Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Oct 1;88(19):8811–8815. doi: 10.1073/pnas.88.19.8811

Nerve growth factor prevents the amblyopic effects of monocular deprivation.

L Domenici 1, N Berardi 1, G Carmignoto 1, G Vantini 1, L Maffei 1
PMCID: PMC52600  PMID: 1924342

Abstract

Monocular deprivation early in life causes dramatic changes in the functional organization of mammalian visual cortex and severe reduction in visual acuity and contrast sensitivity of the deprived eye. We tested whether or not these changes could be from competition between the afferents from the two eyes for a target-derived neurotrophic factor. Rats monocularly deprived during early postnatal development were treated with repetitive intraventricular injections or topical administration of nerve growth factor. The effects of monocular deprivation were then assessed electrophysiologically. In untreated animals visual acuity and contrast sensitivity of the deprived eye were strongly reduced, whereas in nerve growth factor-treated animals these parameters were normal.

Full text

PDF
8811

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araujo D. M., Chabot J. G., Quirion R. Potential neurotrophic factors in the mammalian central nervous system: functional significance in the developing and aging brain. Int Rev Neurobiol. 1990;32:141–174. doi: 10.1016/s0074-7742(08)60582-6. [DOI] [PubMed] [Google Scholar]
  2. Bear M. F., Singer W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature. 1986 Mar 13;320(6058):172–176. doi: 10.1038/320172a0. [DOI] [PubMed] [Google Scholar]
  3. Birch D., Jacobs G. H. Spatial contrast sensitivity in albino and pigmented rats. Vision Res. 1979;19(8):933–937. doi: 10.1016/0042-6989(79)90029-4. [DOI] [PubMed] [Google Scholar]
  4. Boothe R. G., Dobson V., Teller D. Y. Postnatal development of vision in human and nonhuman primates. Annu Rev Neurosci. 1985;8:495–545. doi: 10.1146/annurev.ne.08.030185.002431. [DOI] [PubMed] [Google Scholar]
  5. Boothe R. G., Kiorpes L., Williams R. A., Teller D. Y. Operant measurements of contrast sensitivity in infant macaque monkeys during normal development. Vision Res. 1988;28(3):387–396. doi: 10.1016/0042-6989(88)90181-2. [DOI] [PubMed] [Google Scholar]
  6. Campbell F. W., Maffei L. Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol. 1970 May;207(3):635–652. doi: 10.1113/jphysiol.1970.sp009085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dichter M. A., Tischler A. S., Greene L. A. Nerve growth factor-induced increase in electrical excitability and acetylcholine sensitivity of a rat pheochromocytoma cell line. Nature. 1977 Aug 11;268(5620):501–504. doi: 10.1038/268501a0. [DOI] [PubMed] [Google Scholar]
  8. Dräger U. C. Observations on monocular deprivation in mice. J Neurophysiol. 1978 Jan;41(1):28–42. doi: 10.1152/jn.1978.41.1.28. [DOI] [PubMed] [Google Scholar]
  9. Fiorentini A., Pirchio M., Spinelli D. Development of retinal and cortical responses to pattern reversal in infants: a selective review. Behav Brain Res. 1983 Oct;10(1):99–106. doi: 10.1016/0166-4328(83)90155-9. [DOI] [PubMed] [Google Scholar]
  10. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
  11. Freeman D. N., Marg E. Visual acuity development coincides with the sensitive period in kittens. Nature. 1975 Apr 17;254(5501):614–615. doi: 10.1038/254614a0. [DOI] [PubMed] [Google Scholar]
  12. Giffin F., Mitchell D. E. The rate of recovery of vision after early monocular deprivation in kittens. J Physiol. 1978 Jan;274:511–537. doi: 10.1113/jphysiol.1978.sp012164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harwerth R. S., Smith E. L., 3rd, Crawford M. L., von Noorden G. K. The effects of reverse monocular deprivation in monkeys. I. Psychophysical experiments. Exp Brain Res. 1989;74(2):327–347. doi: 10.1007/BF00248866. [DOI] [PubMed] [Google Scholar]
  14. Hayashi M., Yamashita A., Shimizu K. Nerve growth factor in the primate central nervous system: regional distribution and ontogeny. Neuroscience. 1990;36(3):683–689. doi: 10.1016/0306-4522(90)90011-r. [DOI] [PubMed] [Google Scholar]
  15. Kalman D., Wong B., Horvai A. E., Cline M. J., O'Lague P. H. Nerve growth factor acts through cAMP-dependent protein kinase to increase the number of sodium channels in PC12 cells. Neuron. 1990 Mar;4(3):355–366. doi: 10.1016/0896-6273(90)90048-k. [DOI] [PubMed] [Google Scholar]
  16. Kaneda N., Nagatsu T. Highly sensitive assay for choline acetyltransferase activity by high-performance liquid chromatography with electrochemical detection. J Chromatogr. 1985 May 31;341(1):23–30. doi: 10.1016/s0378-4347(00)84006-2. [DOI] [PubMed] [Google Scholar]
  17. Kasamatsu T., Pettigrew J. D. Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science. 1976 Oct 8;194(4261):206–209. doi: 10.1126/science.959850. [DOI] [PubMed] [Google Scholar]
  18. Kleinschmidt A., Bear M. F., Singer W. Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. Science. 1987 Oct 16;238(4825):355–358. doi: 10.1126/science.2443978. [DOI] [PubMed] [Google Scholar]
  19. Koh S., Loy R. Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex. J Neurosci. 1989 Sep;9(9):2999–0318. doi: 10.1523/JNEUROSCI.09-09-02999.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Large T. H., Bodary S. C., Clegg D. O., Weskamp G., Otten U., Reichardt L. F. Nerve growth factor gene expression in the developing rat brain. Science. 1986 Oct 17;234(4774):352–355. doi: 10.1126/science.3764415. [DOI] [PubMed] [Google Scholar]
  22. Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987 Sep 4;237(4819):1154–1162. doi: 10.1126/science.3306916. [DOI] [PubMed] [Google Scholar]
  23. Mitchell D. E., Giffin F., Wilkinson F., Anderson P., Smith M. L. Visual resolution in young kittens. Vision Res. 1976;16(4):363–366. doi: 10.1016/0042-6989(76)90197-8. [DOI] [PubMed] [Google Scholar]
  24. Pioro E. P., Cuello A. C. Distribution of nerve growth factor receptor-like immunoreactivity in the adult rat central nervous system. Effect of colchicine and correlation with the cholinergic system--I. Forebrain. Neuroscience. 1990;34(1):57–87. doi: 10.1016/0306-4522(90)90304-m. [DOI] [PubMed] [Google Scholar]
  25. Pirchio M., Spinelli D., Fiorentini A., Maffei L. Infant contrast sensitivity evaluated by evoked potentials. Brain Res. 1978 Feb 3;141(1):179–184. doi: 10.1016/0006-8993(78)90628-5. [DOI] [PubMed] [Google Scholar]
  26. Rothblat L. A., Schwartz M. L., Kasdan P. M. Monocular deprivation in the rat: evidence for an age-related defect in visual behavior. Brain Res. 1978 Dec 15;158(2):456–460. doi: 10.1016/0006-8993(78)90689-3. [DOI] [PubMed] [Google Scholar]
  27. Shaw C., Cynader M. Disruption of cortical activity prevents ocular dominance changes in monocularly deprived kittens. Nature. 1984 Apr 19;308(5961):731–734. doi: 10.1038/308731a0. [DOI] [PubMed] [Google Scholar]
  28. Sherman S. M., Guillery R. W., Kaas J. H., Sanderson K. J. Behavioral, electrophysiological and morphological studies of binocular competition in the development of the geniculo-cortical pathways of cats. J Comp Neurol. 1974 Nov 1;158(1):1–18. doi: 10.1002/cne.901580102. [DOI] [PubMed] [Google Scholar]
  29. Sherman S. M., Spear P. D. Organization of visual pathways in normal and visually deprived cats. Physiol Rev. 1982 Apr;62(2):738–855. doi: 10.1152/physrev.1982.62.2.738. [DOI] [PubMed] [Google Scholar]
  30. Silveira L. C., Heywood C. A., Cowey A. Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically. Vision Res. 1987;27(10):1719–1731. doi: 10.1016/0042-6989(87)90101-5. [DOI] [PubMed] [Google Scholar]
  31. Vantini G., Schiavo N., Di Martino A., Polato P., Triban C., Callegaro L., Toffano G., Leon A. Evidence for a physiological role of nerve growth factor in the central nervous system of neonatal rats. Neuron. 1989 Sep;3(3):267–273. doi: 10.1016/0896-6273(89)90251-1. [DOI] [PubMed] [Google Scholar]
  32. Wiesel T. N., Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965 Nov;28(6):1029–1040. doi: 10.1152/jn.1965.28.6.1029. [DOI] [PubMed] [Google Scholar]
  33. Wilson J. R., Sherman S. M. Differential effects of early monocular deprivation on binocular and monocular segments of cat striate cortex. J Neurophysiol. 1977 Jul;40(4):891–903. doi: 10.1152/jn.1977.40.4.891. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES