Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Oct 1;88(19):8288–8292. doi: 10.1073/pnas.88.19.8288

Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers.

W L Nicholson 1, B Setlow 1, P Setlow 1
PMCID: PMC52493  PMID: 1924287

Abstract

UV irradiation of complexes of DNA and an alpha/beta-type small, acid-soluble protein (SASP) from Bacillus subtilis spores gave decreasing amounts of pyrimidine dimers and increasing amounts of spore photoproduct as the SASP/DNA ratio was increased. The yields of pyrimidine dimers and spore photoproduct were less than 0.2% and 8% of total thymine, respectively, when DNA saturated with SASP was irradiated at 254 nm with 30 kJ/m2; in the absence of SASP the yields were reversed-4.5% and 0.3%, respectively. Complexes of DNA with alpha/beta-type SASP from Bacillus cereus, Bacillus megaterium, or Clostridium bifermentans spores also gave spore photoproduct upon UV irradiation. However, incubation of these SASPs with DNA under conditions preventing complex formation or use of mutant SASPs that do not form complexes did not affect the photoproducts formed in vitro. These results suggest that the UV photochemistry of bacterial spore DNA in vivo is due to the binding of alpha/beta-type SASP, a binding that is known to cause a change in DNA conformation in vitro from the B form to the A form. The yields of spore photoproduct in vitro were significantly lower than in vivo, perhaps because of the presence of substances other than SASP in spores. It is suggested that as these factors diffuse out in the first minutes of spore germination, spore photoproduct yields become similar to those observed for irradiation of SASP/DNA complexes in vitro.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cabrera-Martinez R. M., Mason J. M., Setlow B., Waites W. M., Setlow P. Purification and amino acid sequence of two small, acid-soluble proteins from Clostridium bifermentans spores. FEMS Microbiol Lett. 1989 Oct 1;52(1-2):139–143. doi: 10.1016/0378-1097(89)90185-7. [DOI] [PubMed] [Google Scholar]
  2. Cabrera-Martinez R. M., Setlow P. Cloning and nucleotide sequence of three genes coding for small, acid-soluble proteins of Clostridium perfringens spores. FEMS Microbiol Lett. 1991 Jan 15;61(2-3):127–131. doi: 10.1016/0378-1097(91)90539-m. [DOI] [PubMed] [Google Scholar]
  3. Donnellan J. E., Jr, Setlow R. B. Thymine Photoproducts but not Thymine Dimers Found in Ultraviolet-Irradiated Bacterial Spores. Science. 1965 Jul 16;149(3681):308–310. doi: 10.1126/science.149.3681.308. [DOI] [PubMed] [Google Scholar]
  4. Donnellan J. E., Jr, Stafford R. S. The ultraviolet photochemistry and photobiology of vegetative cells and spores of Bacillus megaterium. Biophys J. 1968 Jan;8(1):17–28. doi: 10.1016/S0006-3495(68)86471-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Franklin W. A., Doetsch P. W., Haseltine W. A. Structural determination of the ultraviolet light-induced thymine-cytosine pyrimidine-pyrimidone (6-4) photoproduct. Nucleic Acids Res. 1985 Jul 25;13(14):5317–5325. doi: 10.1093/nar/13.14.5317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Germaine G. R., Murrell W. G. Effect of dipicolinic acid on the ultraviolet radiation resistance of Bacillus cereus spores. Photochem Photobiol. 1973 Mar;17(3):145–153. doi: 10.1111/j.1751-1097.1973.tb06344.x. [DOI] [PubMed] [Google Scholar]
  7. Johnson W. C., Tipper D. J. Acid-soluble spore proteins of Bacillus subtilis. J Bacteriol. 1981 Jun;146(3):972–982. doi: 10.1128/jb.146.3.972-982.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mason J. M., Setlow P. Different small, acid-soluble proteins of the alpha/beta type have interchangeable roles in the heat and UV radiation resistance of Bacillus subtilis spores. J Bacteriol. 1987 Aug;169(8):3633–3637. doi: 10.1128/jb.169.8.3633-3637.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mohr S. C., Sokolov N. V., He C. M., Setlow P. Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):77–81. doi: 10.1073/pnas.88.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Munakata N., Rupert C. S. Dark repair of DNA containing "spore photoproduct" in Bacillus subtilis. Mol Gen Genet. 1974 May 31;130(3):239–250. doi: 10.1007/BF00268802. [DOI] [PubMed] [Google Scholar]
  11. Munakata N., Rupert C. S. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores. J Bacteriol. 1972 Jul;111(1):192–198. doi: 10.1128/jb.111.1.192-198.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nicholson W. L., Setlow B., Setlow P. Binding of DNA in vitro by a small, acid-soluble spore protein from Bacillus subtilis and the effect of this binding on DNA topology. J Bacteriol. 1990 Dec;172(12):6900–6906. doi: 10.1128/jb.172.12.6900-6906.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nicholson W. L., Setlow P. Dramatic increase in negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis. J Bacteriol. 1990 Jan;172(1):7–14. doi: 10.1128/jb.172.1.7-14.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patrick M. H., Gray D. M. Independence of photoproduct formation on DNA conformation. Photochem Photobiol. 1976 Dec;24(6):507–513. doi: 10.1111/j.1751-1097.1976.tb06867.x. [DOI] [PubMed] [Google Scholar]
  15. Rahn R. O., Hosszu H. L. Influence of relative humidity on the photochemistry of DNA films. Biochim Biophys Acta. 1969 Sep 17;190(1):126–131. doi: 10.1016/0005-2787(69)90161-0. [DOI] [PubMed] [Google Scholar]
  16. STUY J. H. Studies on the mechanism of radiation in activation of micro-organisms. III. Inactivation of germinating spores of Bacillus cereus. Biochim Biophys Acta. 1956 Nov;22(2):241–246. doi: 10.1016/0006-3002(56)90146-9. [DOI] [PubMed] [Google Scholar]
  17. Setlow B., Setlow P. Absence of transient elevated UV resistance during germination of Bacillus subtilis spores lacking small, acid-soluble spore proteins alpha and beta. J Bacteriol. 1988 Jun;170(6):2858–2859. doi: 10.1128/jb.170.6.2858-2859.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Setlow B., Setlow P. Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins. Proc Natl Acad Sci U S A. 1987 Jan;84(2):421–423. doi: 10.1073/pnas.84.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Setlow P., Kornberg A. Biochemical studies of bacterial sporulation and germination. XVII. Sulfhydryl and disulfide levels in dormancy and germination. J Bacteriol. 1969 Dec;100(3):1155–1160. doi: 10.1128/jb.100.3.1155-1160.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Setlow P. Protein metabolism during germination of Bacillus megaterium spores. II. Degradation of pre-existing and newly synthesized protein. J Biol Chem. 1975 Jan 25;250(2):631–637. [PubMed] [Google Scholar]
  21. Setlow P. Purification and properties of some unique low molecular weight basic proteins degraded during germination of Bacillus megaterium spores. J Biol Chem. 1975 Oct 25;250(20):8168–8173. [PubMed] [Google Scholar]
  22. Setlow P. Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and degradation. Annu Rev Microbiol. 1988;42:319–338. doi: 10.1146/annurev.mi.42.100188.001535. [DOI] [PubMed] [Google Scholar]
  23. Stafford R. S., Donnellan J. E., Jr Photochemical evidence for conformation changes in DNA during germination of bacterial spores. Proc Natl Acad Sci U S A. 1968 Mar;59(3):822–828. doi: 10.1073/pnas.59.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tovar-Rojo F., Setlow P. Effects of mutant small, acid-soluble spore proteins from Bacillus subtilis on DNA in vivo and in vitro. J Bacteriol. 1991 Aug;173(15):4827–4835. doi: 10.1128/jb.173.15.4827-4835.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Varghese A. J. 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light. Biochem Biophys Res Commun. 1970 Feb 6;38(3):484–490. doi: 10.1016/0006-291x(70)90739-4. [DOI] [PubMed] [Google Scholar]
  26. Yuan K., Johnson W. C., Tipper D. J., Setlow P. Comparison of various properties of low-molecular-weight proteins from dormant spores of several Bacillus species. J Bacteriol. 1981 Jun;146(3):965–971. doi: 10.1128/jb.146.3.965-971.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES