Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Dec;10(12):1973–1990. doi: 10.1105/tpc.10.12.1973

The transition to flowering

YY Levy 1, C Dean 1
PMCID: PMC526001  PMID: 9836739

Full Text

The Full Text of this article is available as a PDF (161.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M., Cashmore A. R. The pef mutants of Arabidopsis thaliana define lesions early in the phytochrome signaling pathway. Plant J. 1996 Dec;10(6):1103–1110. doi: 10.1046/j.1365-313x.1996.10061103.x. [DOI] [PubMed] [Google Scholar]
  2. Amasino R. M. Control of flowering time in plants. Curr Opin Genet Dev. 1996 Aug;6(4):480–487. doi: 10.1016/s0959-437x(96)80071-2. [DOI] [PubMed] [Google Scholar]
  3. Bagnall D. J., King R. W., Hangarter R. P. Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis. Planta. 1996;200(2):278–280. doi: 10.1007/BF00208319. [DOI] [PubMed] [Google Scholar]
  4. Bancroft I., Jones J. D., Dean C. Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell. 1993 Jun;5(6):631–638. doi: 10.1105/tpc.5.6.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernier G., Havelange A., Houssa C., Petitjean A., Lejeune P. Physiological Signals That Induce Flowering. Plant Cell. 1993 Oct;5(10):1147–1155. doi: 10.1105/tpc.5.10.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D. Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter . Plant Cell. 1998 May;10(5):791–800. doi: 10.1105/tpc.10.5.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradley D., Ratcliffe O., Vincent C., Carpenter R., Coen E. Inflorescence commitment and architecture in Arabidopsis. Science. 1997 Jan 3;275(5296):80–83. doi: 10.1126/science.275.5296.80. [DOI] [PubMed] [Google Scholar]
  8. Burn J. E., Bagnall D. J., Metzger J. D., Dennis E. S., Peacock W. J. DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):287–291. doi: 10.1073/pnas.90.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Caspar T., Huber S. C., Somerville C. Alterations in Growth, Photosynthesis, and Respiration in a Starchless Mutant of Arabidopsis thaliana (L.) Deficient in Chloroplast Phosphoglucomutase Activity. Plant Physiol. 1985 Sep;79(1):11–17. doi: 10.1104/pp.79.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caspar T., Lin T. P., Kakefuda G., Benbow L., Preiss J., Somerville C. Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol. 1991 Apr;95(4):1181–1188. doi: 10.1104/pp.95.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chandler J., Wilson A., Dean C. Arabidopsis mutants showing an altered response to vernalization. Plant J. 1996 Oct;10(4):637–644. doi: 10.1046/j.1365-313x.1996.10040637.x. [DOI] [PubMed] [Google Scholar]
  12. Chen L., Cheng J. C., Castle L., Sung Z. R. EMF genes regulate Arabidopsis inflorescence development. Plant Cell. 1997 Nov;9(11):2011–2024. doi: 10.1105/tpc.9.11.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chory J., Nagpal P., Peto C. A. Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell. 1991 May;3(5):445–459. doi: 10.1105/tpc.3.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chory J., Peto C. A., Ashbaugh M., Saganich R., Pratt L., Ausubel F. Different Roles for Phytochrome in Etiolated and Green Plants Deduced from Characterization of Arabidopsis thaliana Mutants. Plant Cell. 1989 Sep;1(9):867–880. doi: 10.1105/tpc.1.9.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
  16. Chory J., Reinecke D., Sim S., Washburn T., Brenner M. A Role for Cytokinins in De-Etiolation in Arabidopsis (det Mutants Have an Altered Response to Cytokinins). Plant Physiol. 1994 Feb;104(2):339–347. doi: 10.1104/pp.104.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Clarke J. H., Dean C. Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol Gen Genet. 1994 Jan;242(1):81–89. doi: 10.1007/BF00277351. [DOI] [PubMed] [Google Scholar]
  18. Clarke J. H., Mithen R., Brown J. K., Dean C. QTL analysis of flowering time in Arabidopsis thaliana. Mol Gen Genet. 1995 Aug 21;248(3):278–286. doi: 10.1007/BF02191594. [DOI] [PubMed] [Google Scholar]
  19. Colasanti J., Yuan Z., Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell. 1998 May 15;93(4):593–603. doi: 10.1016/s0092-8674(00)81188-5. [DOI] [PubMed] [Google Scholar]
  20. Coupland G. Genetic and environmental control of flowering time in Arabidopsis. Trends Genet. 1995 Oct;11(10):393–397. doi: 10.1016/s0168-9525(00)89122-2. [DOI] [PubMed] [Google Scholar]
  21. Deikman J., Ulrich M. A novel cytokinin-resistant mutant of Arabidopsis with abbreviated shoot development. Planta. 1995;195(3):440–449. doi: 10.1007/BF00202603. [DOI] [PubMed] [Google Scholar]
  22. Deng X. W., Caspar T., Quail P. H. cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 1991 Jul;5(7):1172–1182. doi: 10.1101/gad.5.7.1172. [DOI] [PubMed] [Google Scholar]
  23. Eimert K., Wang S. M., Lue W. I., Chen J. Monogenic Recessive Mutations Causing Both Late Floral Initiation and Excess Starch Accumulation in Arabidopsis. Plant Cell. 1995 Oct;7(10):1703–1712. doi: 10.1105/tpc.7.10.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Finnegan E. J., Genger R. K., Kovac K., Peacock W. J., Dennis E. S. DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5824–5829. doi: 10.1073/pnas.95.10.5824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Furner I. J., Ainscough J. F., Pumfrey J. A., Petty L. M. Clonal analysis of the late flowering fca mutant of Arabidopsis thaliana: cell fate and cell autonomy. Development. 1996 Mar;122(3):1041–1050. doi: 10.1242/dev.122.3.1041. [DOI] [PubMed] [Google Scholar]
  26. Goodrich J., Puangsomlee P., Martin M., Long D., Meyerowitz E. M., Coupland G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature. 1997 Mar 6;386(6620):44–51. doi: 10.1038/386044a0. [DOI] [PubMed] [Google Scholar]
  27. Grbić B., Bleecker A. B. An altered body plan is conferred on Arabidopsis plants carrying dominant alleles of two genes. Development. 1996 Aug;122(8):2395–2403. doi: 10.1242/dev.122.8.2395. [DOI] [PubMed] [Google Scholar]
  28. Guo H., Yang H., Mockler T. C., Lin C. Regulation of flowering time by Arabidopsis photoreceptors. Science. 1998 Feb 27;279(5355):1360–1363. doi: 10.1126/science.279.5355.1360. [DOI] [PubMed] [Google Scholar]
  29. Halliday K., Devlin P. F., Whitelam G. C., Hanhart C., Koornneef M. The ELONGATED gene of Arabidopsis acts independently of light and gibberellins in the control of elongation growth. Plant J. 1996 Mar;9(3):305–312. doi: 10.1046/j.1365-313x.1996.09030305.x. [DOI] [PubMed] [Google Scholar]
  30. Haung M. D., Yang C. H. EMF genes interact with late-flowering genes to regulate Arabidopsis shoot development. Plant Cell Physiol. 1998 Apr;39(4):382–393. doi: 10.1093/oxfordjournals.pcp.a029381. [DOI] [PubMed] [Google Scholar]
  31. Hazebroek J. P., Metzger J. D., Mansager E. R. Thermoinductive Regulation of Gibberellin Metabolism in Thlaspi arvense L. (II. Cold Induction of Enzymes in Gibberellin Biosynthesis). Plant Physiol. 1993 Jun;102(2):547–552. doi: 10.1104/pp.102.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hazebroek J. P., Metzger J. D. Thermoinductive Regulation of Gibberellin Metabolism in Thlaspi arvense L. : I. Metabolism of [H]-ent-Kaurenoic Acid and [C]Gibberellin A(12)-Aldehyde. Plant Physiol. 1990 Sep;94(1):157–165. doi: 10.1104/pp.94.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hempel F. D., Weigel D., Mandel M. A., Ditta G., Zambryski P. C., Feldman L. J., Yanofsky M. F. Floral determination and expression of floral regulatory genes in Arabidopsis. Development. 1997 Oct;124(19):3845–3853. doi: 10.1242/dev.124.19.3845. [DOI] [PubMed] [Google Scholar]
  34. Jacobsen S. E., Meyerowitz E. M. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis. Science. 1997 Aug 22;277(5329):1100–1103. doi: 10.1126/science.277.5329.1100. [DOI] [PubMed] [Google Scholar]
  35. Jacobsen S. E., Olszewski N. E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 1993 Aug;5(8):887–896. doi: 10.1105/tpc.5.8.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kakutani T. Genetic characterization of late-flowering traits induced by DNA hypomethylation mutation in Arabidopsis thaliana. Plant J. 1997 Dec;12(6):1447–1451. doi: 10.1046/j.1365-313x.1997.12061447.x. [DOI] [PubMed] [Google Scholar]
  37. Kakutani T., Jeddeloh J. A., Flowers S. K., Munakata K., Richards E. J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12406–12411. doi: 10.1073/pnas.93.22.12406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kania T., Russenberger D., Peng S., Apel K., Melzer S. FPF1 promotes flowering in Arabidopsis. Plant Cell. 1997 Aug;9(8):1327–1338. doi: 10.1105/tpc.9.8.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Koornneef M., Alonso-Blanco C., Blankestijn-de Vries H., Hanhart C. J., Peeters A. J. Genetic interactions among late-flowering mutants of Arabidopsis. Genetics. 1998 Feb;148(2):885–892. doi: 10.1093/genetics/148.2.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Koornneef M., Hanhart C. J., van der Veen J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet. 1991 Sep;229(1):57–66. doi: 10.1007/BF00264213. [DOI] [PubMed] [Google Scholar]
  41. Koornneef Maarten, Alonso-Blanco Carlos, Peeters Anton J. M., Soppe Wim. GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):345–370. doi: 10.1146/annurev.arplant.49.1.345. [DOI] [PubMed] [Google Scholar]
  42. Kowalski S. P., Lan T. H., Feldmann K. A., Paterson A. H. QTL mapping of naturally-occurring variation in flowering time of Arabidopsis thaliana. Mol Gen Genet. 1994 Dec 1;245(5):548–555. doi: 10.1007/BF00282217. [DOI] [PubMed] [Google Scholar]
  43. Laurie D. A. Comparative genetics of flowering time. Plant Mol Biol. 1997 Sep;35(1-2):167–177. [PubMed] [Google Scholar]
  44. Lawson E. J., Poethig R. S. Shoot development in plants: time for a change. Trends Genet. 1995 Jul;11(7):263–268. doi: 10.1016/s0168-9525(00)89072-1. [DOI] [PubMed] [Google Scholar]
  45. Lee I., Aukerman M. J., Gore S. L., Lohman K. N., Michaels S. D., Weaver L. M., John M. C., Feldmann K. A., Amasino R. M. Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell. 1994 Jan;6(1):75–83. doi: 10.1105/tpc.6.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lee I., Bleecker A., Amasino R. Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol Gen Genet. 1993 Feb;237(1-2):171–176. doi: 10.1007/BF00282798. [DOI] [PubMed] [Google Scholar]
  47. Levy Y. Y., Dean C. Control of flowering time. Curr Opin Plant Biol. 1998 Feb;1(1):49–54. doi: 10.1016/s1369-5266(98)80127-1. [DOI] [PubMed] [Google Scholar]
  48. Lin T. P., Caspar T., Somerville C., Preiss J. Isolation and Characterization of a Starchless Mutant of Arabidopsis thaliana (L.) Heynh Lacking ADPglucose Pyrophosphorylase Activity. Plant Physiol. 1988 Apr;86(4):1131–1135. doi: 10.1104/pp.86.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ma H. The on and off of floral regulatory genes. Cell. 1997 Jun 13;89(6):821–824. doi: 10.1016/s0092-8674(00)80265-2. [DOI] [PubMed] [Google Scholar]
  50. Macknight R., Bancroft I., Page T., Lister C., Schmidt R., Love K., Westphal L., Murphy G., Sherson S., Cobbett C. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell. 1997 May 30;89(5):737–745. doi: 10.1016/s0092-8674(00)80256-1. [DOI] [PubMed] [Google Scholar]
  51. Mandel M. A., Yanofsky M. F. A gene triggering flower formation in Arabidopsis. Nature. 1995 Oct 12;377(6549):522–524. doi: 10.1038/377522a0. [DOI] [PubMed] [Google Scholar]
  52. McDaniel C. N., Hartnett L. K. Flowering as metamorphosis: two sequential signals regulate floral initiation in Lolium temulentum. Development. 1996 Nov;122(11):3661–3668. doi: 10.1242/dev.122.11.3661. [DOI] [PubMed] [Google Scholar]
  53. McDaniel C. N., Singer S. R., Smith S. M. Development states associated with the floral transition. Dev Biol. 1992 Sep;153(1):59–69. doi: 10.1016/0012-1606(92)90091-t. [DOI] [PubMed] [Google Scholar]
  54. Metzger J. D. Comparison of Biological Activities of Gibberellins and Gibberellin-Precursors Native to Thlaspi arvense L. Plant Physiol. 1990 Sep;94(1):151–156. doi: 10.1104/pp.94.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Nilsson O., Lee I., Blázquez M. A., Weigel D. Flowering-time genes modulate the response to LEAFY activity. Genetics. 1998 Sep;150(1):403–410. doi: 10.1093/genetics/150.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Ohshima S., Murata M., Sakamoto W., Ogura Y., Motoyoshi F. Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol Gen Genet. 1997 Mar 26;254(2):186–194. doi: 10.1007/s004380050407. [DOI] [PubMed] [Google Scholar]
  57. Osborn T. C., Kole C., Parkin I. A., Sharpe A. G., Kuiper M., Lydiate D. J., Trick M. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics. 1997 Jul;146(3):1123–1129. doi: 10.1093/genetics/146.3.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Pepper A. E., Chory J. Extragenic suppressors of the Arabidopsis det1 mutant identify elements of flowering-time and light-response regulatory pathways. Genetics. 1997 Apr;145(4):1125–1137. doi: 10.1093/genetics/145.4.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Piñeiro M., Coupland G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol. 1998 May;117(1):1–8. doi: 10.1104/pp.117.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Poethig R. S. Phase change and the regulation of shoot morphogenesis in plants. Science. 1990 Nov 16;250(4983):923–930. doi: 10.1126/science.250.4983.923. [DOI] [PubMed] [Google Scholar]
  61. Pouteau S., Nicholls D., Tooke F., Coen E., Battey N. The induction and maintenance of flowering in Impatiens. Development. 1997 Sep;124(17):3343–3351. doi: 10.1242/dev.124.17.3343. [DOI] [PubMed] [Google Scholar]
  62. Putterill J., Robson F., Lee K., Simon R., Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell. 1995 Mar 24;80(6):847–857. doi: 10.1016/0092-8674(95)90288-0. [DOI] [PubMed] [Google Scholar]
  63. Ratcliffe O. J., Amaya I., Vincent C. A., Rothstein S., Carpenter R., Coen E. S., Bradley D. J. A common mechanism controls the life cycle and architecture of plants. Development. 1998 May;125(9):1609–1615. doi: 10.1242/dev.125.9.1609. [DOI] [PubMed] [Google Scholar]
  64. Ray A., Lang J. D., Golden T., Ray S. SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time. Development. 1996 Sep;122(9):2631–2638. doi: 10.1242/dev.122.9.2631. [DOI] [PubMed] [Google Scholar]
  65. Richards E. J. DNA methylation and plant development. Trends Genet. 1997 Aug;13(8):319–323. doi: 10.1016/s0168-9525(97)01199-2. [DOI] [PubMed] [Google Scholar]
  66. Ronemus M. J., Galbiati M., Ticknor C., Chen J., Dellaporta S. L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science. 1996 Aug 2;273(5275):654–657. doi: 10.1126/science.273.5275.654. [DOI] [PubMed] [Google Scholar]
