Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 May 1;89(9):4197–4201. doi: 10.1073/pnas.89.9.4197

Transmembrane electrical potential difference regulates Na+/HCO3- cotransport and intracellular pH in hepatocytes.

J G Fitz 1, S D Lidofsky 1, M H Xie 1, B F Scharschmidt 1
PMCID: PMC525660  PMID: 1570347

Abstract

We have examined the hypothesis that a regulatory interplay between pH-regulated plasma membrane K+ conductance (gK+) and electrogenic Na+/HCO3- cotransport contributes importantly to regulation of intracellular pH (pHi) in hepatocytes. In individual cells, membrane depolarization produced by transient exposure to 50 mM K+ caused a reversible increase in pHi in the presence, but not absence, of HCO3-, consistent with voltage-dependent HCO3- influx. In the absence of HCO3-, intracellular alkalinization and acidification produced by NH4Cl exposure and withdrawal produced membrane hyperpolarization and depolarization, respectively, as expected for pHi-induced changes in gK+. By contrast, in the presence of HCO3-, NH4Cl exposure and withdrawal produced a decrease in apparent buffering capacity and changes in membrane potential difference consistent with compensatory regulation of electrogenic Na+/HCO3- cotransport. Moreover, the rate of pHi and potential difference recovery was several-fold greater in the presence as compared with the absence of HCO3-. Finally, continuous exposure to 10% CO2 in the presence of HCO3- produced intracellular acidification, and the rate of pHi recovery from intracellular acidosis was inhibited by Ba2+, which blocks pHi-induced changes in gK+, and by 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid, which inhibits Na+/HCO3- cotransport. These findings suggest that in hepatocytes, changes in transmembrane electrical potential difference, mediated by pH-sensitive gK+, play a central role in regulation of pHi through effects on electrogenic Na+/HCO3- cotransport.

Full text

PDF
4197

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpern R. J. Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process. J Gen Physiol. 1985 Nov;86(5):613–636. doi: 10.1085/jgp.86.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bear C. E., Davison J. S., Shaffer E. A. Intracellular pH influences the resting membrane potential of isolated rat hepatocytes. Biochim Biophys Acta. 1988 Oct 6;944(2):113–120. doi: 10.1016/0005-2736(88)90424-5. [DOI] [PubMed] [Google Scholar]
  3. Benedetti A., Strazzabosco M., Corasanti J. G., Haddad P., Graf J., Boyer J. L. Cl(-)-HCO3- exchanger in isolated rat hepatocytes: role in regulation of intracellular pH. Am J Physiol. 1991 Sep;261(3 Pt 1):G512–G522. doi: 10.1152/ajpgi.1991.261.3.G512. [DOI] [PubMed] [Google Scholar]
  4. Bissell D. M., Arenson D. M., Maher J. J., Roll F. J. Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J Clin Invest. 1987 Mar;79(3):801–812. doi: 10.1172/JCI112887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boron W. F. Intracellular pH regulation in epithelial cells. Annu Rev Physiol. 1986;48:377–388. doi: 10.1146/annurev.ph.48.030186.002113. [DOI] [PubMed] [Google Scholar]
  6. Fitz J. G., Lidofsky S. D., Weisiger R. A., Xie M. H., Cochran M., Grotmol T., Scharschmidt B. F. HCO3(-)-coupled Na+ influx is a major determinant of Na+ turnover and Na+/K+ pump activity in rat hepatocytes. J Membr Biol. 1991 May;122(1):1–10. doi: 10.1007/BF01872734. [DOI] [PubMed] [Google Scholar]
  7. Fitz J. G., Lidofsky S. D., Xie M. H., Cochran M., Scharschmidt B. F. Plasma membrane H(+)-HCO3- transport in rat hepatocytes: a principal role for Na(+)-coupled HCO3- transport. Am J Physiol. 1991 Nov;261(5 Pt 1):G803–G809. doi: 10.1152/ajpgi.1991.261.5.G803. [DOI] [PubMed] [Google Scholar]
  8. Fitz J. G., Persico M., Scharschmidt B. F. Electrophysiological evidence for Na+-coupled bicarbonate transport in cultured rat hepatocytes. Am J Physiol. 1989 Mar;256(3 Pt 1):G491–G500. doi: 10.1152/ajpgi.1989.256.3.G491. [DOI] [PubMed] [Google Scholar]
  9. Gleeson D., Smith N. D., Boyer J. L. Bicarbonate-dependent and -independent intracellular pH regulatory mechanisms in rat hepatocytes. Evidence for Na+-HCO3- cotransport. J Clin Invest. 1989 Jul;84(1):312–321. doi: 10.1172/JCI114156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Graf J., Henderson R. M., Krumpholz B., Boyer J. L. Cell membrane and transepithelial voltages and resistances in isolated rat hepatocyte couplets. J Membr Biol. 1987;95(3):241–254. doi: 10.1007/BF01869486. [DOI] [PubMed] [Google Scholar]
  11. Henderson R. M., Graf J., Boyer J. L. Na-H exchange regulates intracellular pH in isolated rat hepatocyte couplets. Am J Physiol. 1987 Jan;252(1 Pt 1):G109–G113. doi: 10.1152/ajpgi.1987.252.1.G109. [DOI] [PubMed] [Google Scholar]
  12. Henderson R. M., Krumpholz B., Boyer J. L., Graf J. Effect of intracellular pH on potassium conductance in liver. Pflugers Arch. 1988 Aug;412(3):334–335. doi: 10.1007/BF00582518. [DOI] [PubMed] [Google Scholar]
  13. Hughes B. A., Adorante J. S., Miller S. S., Lin H. Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium. J Gen Physiol. 1989 Jul;94(1):125–150. doi: 10.1085/jgp.94.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kashiwagura T., Deutsch C. J., Taylor J., Erecińska M., Wilson D. F. Dependence of gluconeogenesis, urea synthesis, and energy metabolism of hepatocytes on intracellular pH. J Biol Chem. 1984 Jan 10;259(1):237–243. [PubMed] [Google Scholar]
  15. Mason M. J., Smith J. D., Garcia-Soto J. J., Grinstein S. Internal pH-sensitive site couples Cl-(-)HCO3- exchange to Na+-H+ antiport in lymphocytes. Am J Physiol. 1989 Feb;256(2 Pt 1):C428–C433. doi: 10.1152/ajpcell.1989.256.2.C428. [DOI] [PubMed] [Google Scholar]
  16. Meier P. J., Knickelbein R., Moseley R. H., Dobbins J. W., Boyer J. L. Evidence for carrier-mediated chloride/bicarbonate exchange in canalicular rat liver plasma membrane vesicles. J Clin Invest. 1985 Apr;75(4):1256–1263. doi: 10.1172/JCI111824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mugharbil A., Knickelbein R. G., Aronson P. S., Dobbins J. W. Rabbit ileal brush-border membrane Cl-HCO3 exchanger is activated by an internal pH-sensitive modifier site. Am J Physiol. 1990 Oct;259(4 Pt 1):G666–G670. doi: 10.1152/ajpgi.1990.259.4.G666. [DOI] [PubMed] [Google Scholar]
  18. Renner E. L., Lake J. R., Persico M., Scharschmidt B. F. Na+-H+ exchange activity in rat hepatocytes: role in regulation of intracellular pH. Am J Physiol. 1989 Jan;256(1 Pt 1):G44–G52. doi: 10.1152/ajpgi.1989.256.1.G44. [DOI] [PubMed] [Google Scholar]
  19. Renner E. L., Lake J. R., Scharschmidt B. F., Zimmerli B., Meier P. J. Rat hepatocytes exhibit basolateral Na+/HCO3- cotransport. J Clin Invest. 1989 Apr;83(4):1225–1235. doi: 10.1172/JCI114005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Soleimani M., Grassi S. M., Aronson P. S. Stoichiometry of Na+-HCO-3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J Clin Invest. 1987 Apr;79(4):1276–1280. doi: 10.1172/JCI112948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Soltoff S. P., Cantley L. C. Mitogens and ion fluxes. Annu Rev Physiol. 1988;50:207–223. doi: 10.1146/annurev.ph.50.030188.001231. [DOI] [PubMed] [Google Scholar]
  22. Stewart D. J. Sodium-proton exchanger in isolated hepatocytes exhibits a set point. Am J Physiol. 1988 Sep;255(3 Pt 1):G346–G351. doi: 10.1152/ajpgi.1988.255.3.G346. [DOI] [PubMed] [Google Scholar]
  23. Wang W. H., Wang Y., Silbernagl S., Oberleithner H. Fused cells of frog proximal tubule: II. Voltage-dependent intracellular pH. J Membr Biol. 1988 Mar;101(3):259–265. doi: 10.1007/BF01872840. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES