Abstract
The rates of viral RNA and protein syntheses for wild-type RNA bacteriophages and their nonpolar, coat protein amber mutants were determined in amber suppressor (S26R1E, Su-1 and H12R8a, Su-3) and nonsuppressor (AB259, S26, and Q13) strains of Escherichia coli in the presence of rifamycin. It was demonstrated that the rates of synthesis of phage-specific replicase and RNA minus strands drop off concurrently in both wild-type and coat protein mutant-infected Su− and Su+ cells after 10 and 15 min postinfection, respectively. The rate of synthesis of RNA plus strands started to decline 5 to 10 min later in both cases. Excessive synthesis of replicase in the coat protein mutant-infected cells was accompanied by a similar overproduction of RNA minus strands, but not of plus strands. Partial suppression of protein synthesis in wild-type phage-infected cells abolishing coat protein control over replicase accumulation led to prolongation of replicase synthesis. Such an effect was observed also in coat protein mutant-infected cells, indicating that the excess of replicase itself may be capable of suppression of replicase synthesis in the absence of coat protein. The prolongation of replicase synthesis was followed by the prolonged synthesis of RNA minus strands in both cases. Moreover, replicase and minus strands were formed in nearly equal amounts when protein synthesis was partially inhibited. Assuming functional instability of phage RNAs, the observed coupling of replicase and minus-strand RNA synthesis offers a possibility for control of viral RNA replication by means of control of replicase synthesis on the translational level. A hypothesis is put forward to explain the molecular mechanism of such coupling between the syntheses of replicase and RNA minus strands.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauman V., Pumpen P., Dishler A., Gren E. J. Replication of RNA bacteriophages in the presence of rifamycin. J Virol. 1978 Dec;28(3):717–724. doi: 10.1128/jvi.28.3.717-724.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Billeter M. A., Libonati M., Viñuela E., Weissmann C. Replication of viral ribonucleic acid. X. Turnover of virus-specific double-stranded ribonucleic acid during replication of phage MS2 in Escherichia coli. J Biol Chem. 1966 Oct 25;241(20):4750–4757. [PubMed] [Google Scholar]
- Cramer J. H., Sinsheimer R. L. Replication of bacteriophage MS2. X. Phage-specific ribonucleoprotein particles found in MS2-infected Escherichia coli. J Mol Biol. 1971 Nov 28;62(1):189–214. doi: 10.1016/0022-2836(71)90139-2. [DOI] [PubMed] [Google Scholar]
- Eggen K., Nathans D. Regulation of protein synthesis directed by coliphage MS2 RNA. II. In vitro repression by phage coat protein. J Mol Biol. 1969 Jan;39(2):293–305. doi: 10.1016/0022-2836(69)90318-0. [DOI] [PubMed] [Google Scholar]
- Fedoroff N. V., Zinder N. D. Factor requirement of the bacteriophage f2 replicase. Nat New Biol. 1973 Jan 24;241(108):105–108. doi: 10.1038/newbio241105a0. [DOI] [PubMed] [Google Scholar]
- Friedrich R., Feix G. RNA-RNA hybridization in aqueous solutions containing formamide. Anal Biochem. 1972 Dec;50(2):467–476. doi: 10.1016/0003-2697(72)90056-5. [DOI] [PubMed] [Google Scholar]
- Garen A. Sense and nonsense in the genetic code. Three exceptional triplets can serve as both chain-terminating signals and amino acid codons. Science. 1968 Apr 12;160(3824):149–159. doi: 10.1126/science.160.3824.149. [DOI] [PubMed] [Google Scholar]
- Greenlee L. L. A multi-sample dialysis system. Anal Biochem. 1973 Jul;54(1):286–289. doi: 10.1016/0003-2697(73)90276-5. [DOI] [PubMed] [Google Scholar]
- Kamen R. I., Monstein H. J., Weissmann C. The host factor requirement of Qbeta RNA replicase. Biochim Biophys Acta. 1974 Oct 28;366(3):292–299. doi: 10.1016/0005-2787(74)90289-5. [DOI] [PubMed] [Google Scholar]
- Kolakofsky D., Weissmann C. Possible mechanism for transition of viral RNA from polysome to replication complex. Nat New Biol. 1971 May 12;231(19):42–46. doi: 10.1038/newbio231042a0. [DOI] [PubMed] [Google Scholar]
- Kolakofsky D., Weissmann C. Q replicase as repressor of Q RNA-directed protein synthesis. Biochim Biophys Acta. 1971 Sep 24;246(3):596–599. doi: 10.1016/0005-2787(71)90799-4. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Pumpen P. P., Gren E. Ia. Obratimast' konkurentsii sinteza ribosomal'noi RNK i fagovoi RNK v zarazhennykh RNK-soderzhashchimi bakteriofagami kletkakh Escherichia coli. Biokhimiia. 1977 Oct;42(10):1835–1840. [PubMed] [Google Scholar]
- Pumpen P. P., Gren E. Ia. Rol' belkovogo sinteza v reguliatsii replikatsii RNK-soderzhashchikh bakteriofagov. Dokl Akad Nauk SSSR. 1975 Sep-Oct;224(1):246–248. [PubMed] [Google Scholar]
- Remaut E., Fiers W. Studies on the bacteriophage MS2. XVI. The termination signal of the A protein cistron. J Mol Biol. 1972 Nov 14;71(2):243–261. doi: 10.1016/0022-2836(72)90349-x. [DOI] [PubMed] [Google Scholar]
- Remaut E., Van Roy F., Vitale L., Fiers W. Regulation of expression of a cistron in the RNA bacteriophage MS2. Arch Int Physiol Biochim. 1974 Feb;82(1):195–195. [PubMed] [Google Scholar]
- Rothwell J. D., Yamazaki H. Limited production of R17 ribonucleic acid phage in the presence of rifampin. Biochemistry. 1972 Aug 29;11(18):3333–3338. doi: 10.1021/bi00768a005. [DOI] [PubMed] [Google Scholar]
- SINSHEIMER R. L., STARMAN B., NAGLER C., GUTHRIE S. The process of infection with bacteriophage phi-XI74. I. Evidence for a "replicative form". J Mol Biol. 1962 Mar;4:142–160. doi: 10.1016/s0022-2836(62)80047-3. [DOI] [PubMed] [Google Scholar]
- Senear A. W., Steitz J. A. Site-specific interaction of Qbeta host factor and ribosomal protein S1 with Qbeta and R17 bacteriophage RNAs. J Biol Chem. 1976 Apr 10;251(7):1902–1912. [PubMed] [Google Scholar]
- Sugiyama T., Nakada D. Control of translation of MS2 RNA cistrons by MS2 coat protein. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1744–1750. doi: 10.1073/pnas.57.6.1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugiyama T., Nakada D. Translational control of bacteriophage MS2 RNA cistrons by MS2 coat protein: polyacrylamide gel electrophoretic analysis of proteins synthesized in vitro. J Mol Biol. 1968 Feb 14;31(3):431–440. doi: 10.1016/0022-2836(68)90419-1. [DOI] [PubMed] [Google Scholar]
- Sugiyama T., Stone H. O., Jr Protein synthesis directed by an amber coat-protein mutant of the RNA phage MS2. J Mol Biol. 1969 May 28;42(1):97–115. doi: 10.1016/0022-2836(69)90489-6. [DOI] [PubMed] [Google Scholar]
- Tooze J., Weber K. Isolation and characterization of amber mutants of bacteriophage R17. J Mol Biol. 1967 Sep 14;28(2):311–330. doi: 10.1016/s0022-2836(67)80012-3. [DOI] [PubMed] [Google Scholar]
- Vandamme E., Remaut E., van Montagu M., Fiers W. Studies on the bacteriophage MS 2. XVII. Suppressor-sensitive mutants of the A protein cistron. Mol Gen Genet. 1972;117(3):219–228. doi: 10.1007/BF00271649. [DOI] [PubMed] [Google Scholar]
- Vollenweider H. J., Koller T. Physical mapping of Qbeta replicase binding sites on Qbeta RNA. J Mol Biol. 1976 Mar 5;101(3):367–377. doi: 10.1016/0022-2836(76)90153-4. [DOI] [PubMed] [Google Scholar]
- Weber H., Billeter M. A., Kahane S., Weissmann C., Hindley J., Porter A. Molecular basis for repressor activity of Q replicase. Nat New Biol. 1972 Jun 7;237(75):166–170. doi: 10.1038/newbio237166a0. [DOI] [PubMed] [Google Scholar]
- ZINDER N. D., COOPER S. HOST-DEPENDENT MUTANTS OF THE BACTERIOPHAGE F2. I. ISOLATION AND PRELIMINARY CLASSIFICATION. Virology. 1964 Jun;23:152–158. doi: 10.1016/0042-6822(64)90277-6. [DOI] [PubMed] [Google Scholar]