  67. Ruiz-García L., Madueño F., Wilkinson M., Haughn G., Salinas J., Martínez-Zapater J. M. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell. 1997 Nov;9(11):1921–1934. doi: 10.1105/tpc.9.11.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Rédei G P. Supervital Mutants of Arabidopsis. Genetics. 1962 Apr;47(4):443–460. doi: 10.1093/genetics/47.4.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Sanda S. L., Amasino R. M. Ecotype-Specific Expression of a Flowering Mutant Phenotype in Arabidopsis thaliana. Plant Physiol. 1996 Jun;111(2):641–644. doi: 10.1104/pp.111.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Sanda S., John M., Amasino R. Analysis of flowering time in ecotypes of Arabidopsis thaliana. J Hered. 1997 Jan-Feb;88(1):69–72. doi: 10.1093/oxfordjournals.jhered.a023061. [DOI] [PubMed] [Google Scholar]
  71. Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carré I. A., Coupland G. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell. 1998 Jun 26;93(7):1219–1229. doi: 10.1016/s0092-8674(00)81465-8. [DOI] [PubMed] [Google Scholar]
  72. Shannon S., Meeks-Wagner D. R. A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development. Plant Cell. 1991 Sep;3(9):877–892. doi: 10.1105/tpc.3.9.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Simon R., Igeño M. I., Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature. 1996 Nov 7;384(6604):59–62. doi: 10.1038/384059a0. [DOI] [PubMed] [Google Scholar]
  74. Somers D. E., Webb A. A., Pearson M., Kay S. A. The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development. 1998 Feb;125(3):485–494. doi: 10.1242/dev.125.3.485. [DOI] [PubMed] [Google Scholar]
  75. Sun T. P., Kamiya Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell. 1994 Oct;6(10):1509–1518. doi: 10.1105/tpc.6.10.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Sung Z. R., Belachew A., Shunong B., Bertrand-Garcia R. EMF, an Arabidopsis Gene Required for Vegetative Shoot Development. Science. 1992 Dec 4;258(5088):1645–1647. doi: 10.1126/science.258.5088.1645. [DOI] [PubMed] [Google Scholar]
  77. Telfer A., Poethig R. S. HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development. 1998 May;125(10):1889–1898. doi: 10.1242/dev.125.10.1889. [DOI] [PubMed] [Google Scholar]
  78. Wang Z. Y., Tobin E. M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell. 1998 Jun 26;93(7):1207–1217. doi: 10.1016/s0092-8674(00)81464-6. [DOI] [PubMed] [Google Scholar]
  79. Weigel D., Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature. 1995 Oct 12;377(6549):495–500. doi: 10.1038/377495a0. [DOI] [PubMed] [Google Scholar]
  80. Weigel D. The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet. 1995;29:19–39. doi: 10.1146/annurev.ge.29.120195.000315. [DOI] [PubMed] [Google Scholar]
  81. Wellensiek S. J. Dividing Cells as the Prerequisite for Vernalization. Plant Physiol. 1964 Sep;39(5):832–835. doi: 10.1104/pp.39.5.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Whitelam G. C., Johnson E., Peng J., Carol P., Anderson M. L., Cowl J. S., Harberd N. P. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757–768. doi: 10.1105/tpc.5.7.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Wilson R. N., Heckman J. W., Somerville C. R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992 Sep;100(1):403–408. doi: 10.1104/pp.100.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Yang C. H., Chen L. J., Sung Z. R. Genetic regulation of shoot development in Arabidopsis: role of the EMF genes. Dev Biol. 1995 Jun;169(2):421–435. doi: 10.1006/dbio.1995.1158. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES