Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Oct 1;88(19):8420–8424. doi: 10.1073/pnas.88.19.8420

Structural determinants of stereospecificity in yeast alcohol dehydrogenase.

E G Weinhold 1, A Glasfeld 1, A D Ellington 1, S A Benner 1
PMCID: PMC52520  PMID: 1924300

Abstract

Replacing Leu-182 by Ala in yeast alcohol dehydrogenase (YADH; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) yields a mutant that retains 34% of its kcat value and makes one stereochemical "mistake" every 850,000 turnovers (instead of approximately 1 error every 7,000,000,000 turnovers in native YADH) in its selection of the 4-Re hydrogen of NADH. Half of the decrease in stereochemical fidelity comes from an increase in the rate of transfer of the 4-Si hydrogen of NADH. The mutant also accepts 5-methylnicotinamide adenine dinucleotide, a cofactor analog not accepted by native YADH. The stereospecificity of the mutant is lower still with analogs of NADH where the carboxamide group of the nicotinamide ring is replaced by groups with weaker hydrogen bonding potential. For example, with thio-NADH, the mutant enzyme makes 1 stereochemical "mistake" every 450 turnovers. Finally, the double mutant T157S/L182A, in which Thr-157 is replaced by Ser and Leu-182 is replaced by Ala, also shows decreased stereochemical fidelity. These results suggest that Si transfer in the mutant enzymes arises from NADH bound in a syn conformation in the active site and that this binding is not obstructed in native YADH by side chains essential for catalysis.

Full text

PDF
8420

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benner S. A. Patterns of divergence in homologous proteins as indicators of tertiary and quaternary structure. Adv Enzyme Regul. 1989;28:219–236. doi: 10.1016/0065-2571(89)90073-3. [DOI] [PubMed] [Google Scholar]
  2. Benner S. A. The stereoselectivity of alcohol dehydrogenases: a stereochemical imperative? Experientia. 1982 May 15;38(5):633–636. doi: 10.1007/BF02327092. [DOI] [PubMed] [Google Scholar]
  3. Benner S., Ellington A. D. Interpreting the behavior of enzymes: purpose or pedigree? CRC Crit Rev Biochem. 1988;23(4):369–426. doi: 10.3109/10409238809082549. [DOI] [PubMed] [Google Scholar]
  4. Biellmann J. F., Hirth C. G. NAD(P)+ analogues: tools for the investigation of the active site of oestradiol 17beta-dehydrogenase from human placenta. Eur J Biochem. 1975 Aug 15;56(2):557–561. doi: 10.1111/j.1432-1033.1975.tb02262.x. [DOI] [PubMed] [Google Scholar]
  5. Blundell T. L., Sibanda B. L., Sternberg M. J., Thornton J. M. Knowledge-based prediction of protein structures and the design of novel molecules. 1987 Mar 26-Apr 1Nature. 326(6111):347–352. doi: 10.1038/326347a0. [DOI] [PubMed] [Google Scholar]
  6. CORNFORTH J. W., RYBACK G. Stereochemistry of enzymic hydrogen transfer to pyridine nucleotides. Biochem Biophys Res Commun. 1962 Nov 27;9:371–375. doi: 10.1016/0006-291x(62)90018-9. [DOI] [PubMed] [Google Scholar]
  7. Eklund H., Samama J. P., Jones T. A. Crystallographic investigations of nicotinamide adenine dinucleotide binding to horse liver alcohol dehydrogenase. Biochemistry. 1984 Dec 4;23(25):5982–5996. doi: 10.1021/bi00320a014. [DOI] [PubMed] [Google Scholar]
  8. FISHER H. F., CONN E. E., VENNESLAND B., WESTHEIMER F. H. The enzymatic transfer of hydrogen. I. The reaction catalyzed by alcohol dehydrogenase. J Biol Chem. 1953 Jun;202(2):687–697. [PubMed] [Google Scholar]
  9. Garavito R. M., Rossmann M. G., Argos P., Eventoff W. Convergence of active center geometries. Biochemistry. 1977 Nov 15;16(23):5065–5071. doi: 10.1021/bi00642a019. [DOI] [PubMed] [Google Scholar]
  10. Glasfeld A., Leanz G. F., Benner S. A. The stereospecificities of seven dehydrogenases from Acholeplasma laidlawii. The simplest historical model that explains dehydrogenase stereospecificity. J Biol Chem. 1990 Jul 15;265(20):11692–11699. [PubMed] [Google Scholar]
  11. HAYES J. E., Jr, VELICK S. F. Yeast alcohol dehydrogenase: molecular weight, coenzyme binding, and reaction equilibria. J Biol Chem. 1954 Mar;207(1):225–244. [PubMed] [Google Scholar]
  12. Jörnvall H., Eklund H., Brändén C. I. Subunit conformation of yeast alcohol dehydrogenase. J Biol Chem. 1978 Dec 10;253(23):8414–8419. [PubMed] [Google Scholar]
  13. Jörnvall H., Persson M., Jeffery J. Alcohol and polyol dehydrogenases are both divided into two protein types, and structural properties cross-relate the different enzyme activities within each type. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4226–4230. doi: 10.1073/pnas.78.7.4226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LUDOWIEG J., LEVY A. STUDIES ON THE NOENZYMIC HYDROGEN EXCHANGE BETWEEN NICOTINAMIDE ADENINE DINUCLEOTIDES. Biochemistry. 1964 Mar;3:373–378. doi: 10.1021/bi00891a012. [DOI] [PubMed] [Google Scholar]
  16. LaReau R. D., Anderson V. E. Lactate dehydrogenase displays absolute stereospecificity in the transfer of the prochiral hydrogen of NADH. J Biol Chem. 1989 Sep 15;264(26):15338–15343. [PubMed] [Google Scholar]
  17. Srivastava D. K., Bernhard S. A. Direct transfer of reduced nicotinamide adenine dinucleotide from glyceraldehyde-3-phosphate dehydrogenase to liver alcohol dehydrogenase. Biochemistry. 1984 Sep 25;23(20):4538–4545. doi: 10.1021/bi00315a006. [DOI] [PubMed] [Google Scholar]
  18. You K. S. Stereospecificity for nicotinamide nucleotides in enzymatic and chemical hydride transfer reactions. CRC Crit Rev Biochem. 1985;17(4):313–451. doi: 10.3109/10409238509113625. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES