Abstract
The size of lysozyme mRNA from T7-infected E. coli RNase III+ and RNase III- strains was analyzed by sucrose gradient sedimentation, dimethylsulfoxide (Me2SO) sucorse gradient sedimentation, and preparative gel electrophoresis. Each technique revealed a similar size distribution of multiple lysozyme mRNA's. Analysis by preparative gel electrophoresis of RNA extracted after infection of Escherichia coli Bst (RNase III+) separated lysozyme mRNA into six peaks of activity ranging in size from 0.2 x 10(6) to 1.9 x 10(6) daltons. Four well-resolved major peaks of activity were detected, having apparent molecular weights of approximately 0.61 x 10(6), 0.76 x 10(6), 0.92 x 10(6), and 1.3 x 10(6). A broad band of activity, with a molecular weight range from 0.2 x 10(6) to 0.37 x 10(6), was also present, and a sixth peak of activity was sometimes observed that migrates with a mobility corresponding to a molecular weight of 1.9 x 10(6). Judging from their molecular weight as estimated by electrophoresis, most, if not all, of the lysozyme mRNA's were polycistronic. The RNA extracted after infection of an RNase III- host contained a more heterogeneous collection of lysozyme mRNA's. In addition to lysozyme mRNA activity on RNAs with molecular weights between 0.2 x 10(6) and 1.9 x 10(6), RNA species with molecular weights estimated at 4 x 10(6) to 5 x 10(6) were also detected. The data indicate that RNase III processes at least some of the primary lysozyme transcripts. The multiple lysozyme mRNA's represent discrete RNA species rather than aggregates because analysis of the size of lysozyme mRNA under completely denaturing conditions, in Me2SO, produced a similar size distribution of lysozyme mRNAs. Also, treatment of RNA with 90% Me2SO, which separates the strands of a completely double-stranded RNA, did not significantly alter the electrophoretic mobility of the lysozyme mRNA.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dunn J. J., Studier F. W. T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease 3. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3296–3300. doi: 10.1073/pnas.70.12.3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golomb M., Chamberlin M. A preliminary map of the major transcription units read by T7 RNA polymerase on the T7 and T3 bacteriophage chromosomes. Proc Natl Acad Sci U S A. 1974 Mar;71(3):760–764. doi: 10.1073/pnas.71.3.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagen F. S., Young E. T. Effect of RNase III on efficiency of translation of bacteriophage T7 lysozyme mRNA. J Virol. 1978 Jun;26(3):793–804. doi: 10.1128/jvi.26.3.793-804.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagen F. S., Young E. T. Preparative polyacrylamide gel electrophoresis of ribonucleic acid. Identification of multiple molecular species of bacteriophage T7 lysozyme messenger ribonucleic acid. Biochemistry. 1974 Jul 30;13(16):3394–3400. doi: 10.1021/bi00713a033. [DOI] [PubMed] [Google Scholar]
- Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
- Loening U. E. Molecular weights of ribosomal RNA in relation to evolution. J Mol Biol. 1968 Dec;38(3):355–365. doi: 10.1016/0022-2836(68)90391-4. [DOI] [PubMed] [Google Scholar]
- Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinder J. C., Staynov D. Z., Gratzer W. B. Electrophoresis of RNA in formamide. Biochemistry. 1974 Dec 17;13(26):5373–5378. doi: 10.1021/bi00723a019. [DOI] [PubMed] [Google Scholar]
- Skare J., Niles E. G., Summers W. C. Localization of the leftmost initiation site for T7 late transcription, in vivo and in vitro. Biochemistry. 1974 Sep 10;13(19):3912–3916. doi: 10.1021/bi00716a015. [DOI] [PubMed] [Google Scholar]
- Strauss J. H., Jr, Kelly R. B., Sinsheimer R. L. Denaturation of RNA with dimethyl sulfoxide. Biopolymers. 1968 Jun;6(6):793–807. doi: 10.1002/bip.1968.360060604. [DOI] [PubMed] [Google Scholar]
- Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]

