Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 May 1;89(9):3696–3700. doi: 10.1073/pnas.89.9.3696

Long-term sensitization to the activation of cerebral delta-opioid receptors by the deltorphin Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 in rats exposed to morphine.

P Melchiorri 1, M Maritati 1, L Negri 1, V Erspamer 1
PMCID: PMC525557  PMID: 1315033

Abstract

In experiments to evaluate responses to the activation of cerebral delta-opioid receptors, repeated daily injection of the selective delta-opioid agonist Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 ([D-Ala2]deltorphin II) into rat brain resulted in the development of tolerance, whereas repeated daily injection or continuous infusion of morphine resulted in sensitization to the behavioral activating effects of the delta-opioid agonist. Although the rats did not modify their spontaneous locomotor activity after morphine withdrawal, they became markedly hyperresponsive to the locomotor and stereotypy-producing effects of a challenge dose of the delta-opioid agonist. Sensitization to activation of delta-opioid receptors persisted for at least 60 days after discontinuing morphine treatment. These results show that the development of tolerance and long-term sensitization to opioids involves delta-opioid as well as mu-opioid receptors.

Full text

PDF
3696

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelhamid E. E., Sultana M., Portoghese P. S., Takemori A. E. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther. 1991 Jul 1;258(1):299–303. [PubMed] [Google Scholar]
  2. Abdelhamid E. E., Takemori A. E. Characteristics of mu and delta opioid binding sites in striatal slices of morphine-tolerant and -dependent mice. Eur J Pharmacol. 1991 Jun 6;198(2-3):157–163. doi: 10.1016/0014-2999(91)90615-w. [DOI] [PubMed] [Google Scholar]
  3. Aceto M. D., Dewey W. L., Portoghese P. S., Takemori A. E. Effects of beta-funaltrexamine (beta-FNA) on morphine dependence in rats and monkeys. Eur J Pharmacol. 1986 Apr 29;123(3):387–393. doi: 10.1016/0014-2999(86)90713-2. [DOI] [PubMed] [Google Scholar]
  4. Babbini M., Davis W. M. Time-dose relationships for locomotor activity effects of morphine after acute or repeated treatment. Br J Pharmacol. 1972 Oct;46(2):213–224. doi: 10.1111/j.1476-5381.1972.tb06866.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Babbini M., Gaiardi M., Bartoletti M. Persistence of chronic morphine effects upon activity in rats 8 months after ceasing the treatment. Neuropharmacology. 1975 Aug;14(8):611–614. doi: 10.1016/0028-3908(75)90129-x. [DOI] [PubMed] [Google Scholar]
  6. Bartoletti M., Gaiardi M., Gubellini G., Bacchi A., Babbini M. Long-term sensitization to the excitatory effects of morphine. A motility study in post-dependent rats. Neuropharmacology. 1983 Oct;22(10):1193–1196. doi: 10.1016/0028-3908(83)90080-1. [DOI] [PubMed] [Google Scholar]
  7. Brady L. S., Holtzman S. G. Locomotor activity in morphine-dependent and post-dependent rats. Pharmacol Biochem Behav. 1981 Mar;14(3):361–370. doi: 10.1016/0091-3057(81)90403-2. [DOI] [PubMed] [Google Scholar]
  8. Broekkamp C. L., Phillips A. G., Cools A. R. Stimulant effects of enkephalin microinjection into the dopaminergic A10 area. Nature. 1979 Apr 5;278(5704):560–562. doi: 10.1038/278560a0. [DOI] [PubMed] [Google Scholar]
  9. Buxbaum D. M., Yarbrough G. G., Carter M. E. Biogenic amines and narcotic effects. I. Modification of morphine-induced analgesia and motor activity after alteration of cerebral amine levels. J Pharmacol Exp Ther. 1973 May;185(2):317–327. [PubMed] [Google Scholar]
  10. Calenco-Choukroun G., Daugé V., Gacel G., Féger J., Roques B. P. Opioid delta agonists and endogenous enkephalins induce different emotional reactivity than mu agonists after injection in the rat ventral tegmental area. Psychopharmacology (Berl) 1991;103(4):493–502. doi: 10.1007/BF02244249. [DOI] [PubMed] [Google Scholar]
  11. Chang S. L., Squinto S. P., Harlan R. E. Morphine activation of c-fos expression in rat brain. Biochem Biophys Res Commun. 1988 Dec 15;157(2):698–704. doi: 10.1016/s0006-291x(88)80306-1. [DOI] [PubMed] [Google Scholar]
  12. Dauge V., Petit F., Rossignol P., Roques B. P. Use of mu and delta opioid peptides of various selectivity gives further evidence of specific involvement of mu opioid receptors in supraspinal analgesia (tail-flick test). Eur J Pharmacol. 1987 Sep 11;141(2):171–178. doi: 10.1016/0014-2999(87)90260-3. [DOI] [PubMed] [Google Scholar]
  13. Daugé V., Rossignol P., Roques B. P. Comparison of the behavioural effects induced by administration in rat nucleus accumbens or nucleus caudatus of selective mu and delta opioid peptides or kelatorphan an inhibitor of enkephalin-degrading-enzymes. Psychopharmacology (Berl) 1988;96(3):343–352. doi: 10.1007/BF00216060. [DOI] [PubMed] [Google Scholar]
  14. DeLander G. E., Portoghese P. S., Takemori A. E. Role of spinal mu opioid receptors in the development of morphine tolerance and dependence. J Pharmacol Exp Ther. 1984 Oct;231(1):91–96. [PubMed] [Google Scholar]
  15. Dupin S., Tafani J. A., Mazarguil H., Zajac J. M. [125I][D-Ala2]deltorphin-I: a high affinity, delta-selective opioid receptor ligand. Peptides. 1991 Jul-Aug;12(4):825–830. doi: 10.1016/0196-9781(91)90141-b. [DOI] [PubMed] [Google Scholar]
  16. Eidelberg E., Schwartz A. S. Possible mechanism of action of morphine on brain. Nature. 1970 Mar 21;225(5238):1152–1153. doi: 10.1038/2251152a0. [DOI] [PubMed] [Google Scholar]
  17. Erspamer V., Melchiorri P., Falconieri-Erspamer G., Negri L., Corsi R., Severini C., Barra D., Simmaco M., Kreil G. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5188–5192. doi: 10.1073/pnas.86.13.5188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gmerek D. E., Woods J. H. Effects of beta-funaltrexamine in normal and morphine-dependent rhesus monkeys: observational studies. J Pharmacol Exp Ther. 1985 Nov;235(2):296–301. [PubMed] [Google Scholar]
  19. Goodman R. H. Regulation of neuropeptide gene expression. Annu Rev Neurosci. 1990;13:111–127. doi: 10.1146/annurev.ne.13.030190.000551. [DOI] [PubMed] [Google Scholar]
  20. Havemann U., Winkler M., Kuschinsky K. The effects of D-ala2, D-Leu5-enkephalin injections into the nucleus accumbens on the motility of rats. Life Sci. 1983;33 (Suppl 1):627–630. doi: 10.1016/0024-3205(83)90581-7. [DOI] [PubMed] [Google Scholar]
  21. Joyce E. M., Iversen S. D. The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neurosci Lett. 1979 Oct;14(2-3):207–212. doi: 10.1016/0304-3940(79)96149-4. [DOI] [PubMed] [Google Scholar]
  22. Joyce E. M., Koob G. F., Strecker R., Iversen S. D., Bloom F. E. The behavioural effects of enkephalin analogues injected into the ventral tegmental area and globus pallidus. Brain Res. 1981 Sep 28;221(2):359–370. doi: 10.1016/0006-8993(81)90784-8. [DOI] [PubMed] [Google Scholar]
  23. Kalivas P. W., Duffy P. Sensitization to repeated morphine injection in the rat: possible involvement of A10 dopamine neurons. J Pharmacol Exp Ther. 1987 Apr;241(1):204–212. [PubMed] [Google Scholar]
  24. Kalivas P. W., Taylor S., Miller J. S. Sensitization to repeated enkephalin administration into the ventral tegmental area of the rat. I. Behavioral characterization. J Pharmacol Exp Ther. 1985 Nov;235(2):537–543. [PubMed] [Google Scholar]
  25. Kreil G., Barra D., Simmaco M., Erspamer V., Erspamer G. F., Negri L., Severini C., Corsi R., Melchiorri P. Deltorphin, a novel amphibian skin peptide with high selectivity and affinity for delta opioid receptors. Eur J Pharmacol. 1989 Mar 14;162(1):123–128. doi: 10.1016/0014-2999(89)90611-0. [DOI] [PubMed] [Google Scholar]
  26. Kumar R., Mitchell E., Stolerman I. P. Disturbed patterns of behaviour in morphine tolerant and abstinent rats. Br J Pharmacol. 1971 Jul;42(3):473–484. doi: 10.1111/j.1476-5381.1971.tb07132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Locke K. W., Holtzman S. G. Behavioral effects of opioid peptides selective for mu or delta receptors. II. Locomotor activity in nondependent and morphine-dependent rats. J Pharmacol Exp Ther. 1986 Sep;238(3):997–1003. [PubMed] [Google Scholar]
  28. Longoni R., Spina L., Mulas A., Carboni E., Garau L., Melchiorri P., Di Chiara G. (D-Ala2)deltorphin II: D1-dependent stereotypies and stimulation of dopamine release in the nucleus accumbens. J Neurosci. 1991 Jun;11(6):1565–1576. doi: 10.1523/JNEUROSCI.11-06-01565.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Michael-Titus A., Dourmap N., Costentin J. MU and delta opioid receptors control differently the horizontal and vertical components of locomotor activity in mice. Neuropeptides. 1989 May-Jun;13(4):235–242. doi: 10.1016/0143-4179(89)90076-0. [DOI] [PubMed] [Google Scholar]
  30. Negri L., Noviello V., Angelucci F. Behavioural effects of deltorphins in rats. Eur J Pharmacol. 1991 Dec 17;209(3):163–168. doi: 10.1016/0014-2999(91)90165-m. [DOI] [PubMed] [Google Scholar]
  31. Pert A., Sivit C. Neuroanatomical focus for morphine and enkephalin-induced hypermotility. Nature. 1977 Feb 17;265(5595):645–647. doi: 10.1038/265645a0. [DOI] [PubMed] [Google Scholar]
  32. Rothman R. B., Long J. B., Bykov V., Xu H., Jacobson A. E., Rice K. C., Holaday J. W. Upregulation of the opioid receptor complex by the chronic administration of morphine: a biochemical marker related to the development of tolerance and dependence. Peptides. 1991 Jan-Feb;12(1):151–160. doi: 10.1016/0196-9781(91)90182-o. [DOI] [PubMed] [Google Scholar]
  33. Sharif N. A., Hughes J. Discrete mapping of brain Mu and delta opioid receptors using selective peptides: quantitative autoradiography, species differences and comparison with kappa receptors. Peptides. 1989 May-Jun;10(3):499–522. doi: 10.1016/0196-9781(89)90135-6. [DOI] [PubMed] [Google Scholar]
  34. Simmaco M., Severini C., De Biase D., Barra D., Bossa F., Roberts J. D., Melchiorri P., Erspamer V. Six novel tachykinin- and bombesin-related peptides from the skin of the Australian frog Pseudophryne güntheri. Peptides. 1990 Mar-Apr;11(2):299–304. doi: 10.1016/0196-9781(90)90086-k. [DOI] [PubMed] [Google Scholar]
  35. Sonnenberg J. L., Rauscher F. J., 3rd, Morgan J. I., Curran T. Regulation of proenkephalin by Fos and Jun. Science. 1989 Dec 22;246(4937):1622–1625. doi: 10.1126/science.2512642. [DOI] [PubMed] [Google Scholar]
  36. Stinus L., Koob G. F., Ling N., Bloom F. E., Le Moal M. Locomotor activation induced by infusion of endorphins into the ventral tegmental area: evidence for opiate-dopamine interactions. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2323–2327. doi: 10.1073/pnas.77.4.2323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vasko M. R., Domino E. F. Tolerance development to the biphasic effects of morphine on locomotor activity and brain acetylcholine in the rat. J Pharmacol Exp Ther. 1978 Dec;207(3):848–858. [PubMed] [Google Scholar]
  38. Vezina P., Giovino A. A., Wise R. A., Stewart J. Environment-specific cross-sensitization between the locomotor activating effects of morphine and amphetamine. Pharmacol Biochem Behav. 1989 Feb;32(2):581–584. doi: 10.1016/0091-3057(89)90201-3. [DOI] [PubMed] [Google Scholar]
  39. Vezina P., Kalivas P. W., Stewart J. Sensitization occurs to the locomotor effects of morphine and the specific mu opioid receptor agonist, DAGO, administered repeatedly to the ventral tegmental area but not to the nucleus accumbens. Brain Res. 1987 Aug 4;417(1):51–58. doi: 10.1016/0006-8993(87)90178-8. [DOI] [PubMed] [Google Scholar]
  40. Vezina P., Stewart J. Conditioning and place-specific sensitization of increases in activity induced by morphine in the VTA. Pharmacol Biochem Behav. 1984 Jun;20(6):925–934. doi: 10.1016/0091-3057(84)90018-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES