Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2017 Jan 5;5(1):e01143-16. doi: 10.1128/genomeA.01143-16

Complete Genome Sequences of 38 Gordonia sp. Bacteriophages

Welkin H Pope a,, Matthew T Montgomery a, J Alfred Bonilla b, Randall Dejong c, Rebecca A Garlena a, Carlos Guerrero Bustamante a, Karen K Klyczek b, Daniel A Russell a, John T Wertz c, Deborah Jacobs-Sera a, Graham F Hatfull a
PMCID: PMC5255912  PMID: 28057748

ABSTRACT

We report here the genome sequences of 38 newly isolated bacteriophages using Gordonia terrae 3612 (ATCC 25594) and Gordonia neofelifaecis NRRL59395 as bacterial hosts. All of the phages are double-stranded DNA (dsDNA) tail phages with siphoviral morphologies, with genome sizes ranging from 17,118 bp to 93,843 bp and spanning considerable nucleotide sequence diversity.

GENOME ANNOUNCEMENT

The bacteriophage population is vast, dynamic, and old, with an estimated population of 1031 virions and 1023 productive infections/s on a global scale (1). The genomic diversity of the population is poorly understood, with fewer than 3,000 complete genome sequences in GenBank. In general, phages isolated on phylogenetically unrelated hosts share little or no sequence similarity, but considerable insights can be gleaned by comparative genomics of phages isolated on a common host, as illustrated for enterobacteriophages and mycobacteriophages (2, 3). The Howard Hughes Medical Institute (HHMI) Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program provides an undergraduate course-based research experience that contributes to our understanding of phage diversity and evolution through bacteriophage discovery and genomics, using Actinobacteria, including mycobacteria and Gordonia sp. strains, as isolation hosts.

Gordonia phages were isolated by enrichment or direct plating of filtered soil samples using Gordonia terrae 3612 or Gordonia neofelifaecis NRRL 59395 as a host (Table 1). Thirty-eight individual phages were isolated, and electron microscopy shows that all have siphoviridal morphotypes. Plaque-purified phages were amplified, and their double-stranded DNA (dsDNA) was extracted and sequenced using an Illumina MiSeq, as described previously (4). The 140-base reads were assembled using Newbler and Consed, with average coverages between 447- and 3,241-fold. Sequence ambiguities and genome termini were resolved either by sequencing directly from genomic templates or from PCR products. Genomes were annotated using DNA Master (http://cobamide2.bio.pitt.edu), coding sequences were predicted using GeneMark (5) and Glimmer (6), and tRNAs were predicted using Aragorn (7) and tRNAscan-SE (8). Functional assignments were made using BLASTP (9) and HHpred (10, 11) against the publically available databases GenBank, the Protein Data Bank, and Pfam.

TABLE 1 .

Gordonia phage genometrics

Phage name GenBank accession no. Genome size (bp) G+C content (%) No. of tRNAs No. of CDSsa End typeb Host strain
Bachitac KU998247 93,843 61.9 8 182 CGCGACGCTC G. terrae 3612
Bantamd KX557272 92,580 64.7 2 168 CGCAGCACTC G. terrae 3612
BatStarre KX557273 53,432 66.6 0 83 CGGCTGGGGA G. terrae 3612
Blueberryc KU998236 54,990 67 0 86 TGGCCGGTGA G. terrae 3612
BritBratc KU998233 55,524 65 0 98 CGTATGGCAT G. terrae 3612
CaptainKirk2e KX557274 47,898 67.4 0 79 TCGCCGGTGA G. terrae 3612
CarolAnne KX557275 54,167 66.9 0 80 TGGCCGGTGA G. terrae 3612
ClubLc KU998246 92,618 61.9 9 179 CGCGACGCTC G. terrae 3612
Cozzc KU998239 46,600 60 0 68 CGGTAGGCTT G. terrae 3612
Cucurbitaf KX557276 93,686 62 9 178 CGCGACGCTC G. terrae 3612
Demosthenesc KU998242 74,073 59.3 0 95 Dir. Term. Repeat G. terrae 3612
Eyree KX557277 44,929 67.5 0 74 CCCTGCGCTGA G. terrae 3612
Ghobese KX557278 45,285 65.2 0 59 TGCCCGAGGTA G. terrae 3612
Hedwige KX557279 44,536 67.2 0 70 TCCCGCGGTA G. terrae 3612
Howec KU252585 53,182 65.6 0 79 TGCCAAGGGGA G. terrae 3612
JSwagd KX557280 52,726 61.9 3 101 CGGGTGGTTA G. terrae 3612
Jumbod KX557281 78,302 54.5 0 102 Dir. Term. Repeat G. terrae 3612
Kampec KU998254 80,649 47 2g 115 Dir. Term. Repeat G. terrae 3612
KatherineGc KU998251 52,689 61.9 3 99 CGGGTGGTTA G. terrae 3612
Kvothec KU998243 75,462 59.5 0 99 Dir. Term. Repeat G. terrae 3612
Nyceiraee KX557282 41,857 67.5 0 61 CGCGGGGGA G. terrae 3612
OneUpc KU998245 93,577 61.5 9 163 CGCGACGCTC G. terrae 3612
Orchidc KU998253 80,650 47 2g 114 Dir. Term. Repeat G. terrae 3612
PatrickStarc KU998252 80,729 47 2g 115 Dir. Term. Repeat G. terrae 3612
Remusc KX557283 52,738 62 3 98 CGGGTGGTTA G. terrae 3612
Rosalindc KU998250 52,684 61.9 3 99 CGGGTGGTTA G. terrae 3612
Smoothiec KU998244 93,139 61.9 8 179 CGCGACGCTC G. terrae 3612
Soupsc KU998249 52,924 61.9 3 98 CGGGTGGTTA G. terrae 3612
Splinterc KU998238 45,858 66.1 0 80 TCCGGGCCGGTA G. terrae 3612
Strosahld KX557284 52,738 62 3 98 CGGGTGGTTA G. terrae 3612
Terrapine KX557285 66,611 59.6 0 97 Circ. Permuted G. terrae 3612
Twister6e KX557286 57,804 67.7 0 93 Circ. Permuted G. terrae 3612
Utzc KU998248 49,768 67.7 0 71 TCGCCGGTGA G. terrae 3612
Vendettac KU998237 45,858 66.1 0 81 TCCGGGCCGGTA G. terrae 3612
Wizardc KU998234 58,308 67.9 0 89 Circ. Permuted G. terrae 3612
Zirinkae KX557287 52,077 66.7 0 79 CGGCTGGGGA G. terrae 3612
Jeaniec KU998256 17,118 68.6 0 25 AGCCCCCGGT G. neofelifaecis
McGonagallc KU998255 17,119 68.6 0 25 AGCCCCCGGT G. neofelifaecis
a

CDSs, coding sequences.

b

End types are 3′-single-stranded overhangs, unless otherwise noted as Dir. Term. Repeat (direct terminal repeat) or Circ. Permuted (circularly permuted).

c

Phage Hunters Integrating Research and Education (PHIRE) program, University of Pittsburgh.

d

Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES), University of Wisconsin-River Falls.

e

SEA-PHAGES, University of Pittsburgh.

f

SEA-PHAGES, Calvin College.

g

This total includes one transfer-messenger RNA (tmRNA).

The 38 newly isolated Gordonia phages exhibit considerable diversity (Table 1). The smallest genomes, Jeanie and McGonagall, at ~17,000 bp, have the highest G+C content (68%) and are each predicted to contain only 25 genes, including those encoding structural proteins, integrase and immunity repressor, endolysin, and a DnaQ-like subunit of DNA polymerase III. Three phages (PatrickStar, Kampe, and Orchid) have G+C contents (47%) that are strikingly lower than that of their host (67.77%), and lower than the G+C% of any mycobacteriophage; these phages may be relatively recent arrivals to the Gordonia neighborhood (12) (Table 1). These phages, together with Kvothe, Jumbo, and Demosthenes, have genomes with direct terminal repeats, a feature not observed in any mycobacteriophages. Many of the Gordonia phage genomes have defined ends with 3′ single-stranded extensions (Table 1), and only three (Terapin, Twister6, and Wizard) are circularly permuted.

Most of the Gordonia phages form turbid plaques, and 27 of the 38 encode either tyrosine or serine integrases; another six phages encode putative ParAB partitioning systems. Temperate lifestyles thus appear to be common for these phages. Some of the phages have all or part of a second integrase gene, and although these are mostly predicted to be nonfunctional, they perhaps reflect relatively recent genomic rearrangements. Finally, we note that six phages, KatherineG, Rosalind, Strosahl, Remus, Soups, and JSwag, are sufficiently similar to some mycobacteriophages to warrant grouping within Cluster A (13).

Accession number(s).

Nucleotide sequence accession numbers are shown in Table 1.

ACKNOWLEDGMENTS

We thank Marcie Warner, Becky Bortz, Sarah Grubb, Emily Furbee, and the students of the SEA-PHAGES programs at the University of Pittsburgh, Calvin College, and the University of Wisconsin–River Falls for their invaluable contributions in phage discovery and phage genomics.

Footnotes

Citation Pope WH, Montgomery MT, Bonilla JA, Dejong R, Garlena RA, Guerrero Bustamante C, Klyczek KK, Russell DA, Wertz JT, Jacobs-Sera D, Hatfull GF. 2017. Complete genome sequences of 38 Gordonia sp. bacteriophages. Genome Announc 5:e01143-16. https://doi.org/10.1128/genomeA.01143-16.

REFERENCES

  • 1.Hendrix RW. 2002. Bacteriophages: evolution of the majority. Theor Popul Biol 61:471–480. doi: 10.1006/tpbi.2002.1590. [DOI] [PubMed] [Google Scholar]
  • 2.Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, Jacobs WR, Hendrix RW, Lawrence JG, Hatfull GF, Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science, Phage Hunters Integrating Research and Education, Mycobacterial Genetics Course . 2015. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. Elife 4:e06416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Grose JH, Casjens SR. 2014. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468–470:421–443. doi: 10.1016/j.virol.2014.08.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Hatfull GF, Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) Program, KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH) Mycobacterial Genetics Course, University of California-Los Angeles Research Immersion Laboratory in Virology, Phage Hunters Integrating Research and Education (PHIRE) Program . 2016. Complete genome sequences of 61 mycobacteriophages. Genome Announc 4:e00389-16. doi: 10.1128/genomeA.00389-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Besemer J, Borodovsky M. 2005. GeneMark: Web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–W454. doi: 10.1093/nar/gki487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23:673–679. doi: 10.1093/bioinformatics/btm009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. doi: 10.1093/nar/gkh152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Lowe TM, Eddy SR. 1997. TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. doi: 10.1093/nar/25.5.0955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  • 10.Remmert M, Biegert A, Hauser A, Söding J. 2011. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9:173–175. doi: 10.1038/nmeth.1818. [DOI] [PubMed] [Google Scholar]
  • 11.Söding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. doi: 10.1093/nar/gki408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Pope WH, Jacobs-Sera D, Russell DA, Rubin DH, Kajee A, Msibi ZN, Larsen MH, Jacobs WR Jr, Lawrence JG, Hendrix RW, Hatfull GF. 2014. Genomics and proteomics of mycobacteriophage patience, an accidental tourist in the mycobacterium neighborhood. mBio 5:e02145. doi: 10.1128/mBio.02145-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germane KL, Edgar RH, Hoyte NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O’Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cresawn SG, Hendrix RW. 2010. Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 397:119–143. doi: 10.1016/j.jmb.2010.01.011. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES