Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Oct 1;88(19):8387–8391. doi: 10.1073/pnas.88.19.8387

Evolution of aminoacyl-tRNA synthetase quaternary structure and activity: Saccharomyces cerevisiae mitochondrial phenylalanyl-tRNA synthetase.

A Sanni 1, P Walter 1, Y Boulanger 1, J P Ebel 1, F Fasiolo 1
PMCID: PMC52513  PMID: 1924298

Abstract

Phenylalanyl-tRNA synthetases [L-phenylalanine:tRNAPhe ligase (AMP-forming), EC 6.1.1.20] from Escherichia coli, yeast cytoplasm, and mammalian cytoplasm have an unusual conserved alpha 2 beta 2 quaternary structure that is shared by only one other aminoacyl-tRNA synthetase. Both subunits are required for activity. We show here that a single mitochondrial polypeptide from Saccharomyces cerevisiae is an active phenylalanyl-tRNA synthetase. This protein (the MSF1 gene product) is active as a monomer. It has all three characteristic sequence motifs of the class II aminoacyl-tRNA synthetases, and its activity may result from the recruitment of additional sequences into an alpha-subunit-like structure.

Full text

PDF
8387

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltzinger M., Fasiolo F., Remy P. Yeast phenylalanyl-tRNA synthetase. Affinity and photoaffinity labelling of the stereospecific binding sites. Eur J Biochem. 1979 Jul;97(2):481–494. doi: 10.1111/j.1432-1033.1979.tb13136.x. [DOI] [PubMed] [Google Scholar]
  2. Brakhage A. A., Wozny M., Putzer H. Structure and nucleotide sequence of the Bacillus subtilis phenylalanyl-tRNA synthetase genes. Biochimie. 1990 Oct;72(10):725–734. doi: 10.1016/0300-9084(90)90157-c. [DOI] [PubMed] [Google Scholar]
  3. Cassio D., Waller J. P. Modification of methionyl-tRNA synthetase by proteolytic cleavage and properties of the trypsin-modified enzyme. Eur J Biochem. 1971 May 28;20(2):283–300. doi: 10.1111/j.1432-1033.1971.tb01393.x. [DOI] [PubMed] [Google Scholar]
  4. Cusack S., Berthet-Colominas C., Härtlein M., Nassar N., Leberman R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature. 1990 Sep 20;347(6290):249–255. doi: 10.1038/347249a0. [DOI] [PubMed] [Google Scholar]
  5. Diatewa M., Boulanger Y., Stahl A. J. Comparison of yeast mitochondrial Phe-tRNA synthetase subunits to their cytoplasmic counterparts: isolation and determination of amino acid compositions. Biochem Biophys Res Commun. 1982 May 31;106(2):520–525. doi: 10.1016/0006-291x(82)91141-x. [DOI] [PubMed] [Google Scholar]
  6. Diatewa M., Stahl A. J. Purification and subunit structure of mitochondrial phenylalanyl-tRNA synthetase from yeast. Biochem Biophys Res Commun. 1980 May 14;94(1):189–198. doi: 10.1016/s0006-291x(80)80205-1. [DOI] [PubMed] [Google Scholar]
  7. Ducruix A., Hounwanou N., Reinbolt J., Boulanger Y., Blanquet S. Purification and reversible subunit dissociation of overproduced Escherichia coli phenylalanyl-tRNA synthetase. Biochim Biophys Acta. 1983 Nov 17;741(2):244–250. doi: 10.1016/0167-4781(83)90065-9. [DOI] [PubMed] [Google Scholar]
  8. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  9. Fasiolo F., Befort N., Boulander Y., Ebel J. P. Purification et quelques propriétés de la phenylalanyl-tRNA synthetase de levure de boulangerie. Biochim Biophys Acta. 1970 Oct 15;217(2):305–318. [PubMed] [Google Scholar]
  10. Fasiolo F., Fersht A. R. The aminoacyladenylate mechanism in the aminoacylation reaction of yeast phenylalanyl-tRNA synthetase. Eur J Biochem. 1978 Apr;85(1):85–88. doi: 10.1111/j.1432-1033.1978.tb12214.x. [DOI] [PubMed] [Google Scholar]
  11. Fasiolo F., Gibson B. W., Walter P., Chatton B., Biemann K., Boulanger Y. Cytoplasmic methionyl-tRNA synthetase from Bakers' yeast. A monomer with a post-translationally modified N terminus. J Biol Chem. 1985 Dec 15;260(29):15571–15576. [PubMed] [Google Scholar]
  12. Fayat G., Blanquet S., Dessen P., Batelier G., Waller J. P. The molecular weight and subunit composition of phenylalanyl-tRNA synthetase from Escherichia coli K-12. Biochimie. 1974;56(1):35–41. doi: 10.1016/s0300-9084(74)80353-6. [DOI] [PubMed] [Google Scholar]
  13. Fayat G., Mayaux J. F., Sacerdot C., Fromant M., Springer M., Grunberg-Manago M., Blanquet S. Escherichia coli phenylalanyl-tRNA synthetase operon region. Evidence for an attenuation mechanism. Identification of the gene for the ribosomal protein L20. J Mol Biol. 1983 Dec 15;171(3):239–261. doi: 10.1016/0022-2836(83)90092-x. [DOI] [PubMed] [Google Scholar]
  14. Gribskov M., Homyak M., Edenfield J., Eisenberg D. Profile scanning for three-dimensional structural patterns in protein sequences. Comput Appl Biosci. 1988 Mar;4(1):61–66. doi: 10.1093/bioinformatics/4.1.61. [DOI] [PubMed] [Google Scholar]
  15. Jasin M., Regan L., Schimmel P. Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature. 1983 Dec 1;306(5942):441–447. doi: 10.1038/306441a0. [DOI] [PubMed] [Google Scholar]
  16. Kern D., Giegé R., Ebel J. P. Purification and some properties of alanyl- and leucyl-tRNA synthetases from baker's yeast. Biochim Biophys Acta. 1981 Mar 26;653(1):83–90. doi: 10.1016/0005-2787(81)90106-4. [DOI] [PubMed] [Google Scholar]
  17. Koerner T. J., Myers A. M., Lee S., Tzagoloff A. Isolation and characterization of the yeast gene coding for the alpha subunit of mitochondrial phenylalanyl-tRNA synthetase. J Biol Chem. 1987 Mar 15;262(8):3690–3696. [PubMed] [Google Scholar]
  18. McClain W. H., Foss K. Nucleotides that contribute to the identity of Escherichia coli tRNA(Phe). J Mol Biol. 1988 Aug 20;202(4):697–709. doi: 10.1016/0022-2836(88)90551-7. [DOI] [PubMed] [Google Scholar]
  19. McDonald T., Breite L., Pangburn K. L., Hom S., Manser J., Nagel G. M. Overproduction, purification, and subunit structure of Escherichia coli glycyl transfer ribonucleic acid synthetase. Biochemistry. 1980 Apr 1;19(7):1402–1409. doi: 10.1021/bi00548a022. [DOI] [PubMed] [Google Scholar]
  20. Mechulam Y., Fayat G., Blanquet S. Sequence of the Escherichia coli pheST operon and identification of the himA gene. J Bacteriol. 1985 Aug;163(2):787–791. doi: 10.1128/jb.163.2.787-791.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pailliez J. P., Waller J. P. Phenylalanyl-tRNA synthetases from sheep liver and yeast. Correlation between net charge and binding to ribosomes. J Biol Chem. 1984 Dec 25;259(24):15491–15496. [PubMed] [Google Scholar]
  22. Regan L., Bowie J., Schimmel P. Polypeptide sequences essential for RNA recognition by an enzyme. Science. 1987 Mar 27;235(4796):1651–1653. doi: 10.1126/science.2435005. [DOI] [PubMed] [Google Scholar]
  23. Sampson J. R., DiRenzo A. B., Behlen L. S., Uhlenbeck O. C. Nucleotides in yeast tRNAPhe required for the specific recognition by its cognate synthetase. Science. 1989 Mar 10;243(4896):1363–1366. doi: 10.1126/science.2646717. [DOI] [PubMed] [Google Scholar]
  24. Sanni A., Mirande M., Ebel J. P., Boulanger Y., Waller J. P., Fasiolo F. Structure and expression of the genes encoding the alpha and beta subunits of yeast phenylalanyl-tRNA synthetase. J Biol Chem. 1988 Oct 25;263(30):15407–15415. [PubMed] [Google Scholar]
  25. Sanni A., Walter P., Ebel J. P., Fasiolo F. Construction of a FRS1-FRS2 operon encoding the structural genes for the alpha and beta subunits of yeast phenylalanyl-tRNA synthetase and its use in deletion analysis. Nucleic Acids Res. 1990 Apr 25;18(8):2087–2092. doi: 10.1093/nar/18.8.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schimmel P. R., Söll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48:601–648. doi: 10.1146/annurev.bi.48.070179.003125. [DOI] [PubMed] [Google Scholar]
  27. Schneller J. M., Schneller C., Martin R., Stahl A. J. Nuclear origin of specific yeast mitochondrial aminoacyl-tRNA synthetases. Nucleic Acids Res. 1976 May;3(5):1151–1165. doi: 10.1093/nar/3.5.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tanaka W. K., Som K., Hardesty B. A. Comparison of free and ribosome-bound phenylalanyl-tRNA synthetase from rabbit reticulocytes. Arch Biochem Biophys. 1976 Jan;172(1):252–260. doi: 10.1016/0003-9861(76)90074-6. [DOI] [PubMed] [Google Scholar]
  29. Toth M. J., Schimmel P. Deletions in the large (beta) subunit of a hetero-oligomeric aminoacyl-tRNA synthetase. J Biol Chem. 1990 Jan 15;265(2):1000–1004. [PubMed] [Google Scholar]
  30. Tzagoloff A., Vambutas A., Akai A. Characterization of MSM1, the structural gene for yeast mitochondrial methionyl-tRNA synthetase. Eur J Biochem. 1989 Feb 1;179(2):365–371. doi: 10.1111/j.1432-1033.1989.tb14562.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES