DOI] [PubMed] [Google Scholar]
  5. Eicke H. F. Surfactants in nonpolar solvents. Aggregation and micellization. Top Curr Chem. 1980;87:85–145. doi: 10.1007/BFb0048489. [DOI] [PubMed] [Google Scholar]
  6. Gorenstein D. G. Nucleotide conformational analysis by 31P nuclear magnetic resonance spectroscopy. Annu Rev Biophys Bioeng. 1981;10:355–386. doi: 10.1146/annurev.bb.10.060181.002035. [DOI] [PubMed] [Google Scholar]
  7. Guschlbauer W., Chantot J. F., Thiele D. Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomer DNA. J Biomol Struct Dyn. 1990 Dec;8(3):491–511. doi: 10.1080/07391102.1990.10507825. [DOI] [PubMed] [Google Scholar]
  8. Hall K., Cruz P., Tinoco I., Jr, Jovin T. M., van de Sande J. H. 'Z-RNA'--a left-handed RNA double helix. Nature. 1984 Oct 11;311(5986):584–586. doi: 10.1038/311584a0. [DOI] [PubMed] [Google Scholar]
  9. Iwahashi H., Sugeta H., Kyogoku Y. Detection of separated amino proton resonance signals of adenine derivatives of low temperature and its application to estimation of population of the adenine-uracil dimers in solution. Biochemistry. 1982 Feb 16;21(4):631–638. doi: 10.1021/bi00533a005. [DOI] [PubMed] [Google Scholar]
  10. Kang C., Zhang X., Ratliff R., Moyzis R., Rich A. Crystal structure of four-stranded Oxytricha telomeric DNA. Nature. 1992 Mar 12;356(6365):126–131. doi: 10.1038/356126a0. [DOI] [PubMed] [Google Scholar]
  11. Lancelot G., Hélène C. Phosphate-guanosine interactions. A model for the involvement of guanine derivatives in autocatalytic reactions of ribonucleic acids. J Biol Chem. 1984 Dec 25;259(24):15046–15050. [PubMed] [Google Scholar]
  12. Lipanov A. A., Quintana J., Dickerson R. E. Disordered single crystal evidence for a quadruple helix formed by guanosine 5'-monophosphate. J Biomol Struct Dyn. 1990 Dec;8(3):483–489. doi: 10.1080/07391102.1990.10507824. [DOI] [PubMed] [Google Scholar]
  13. Lu M., Guo Q., Kallenbach N. R. Thermodynamics of G-tetraplex formation by telomeric DNAs. Biochemistry. 1993 Jan 19;32(2):598–601. doi: 10.1021/bi00053a027. [DOI] [PubMed] [Google Scholar]
  14. Miles H. T., Frazier J. Formation of a new 5'-guanylic acid helix in neutral solution. Biochem Biophys Res Commun. 1972 Oct 6;49(1):199–204. doi: 10.1016/0006-291x(72)90029-0. [DOI] [PubMed] [Google Scholar]
  15. Patel D. J., Kozlowski S. A., Nordheim A., Rich A. Right-handed and left-handed DNA: studies of B- and Z-DNA by using proton nuclear Overhauser effect and P NMR. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1413–1417. doi: 10.1073/pnas.79.5.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rich A., Nordheim A., Wang A. H. The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem. 1984;53:791–846. doi: 10.1146/annurev.bi.53.070184.004043. [DOI] [PubMed] [Google Scholar]
  17. Sarma M. H., Luo J., Umemoto K., Yuan R. D., Sarma R. H. Tetraplex formation of d(GGGGGTTTTT): 1H NMR study in solution. J Biomol Struct Dyn. 1992 Jun;9(6):1131–1153. doi: 10.1080/07391102.1992.10507984. [DOI] [PubMed] [Google Scholar]
  18. Sen D., Gilbert W. Novel DNA superstructures formed by telomere-like oligomers. Biochemistry. 1992 Jan 14;31(1):65–70. doi: 10.1021/bi00116a011. [DOI] [PubMed] [Google Scholar]
  19. Smith F. W., Feigon J. Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature. 1992 Mar 12;356(6365):164–168. doi: 10.1038/356164a0. [DOI] [PubMed] [Google Scholar]
  20. Son T. D., Guschlbauer W., Guéron M. Flexibility and conformations of guanosine monophosphates by the Overhauser effect. J Am Chem Soc. 1972 Nov 1;94(22):7903–7911. doi: 10.1021/ja00777a038. [DOI] [PubMed] [Google Scholar]
  21. Stolarski R., Hagberg C. E., Shugar D. Studies on the dynamic syn-anti equilibrium in purine nucleosides and nucleotides with the aid of 1H and 13C NMR spectroscopy. Eur J Biochem. 1984 Jan 2;138(1):187–192. doi: 10.1111/j.1432-1033.1984.tb07898.x. [DOI] [PubMed] [Google Scholar]
  22. Sundquist W. I., Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. 1989 Dec 14;342(6251):825–829. doi: 10.1038/342825a0. [DOI] [PubMed] [Google Scholar]
  23. Thewalt U., Bugg C. E., Marsh R. E. The crystal structure of guanosine dihydrate and inosine dihydrate. Acta Crystallogr B. 1970 Aug 15;26(8):1089–1101. doi: 10.1107/s0567740870003667. [DOI] [PubMed] [Google Scholar]
  24. Williams L. D., Shaw B. R. Protonated base pairs explain the ambiguous pairing properties of O6-methylguanine. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1779–1783. doi: 10.1073/pnas.84.7.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES