Abstract
The three-dimensional structure of human beta 1 beta 1 alcohol dehydrogenase (ADH; EC 1.1.1.1) complexed with NAD+ has been determined by x-ray crystallography to 3.0-A resolution. The amino acids directly involved in coenzyme binding are conserved between horse EE and human beta 1 beta 1 alcohol dehydrogenase in all but one case [serine (horse) vs. threonine (human) at position 48]. As a result, the coenzyme molecule is bound in a similar manner in the two enzymes. However, the strength of the interactions in the vicinity of the pyrophosphate bridge of NAD+ appears to be enhanced in the human enzyme. Side-chain movements of Arg-47 and Asp-50 and a shift in the position of the helix comprising residues 202-212 may explain both the decreased Vmax and the decreased rate of NADH dissociation observed in the human enzyme vs. the horse enzyme. It appears that these catalytic differences are not due to substitutions of any amino acids directly involved in coenzyme binding but are the result of structural rearrangements resulting from multiple sequence differences between the two enzymes.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bosron W. F., Lumeng L., Li T. K. Genetic polymorphism of enzymes of alcohol metabolism and susceptibility to alcoholic liver disease. Mol Aspects Med. 1988;10(2):147–158. doi: 10.1016/0098-2997(88)90019-2. [DOI] [PubMed] [Google Scholar]
- Brünger A. T. Crystallographic refinement by simulated annealing. Application to a 2.8 A resolution structure of aspartate aminotransferase. J Mol Biol. 1988 Oct 5;203(3):803–816. doi: 10.1016/0022-2836(88)90211-2. [DOI] [PubMed] [Google Scholar]
- Eklund H., Horjales E., Vallee B. L., Jörnvall H. Computer-graphics interpretations of residue exchanges between the alpha, beta and gamma subunits of human-liver alcohol dehydrogenase class I isozymes. Eur J Biochem. 1987 Sep 1;167(2):185–193. doi: 10.1111/j.1432-1033.1987.tb13322.x. [DOI] [PubMed] [Google Scholar]
- Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Söderberg B. O., Tapia O., Brändén C. I., Akeson A. Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. J Mol Biol. 1976 Mar 25;102(1):27–59. doi: 10.1016/0022-2836(76)90072-3. [DOI] [PubMed] [Google Scholar]
- Eklund H., Plapp B. V., Samama J. P., Brändén C. I. Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase. J Biol Chem. 1982 Dec 10;257(23):14349–14358. [PubMed] [Google Scholar]
- Eklund H., Samama J. P., Jones T. A. Crystallographic investigations of nicotinamide adenine dinucleotide binding to horse liver alcohol dehydrogenase. Biochemistry. 1984 Dec 4;23(25):5982–5996. doi: 10.1021/bi00320a014. [DOI] [PubMed] [Google Scholar]
- Eklund H., Samma J. P., Wallén L., Brändén C. I., Akeson A., Jones T. A. Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9 A resolution. J Mol Biol. 1981 Mar 15;146(4):561–587. doi: 10.1016/0022-2836(81)90047-4. [DOI] [PubMed] [Google Scholar]
- Hendrickson W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985;115:252–270. doi: 10.1016/0076-6879(85)15021-4. [DOI] [PubMed] [Google Scholar]
- Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
- Hurley T. D., Edenberg H. J., Bosron W. F. Expression and kinetic characterization of variants of human beta 1 beta 1 alcohol dehydrogenase containing substitutions at amino acid 47. J Biol Chem. 1990 Sep 25;265(27):16366–16372. [PubMed] [Google Scholar]
- Jörnvall H., Hempel J., Vallee B. Structures of human alcohol and aldehyde dehydrogenases. Enzyme. 1987;37(1-2):5–18. doi: 10.1159/000469237. [DOI] [PubMed] [Google Scholar]
- Plapp B. V., Sogin D. C., Dworschack R. T., Bohlken D. P., Woenckhaus C., Jeck R. Kinetics of native and modified liver alcohol dehydrogenase with coenzyme analogues: isomerization of enzyme-nicotinamide adenine dinucleotide complex. Biochemistry. 1986 Sep 23;25(19):5396–5402. doi: 10.1021/bi00367a008. [DOI] [PubMed] [Google Scholar]
- Presta L. G., Rose G. D. Helix signals in proteins. Science. 1988 Jun 17;240(4859):1632–1641. doi: 10.1126/science.2837824. [DOI] [PubMed] [Google Scholar]
- Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
- Smith M., Hopkinson D. A., Harris H. Developmental changes and polymorphism in human alcohol dehydrogenase. Ann Hum Genet. 1971 Feb;34(3):251–271. doi: 10.1111/j.1469-1809.1971.tb00238.x. [DOI] [PubMed] [Google Scholar]
- Stone C. L., Li T. K., Bosron W. F. Stereospecific oxidation of secondary alcohols by human alcohol dehydrogenases. J Biol Chem. 1989 Jul 5;264(19):11112–11116. [PubMed] [Google Scholar]