Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Sep 15;88(18):7968–7972. doi: 10.1073/pnas.88.18.7968

Antigen mobility in the combining site of an anti-peptide antibody.

J C Cheetham 1, D P Raleigh 1, R E Griest 1, C Redfield 1, C M Dobson 1, A R Rees 1
PMCID: PMC52426  PMID: 1716767

Abstract

The interaction between a high-affinity antibody, raised against a peptide incorporating the loop region of hen egg lysozyme (residues 57-84), and a peptide antigen corresponding to this sequence, has been probed by proton NMR. The two-dimensional correlated spectroscopy spectrum of the antibody-antigen complex shows sharp, well-resolved resonances from at least half of the bound peptide residues, indicating that the peptide retains considerable mobility when bound to the antibody. The strongly immobilized residues (which include Arg-61, Trp-62, Trp-63, and Ile-78) do not correspond to a contiguous region in the sequence of the peptide. Examination of the crystal structure of the protein shows that these residues, although remote in sequence, are grouped together in the protein structure, forming a hydrophobic projection on the surface of the molecule. The antibody binds hen egg lysozyme with only a 10-fold lower affinity than the peptide antigen. We propose that the peptide could bind to the antibody in a conformation that brings these groups together in a manner related to that found in the native protein, accounting for the high crossreactivity.

Full text

PDF
7968

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science. 1986 Aug 15;233(4765):747–753. doi: 10.1126/science.2426778. [DOI] [PubMed] [Google Scholar]
  2. Anglister J., Jacob C., Assulin O., Ast G., Pinker R., Arnon R. NMR study of the complexes between a synthetic peptide derived from the B subunit of cholera toxin and three monoclonal antibodies against it. Biochemistry. 1988 Jan 26;27(2):717–724. doi: 10.1021/bi00402a034. [DOI] [PubMed] [Google Scholar]
  3. Benjamin D. C., Berzofsky J. A., East I. J., Gurd F. R., Hannum C., Leach S. J., Margoliash E., Michael J. G., Miller A., Prager E. M. The antigenic structure of proteins: a reappraisal. Annu Rev Immunol. 1984;2:67–101. doi: 10.1146/annurev.iy.02.040184.000435. [DOI] [PubMed] [Google Scholar]
  4. Bidart J. M., Troalen F., Ghillani P., Rouas N., Razafindratsita A., Bohuon C., Bellet D. Peptide immunogen mimicry of a protein-specific structural epitope on human choriogonadotropin. Science. 1990 May 11;248(4956):736–739. doi: 10.1126/science.1692160. [DOI] [PubMed] [Google Scholar]
  5. Colman P. M., Laver W. G., Varghese J. N., Baker A. T., Tulloch P. A., Air G. M., Webster R. G. Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. 1987 Mar 26-Apr 1Nature. 326(6111):358–363. doi: 10.1038/326358a0. [DOI] [PubMed] [Google Scholar]
  6. Colman P. M. Structure of antibody-antigen complexes: implications for immune recognition. Adv Immunol. 1988;43:99–132. doi: 10.1016/s0065-2776(08)60364-8. [DOI] [PubMed] [Google Scholar]
  7. Darsley M. J., Rees A. R. Three distinct epitopes within the loop region of hen egg lysozyme defined with monoclonal antibodies. EMBO J. 1985 Feb;4(2):383–392. doi: 10.1002/j.1460-2075.1985.tb03640.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dyson H. J., Lerner R. A., Wright P. E. The physical basis for induction of protein-reactive antipeptide antibodies. Annu Rev Biophys Biophys Chem. 1988;17:305–324. doi: 10.1146/annurev.bb.17.060188.001513. [DOI] [PubMed] [Google Scholar]
  9. Evans P. A., Topping K. D., Woolfson D. N., Dobson C. M. Hydrophobic clustering in nonnative states of a protein: interpretation of chemical shifts in NMR spectra of denatured states of lysozyme. Proteins. 1991;9(4):248–266. doi: 10.1002/prot.340090404. [DOI] [PubMed] [Google Scholar]
  10. Ito W., Nishimura M., Sakato N., Fujio H., Arata Y. A 1H NMR method for the analysis of antigen-antibody interactions: binding of a peptide fragment of lysozyme to anti-lysozyme monoclonal antibody. J Biochem. 1987 Sep;102(3):643–649. doi: 10.1093/oxfordjournals.jbchem.a122099. [DOI] [PubMed] [Google Scholar]
  11. Kim P. S. Strategy for obtaining non-native protein structures using antibody cross-reactions. Biophys Chem. 1988 Aug;31(1-2):107–111. doi: 10.1016/0301-4622(88)80014-0. [DOI] [PubMed] [Google Scholar]
  12. Laver W. G., Air G. M., Webster R. G., Smith-Gill S. J. Epitopes on protein antigens: misconceptions and realities. Cell. 1990 May 18;61(4):553–556. doi: 10.1016/0092-8674(90)90464-p. [DOI] [PubMed] [Google Scholar]
  13. Lerner R. A. Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature. 1982 Oct 14;299(5884):593–596. doi: 10.1038/299592a0. [DOI] [PubMed] [Google Scholar]
  14. Miranker A., Radford S. E., Karplus M., Dobson C. M. Demonstration by NMR of folding domains in lysozyme. Nature. 1991 Feb 14;349(6310):633–636. doi: 10.1038/349633a0. [DOI] [PubMed] [Google Scholar]
  15. Novotný J., Handschumacher M., Haber E., Bruccoleri R. E., Carlson W. B., Fanning D. W., Smith J. A., Rose G. D. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc Natl Acad Sci U S A. 1986 Jan;83(2):226–230. doi: 10.1073/pnas.83.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oswald R. E., Bogusky M. J., Bamberger M., Smith R. A., Dobson C. M. Dynamics of the multidomain fibrinolytic protein urokinase from two-dimensional NMR. Nature. 1989 Feb 9;337(6207):579–582. doi: 10.1038/337579a0. [DOI] [PubMed] [Google Scholar]
  17. Padlan E. A., Silverton E. W., Sheriff S., Cohen G. H., Smith-Gill S. J., Davies D. R. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5938–5942. doi: 10.1073/pnas.86.15.5938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Perham R. N., Duckworth H. W., Roberts G. C. Mobility of polypeptide chain in the pyruvate dehydrogenase complex revealed by proton NMR. Nature. 1981 Jul 30;292(5822):474–477. doi: 10.1038/292474a0. [DOI] [PubMed] [Google Scholar]
  19. Roberts S., Cheetham J. C., Rees A. R. Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering. Nature. 1987 Aug 20;328(6132):731–734. doi: 10.1038/328731a0. [DOI] [PubMed] [Google Scholar]
  20. Satterthwait A. C., Arrhenius T., Hagopian R. A., Zavala F., Nussenzweig V., Lerner R. A. The conformational restriction of synthetic peptides, including a malaria peptide, for use as immunogens. Philos Trans R Soc Lond B Biol Sci. 1989 Jun 12;323(1217):565–572. doi: 10.1098/rstb.1989.0036. [DOI] [PubMed] [Google Scholar]
  21. Sheriff S., Silverton E. W., Padlan E. A., Cohen G. H., Smith-Gill S. J., Finzel B. C., Davies D. R. Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8075–8079. doi: 10.1073/pnas.84.22.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stanfield R. L., Fieser T. M., Lerner R. A., Wilson I. A. Crystal structures of an antibody to a peptide and its complex with peptide antigen at 2.8 A. Science. 1990 May 11;248(4956):712–719. doi: 10.1126/science.2333521. [DOI] [PubMed] [Google Scholar]
  23. Tsang P., Fieser T. M., Ostresh J. M., Lerner R. A., Wright P. E. Isotope-edited NMR studies of Fab'-peptide complexes. Pept Res. 1988 Nov-Dec;1(2):87–92. [PubMed] [Google Scholar]
  24. Tulip W. R., Varghese J. N., Webster R. G., Air G. M., Laver W. G., Colman P. M. Crystal structures of neuraminidase-antibody complexes. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):257–263. doi: 10.1101/sqb.1989.054.01.032. [DOI] [PubMed] [Google Scholar]
  25. Weiss M. A., Eliason J. L., States D. J. Dynamic filtering by two-dimensional 1H NMR with application to phage lambda repressor. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6019–6023. doi: 10.1073/pnas.81.19.6019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wilson H. R., Williams R. J., Littlechild J. A., Watson H. C. NMR analysis of the interdomain region of yeast phosphoglycerate kinase. Eur J Biochem. 1988 Jan 4;170(3):529–538. doi: 10.1111/j.1432-1033.1988.tb13732.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES