Abstract
Plant cells have an acute sense for pathogen-derived chemical stimuli, so-called elicitors, which induce the plant's defense response. To investigate the molecular basis of chemosensory transduction, elicitor-treated tomato cells were labeled with 1-min pulses of [32P] phosphate. This technique revealed drastic changes in protein phosphorylation in vivo within minutes of stimulation. The protein kinase inhibitors K-252a and staurosporine completely prevented these elicitor-induced changes in protein phosphorylation. They also blocked two early biochemical responses to elicitors, extracellular alkalinization and biosynthesis of ethylene. The ability of K-252a, staurosporine, and benzoylated staurosporine derivatives to inhibit elicitor responses in vivo correlated with their ability to inhibit tomato microsomal protein kinase in vitro. When K-252a was given to elicited cells 1 min after the[32] phosphate, the radioactivity in certain newly labeled phosphoprotein bands disappeared again within minutes. This correlated with an arrest of alkalinization within minutes when K-252a was applied in midcourse of elicitation. These data show that phosphorylation of protein substrates by K-252a-sensitive protein kinases is essential for transduction of elicitor signals in plant cells and that continuous phosphorylation of these proteins is required to maintain the elicited state.
Full text
PDF![8831](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca24/52604/b20b157ac21b/pnas01069-0560.png)
![8832](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca24/52604/6738205ca28e/pnas01069-0561.png)
![8833](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca24/52604/6554504640a3/pnas01069-0562.png)
![8834](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca24/52604/7e0cb4742a3c/pnas01069-0563.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biermann B., Johnson E. M., Feldman L. J. Characterization and distribution of a maize cDNA encoding a peptide similar to the catalytic region of second messenger dependent protein kinases. Plant Physiol. 1990;94:1609–1615. doi: 10.1104/pp.94.4.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietrich A., Mayer J. E., Hahlbrock K. Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem. 1990 Apr 15;265(11):6360–6368. [PubMed] [Google Scholar]
- Farmer E. E., Pearce G., Ryan C. A. In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1539–1542. doi: 10.1073/pnas.86.5.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grosskopf D. G., Felix G., Boller T. K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Lett. 1990 Nov 26;275(1-2):177–180. doi: 10.1016/0014-5793(90)81466-2. [DOI] [PubMed] [Google Scholar]
- Hunter T. A thousand and one protein kinases. Cell. 1987 Sep 11;50(6):823–829. doi: 10.1016/0092-8674(87)90509-5. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lawton M. A., Yamamoto R. T., Hanks S. K., Lamb C. J. Molecular cloning of plant transcripts encoding protein kinase homologs. Proc Natl Acad Sci U S A. 1989 May;86(9):3140–3144. doi: 10.1073/pnas.86.9.3140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacKintosh C., Cohen P. Identification of high levels of type 1 and type 2A protein phosphatases in higher plants. Biochem J. 1989 Aug 15;262(1):335–339. doi: 10.1042/bj2620335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martiny-Baron G., Scherer G. F. Phospholipid-stimulated protein kinase in plants. J Biol Chem. 1989 Oct 25;264(30):18052–18059. [PubMed] [Google Scholar]
- Meyer T., Regenass U., Fabbro D., Alteri E., Rösel J., Müller M., Caravatti G., Matter A. A derivative of staurosporine (CGP 41 251) shows selectivity for protein kinase C inhibition and in vitro anti-proliferative as well as in vivo anti-tumor activity. Int J Cancer. 1989 May 15;43(5):851–856. doi: 10.1002/ijc.2910430519. [DOI] [PubMed] [Google Scholar]
- Rüegg U. T., Burgess G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989 Jun;10(6):218–220. doi: 10.1016/0165-6147(89)90263-0. [DOI] [PubMed] [Google Scholar]
- Schmidt W. E., Ebel J. Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4117–4121. doi: 10.1073/pnas.84.12.4117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stock J. B., Ninfa A. J., Stock A. M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. doi: 10.1128/mr.53.4.450-490.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J. C., Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature. 1990 Jun 21;345(6277):743–746. doi: 10.1038/345743a0. [DOI] [PubMed] [Google Scholar]